
VEDIT 6.0
Fully Configurable

Multiple File Text Editor
Universal File Editor

User’s Manual

Greenview Data

VEDIT
Universal File Editor

For Text, Program, Database, Binary
And Mainframe File Editing

Version 6.03

Manual Written By:
Theodore Green & Charles Scott

Programmed By:
Theodore Green & Thomas Burt

Greenview Data, Inc.
2773 Holyoke Lane

Ann Arbor, MI 48103
Telephone: (734) 996-1300

Sales: (800) 458-3348
Fax: (734) 996-1308

E-Mail: support@vedit.com
Website: www.vedit.com

Copyright (C) 1990 - 2002 by Greenview Data, Inc. All rights reserved
worldwide. No part of this publication may be reproduced, in any form
or by any means, for any purpose without the express written permission
of Greenview Data.

DISCLAIMER

Greenview Data, Inc. and the authors make no claims or warranties with
respect to the contents or accuracy of this publication, or the product it
describes, including any warranties of fitness or merchantability for a
particular purpose. Any stated or expressed warranties are in lieu of all
obligations or liability for any damages, whether special, indirect, or
consequential, arising out of or in connection with the use of this
publication or the product it describes. Furthermore, the right is reserved
to make any changes to this publication without obligation to notify any
person of such changes.

Last Manual Revision: May 10, 2002

ACKNOWLEDGEMENTS

We would like to thank the following people for their assistance.

Christian Ziemski for the exceptionally thorough beta-testing of
new versions and assistance in setting up the Discussion Conference
on our Web site.

Scott Lambert for the numerous suggestions, for supporting other
users in the Discussion Conference, and for running his own “VEDIT
macro” Web site.

Maxim Glukhov for writing the new BOX-DRAW.VDM and
ASCII2.VDM macros supplied with VEDIT.

Wayne Barrett, for donating many hours to editing and enhancing
this manual and for his helpful feedback over many years.

Peter Freed of Data Base Management Systems, Inc. for writing the
CMD-CONV.VDM, DBASE.VDM and WS6.VDM (enhanced
WordStar emulation) macros supplied with VEDIT.

This manual was created using Corel Ventura in conjunction with
VEDIT PLUS. V-SPELL was used for spelling correction.

TRADEMARKS

VEDIT, V-SPELL and V-PRINT are trademarks or registered trade-
marks of Greenview Data, Inc.

Microsoft, MS-DOS, Windows, Windows NT and Internet Explorer
are trademarks or registered trademarks of Microsoft Corporation.

Netscape and Netscape Communicator are registered trademarks of
Netscape Communications Corporation.

UNIX is a registered trademark of The Open Group.

Linux is a registered trademark of Linus Torvalds.

IBM, IBM PC/AT, PS/2 and OS/2 are trademarks or registered
trademarks of International Business Machines.

Corel, WordPerfect, Paradox and Ventura are registered trademarks
of Corel Corporation.

dBase and Brief are trademarks or registered trademarks of Borland
International.

All other trademarks and copyrights referred to are the property of
their respective owners.

TABLE OF CONTENTS

Chapter 1 - Introduction... 9
Welcome to VEDIT..9
Main Features ...11
Ready-To-Use Macros..13
EBCDIC Conversion Software ..16
System Requirements ...17
Using this Manual...18
Notation ..19
Product Support ..20

Chapter 2 - Getting Started.. 21
Installation ..21
Windows Installation..22

Un-installing VEDIT ...24
DOS Installation ...25
CONFIG.SYS and AUTOEXEC.BAT Files ..30
Network Installation ..31
Initial Configuration ...33
Description of Files ..34
Keyboard Layout ...38

“Normal” IBM PC Keyboard Layout ...40

Chapter 3 - Quick Tutorial... 43
Starting VEDIT ...44
Entering New Text ...45
Deleting Text ..46
Moving the Cursor ...47
Undo and Redo ...49
Repeating Operations ..50
“Cut and Paste” a Block ...50
Printing Text ...53
Saving Your Work ...54
Exiting VEDIT ..54
That’s It! ...54

Chapter 4 - Editing Guide .. 55
Starting (Invoking) VEDIT ...55

Starting VEDIT for Windows..55
Running VEDIT from DOS/NT Command Prompt57
Invocation Options (All Versions) ...59
“VEDIT” Environment Variable ...61

3

Opening Files .. 62
Adding VEDIT to the “Send to” Context Menu......................... 63
Opening Multiple Files ... 63
Opening Multiple Instances of VEDIT....................................... 64
Opening Files with Fixed-Length Records 66
Starting (Default) Directory for File-Open 67
Read-only (Browse) Mode ... 68
Overwrite-Only Mode .. 69

Exiting VEDIT .. 70
Edit Session Restore ... 71
Backup Files ... 72
Auto-file Save ... 73

File Selector (Windows only) .. 74
Toolbar, Tabbar and Rulers (Windows only) ... 78
Status Line ... 80
User Interface... 82

Selecting Display Fonts (Windows version) 82
Shortcuts and Suggestions .. 82

Undo and Redo ... 84
Scrolling the Screen .. 85

Wrapping Long Lines on the Screen .. 86
Screen Display & Keyboard Characters ... 87

Entering Control and Graphics Characters 87
Control and Graphics Character Display 88
Display Modes .. 88
The <Tab> Key and Tab Characters .. 90
Converting Tab Characters to Spaces .. 91
Lower and Upper Case Conversion ... 92
Key Emulation Modes... 93
Other Keyboard Input Options (Technical) 94
Other Screen Display Issues (DOS Only - Technical)................ 94

ANSI and OEM Characters ... 95
Hex Mode Editing (and Octal) ... 96

Searching in Hex, Decimal or Octal ... 97
Entering Numbers in Hexadecimal ... 97

EBCDIC Editing .. 98
Directly Editing EBCDIC Text Files .. 99
Editing EBCDIC Binary/Data Files in Hexadecimal 100
Translating EBCDIC Files .. 100

Keystroke Macros .. 101
Recording a “Quick” Macro.. 102
Recording Keystroke Macros.. 102
Adding Keystroke Macros ... 103

Modifying an Existing Keystroke Macro 106
Deleting Keystroke Macros .. 106

4

Editing the Keyboard Layout ..107
Adding a Keystroke Macro from KEY-MAC.LIB108
Loading a New Keyboard Layout ...109

Block Operations ...110
Marking (selecting) a Block of Text ...110
What exactly does the block include? ..112
Double-Tapping <Shift> and <Ctrl> ..112
Clearing Block Markers (Highlighting)112
“Persistent” Blocks ...113
{BLOCK, Copy / Move to cursor} ...114
Text Registers and the “Scratchpad” ..115

Accessing Other Text Registers ..116
Block options - Fill and Overstrike117
Emptying a Text Register ...117
Text Register Usage..118

Cut and Paste Huge Blocks ..120
The Windows Clipboard ...121
Block Indenting ...122
Indenting Lines ..123
Columnar Blocks ..124

Printing in VEDIT ..129
Basic Operation..130
Printer Margins ...131
Using the PRINT.VDM Macro ..131
Print Display Mode..132
Printing the OEM Character Set ..133
EBCDIC and other Translate Tables ...134
Print “Jobs” and [Finish/Eject] ...134

Print Job Start/Finish Strings..135
Search and Replace ..136

Searching Within a Block. ..140
Pattern Matching..142

Matching the “Newline” with “|L” and “|N”145
Matching the Beginning/End of a Line with “|<” and “|>”..145
Matching Multiple Characters - “|M”, “|Y” and “|*”145
Pattern Sets ...147
Using Text Registers in Search Strings148

Regular Expressions ..149
Special Matching Characters ..151
The “OR” Operator...152
Groups and Replacement Strings ...153
Complete Examples..153
Matching the “Newline”...154
Maximize Regular Expression Matching.............................155

Incremental Searching ...156

5

Word Processing Functions .. 157
Definition of “Word” and “Paragraph” 158
Indenting Text (Left Margin) ... 159
Word Wrap (Right Margin) ... 160
Formatting and Justifying Paragraphs .. 162

Offset Paragraphs... 163
Justification .. 163
Formatting Options .. 163

Sorting Lines in a File / Block ... 165
Basic sorting with {EDIT, Sort, Sort lines} 165
Sorting by multiple fields (primary and secondary keys)........... 166
Collate Tables.. 167

Creating Your Own Collate Tables 168
Technical Description of Sorting Algorithm 169

Editing Multiple Files ... 170
{FILE, Open (More)} Sub-menu.. 171
Switching Between Files (Edit Buffers) 172
Closing Files and Windows ... 172
Copying Text From One File to Another 173
Edit Buffer Details ... 174

Windows .. 175
Switching Between Windows ... 176
Zooming A Window .. 176
“Full-Sized” Windows
(Windows version) ... 177
Editing One File in Two Windows .. 177

File Types - Text and Binary/Data ... 178
Windows/DOS and UNIX Text Files ... 179
Macintosh Text Files ... 180
Binary/Data Files (Record Mode) .. 180
Database Files With Headers ... 181

Converting Files ... 182
Converting between File Types .. 182
Files with Fixed-Length Records .. 184

Converting from Fixed-Length to Normal Text 185
Converting Normal Text into Fixed-length Records........... 186
Make All Lines the Same Length .. 187

Strip Trailing Spaces ... 188
Translating Files .. 189

Translating between ANSI and OEM-PC................................... 189
Translating between ASCII and Unicode 189
Translating between EBCDIC and ASCII 190
Loading other Translate Tables... 191
Creating Your Own Translation Table.. 192

6

Chapter 5 - Advanced Topics... 193
STARTUP.VDM File ...193

Changing Configuration with USTARTUP.VDM195
Using a Different Startup File ...197
Name of STARTUP.VDM and VEDIT.INI198

{USER} and {TOOLS} Menus ...199
File-open Configuration ...201

Setting Up File-Open Configuration ...202
Filename Specific Configuration...203
Detailed Description ..204

Color Syntax Highlighting ...206
Automatic Color Syntax Highlighting ..207
Creating your own “.SYN” syntax definition file208

Template Editing ...209
Manual Setup ...209
Automatic Template Editing ...210

HTML Editing Features ..211
Command Macros (Intro) ..212

VEDIT Macro Language ..212
Command Macros and Text Registers ..213

Loading and Executing Command Macros214
Auto-Execute Macros ..215
PRINT - Print Macro ...216
WILDFILE - Multi-file Processing ...217

Wildfile Wizard (Windows Only) ...218
Auto-executing the WILDFILE macro..219
Wildfile Macro (Command Line)..220
Fully Automating WILDFILE.VDM ..221

COMPARE - Compare Files ...222
COMPDIR - Compare Directories ..224
SORTMAIL - Sorting Macro ..225
DBASE.VDM Macro ..227
CFUNC - C Program Outliner ..229
RUNSHELL - Run Other Programs ...230
“ctags” Symbol Lookup ..232
Compiler Support ..234

Compiler Support Installation ...235
Configuring the COMPILE.CNF
(or JAVA-SDK.CNF) file..236
Running the Compiler Support ...237

Chapter 6 - Menu Reference .. 239
File Menu..240
Edit Menu ...252
Undo (Sub-menu) ...258

7

Scratchpad (Sub-menu).. 261
Formatting (Sub-menu).. 263
Sort (Sub-menu)... 266
Insert (Sub-menu) .. 268
Delete (Sub-menu) ... 272
Convert (Sub-menu) ... 275
Translate (Sub-menu)... 280
View Menu... 283
Block Menu.. 293
Goto Menu ... 304
Misc Menu ... 310
Search Menu ... 318
Window Menu ... 324
Config Menu ... 329
Keyboard Layout (Sub-menu) ... 367
File-open Config (Sub-menu) ... 373
Help Menu ... 376
Escape Menu .. 381
Mouse Right-Click Menu ... 383

Chapter 7 - Edit Function Reference ...385

Chapter 8 - Configuration ..391
Basic Configuration ... 392
How VEDIT Configures Itself... 392
Troubleshooting .. 394
VEDIT.KEY Layout File ... 398

Modifying the VEDIT.KEY file .. 399
Configuration Commands in “.KEY” Files 399

VEDIT.CFG Configuration File.. 400
Summary of Config() Parameters ... 401

Chapter 9 - Messages ...403

Appendices - ..415
A - File Management ... 415

Basic File Handling... 415
Networking and Multi-Tasking... 417

B - Search Modes Summary ... 418
Pattern Matching Codes .. 418
Regular Expressions.. 419

C - Application Notes .. 421
D - Troubleshooting... 425
E - IBM PC Keyboard Layout .. 427
F - IBM PC Color Chart .. 431
G - ASCII Table... 432

8

Chapter 1

Introduction

Welcome to VEDIT
Purpose of Program

VEDIT is both a general purpose editor and a multi-function conversion tool.
It is designed not only for text preparation and program development, but also
for editing large database, mainframe and binary files. It can edit in ASCII,
EBCDIC, Hexadecimal and Octal, and supports variable-length and fixed-
length database records.

VEDIT lets you perform near-miracles on data files. If you have ever had to
patch a corrupted database file, convert a huge mainframe file to a Win-
dows/DOS text file, translate between ASCII, EBCDIC, ANSI and custom
character sets, examine a Postscript file, perform a last-minute search/replace
function on a 400 Megabyte file, or search/replace a thousand files, you
probably wished for the kind of speed and capability that only VEDIT offers.

As a text editor, VEDIT is intended for both program development and text
preparation. It is ideal for writing programs (e.g. C, Pascal, Basic, Assembler),
HTML and lengthy documents such as reports or manuscripts. It is also well
suited for the preparation of text files being used with Desktop Publishing
packages such as Corel’s Ventura Publisher (tm).

VEDIT can efficiently edit any file you will ever encounter, including bi-
nary/data files and huge files up to 2 Gigabytes (2000 Megabytes) in size. This
makes VEDIT ideal for editing and translating files downloaded from Main-
frame computers and CD-ROM data files. It effortlessly handles database (e.g.
xBASE .DBF), postscript, plotter output, and other non-standard files. And
VEDIT is the fastest editor available for huge multi-megabyte files.

VEDIT can process entire groups of files automatically, even thousands of
files. The same edit changes, e.g. a search and replace, can be applied to all
files in a directory, or even in all subdirectories.

Advanced features include multi-file, multi-window editing, template editing,
syntax highlighting, search/replace with pattern matching or regular expres-
sions, and a full range of block operations by character, line, or column. The
entire keyboard layout and over 200 options are fully configurable.

Programming features include parentheses matching, “smart” indenting, and
language specific color syntax highlighting and template editing for C, Basic,
Assembly language, HTML and others. Additional features implemented as

Welcome to VEDIT Chapter 1 Introduction 9

macros include “Ctags” lookup, C/Pascal program outlining, and integrated
support for numerous compilers, linkers, debuggers and Make programs.

Simple, Yet Powerful
VEDIT is simple enough to learn and use for the novice, yet has the speed,
flexibility and power to satisfy the most demanding computer professional. It
offers a rich assortment of editing capabilities, simple menu operation, com-
plete on-line help facilities, and the ability to edit text and binary files up to 2
Gigabytes in size.

VEDIT’s multi-mode editing and display capabilities let you effortlessly edit
any file in the most efficient manner possible. Edit in ASCII, EBCDIC (used
by IBM mainframes), Hexadecimal or Octal modes, or split the screen for any
combination of modes. File modes support Windows/DOS text, UNIX text,
Macintosh text, binary and many fixed-length record data formats.

A block or entire file can be translated between ASCII and EBCDIC, ASCII
and ANSI graphics characters, or with a custom translation table. Text files are
easily converted between Windows/DOS, UNIX and Macintosh “newlines”
(Carriage-Return and/or Line-Feed). Fixed-length records can be converted
into normal text files and vice versa.

A file/block can be sorted using any desired columns (fields) as the sort key(s).
A Sort macro is supplied for sorting multi-line mailing lists.

Totally Configurable, Yet Instant Startup
The comprehensive configuration lets you completely determine your own
keyboard layout and precisely configure VEDIT to your particular hardware,
applications and personal preferences. Over 200 configuration options are
available. By using the available options and “keystroke macros”, VEDIT can
very closely emulate other editors and word processors.

VEDIT starts up instantly; with its speed, almost every operation is performed
instantly. Written mostly in 32-bit assembly language, VEDIT is exceptionally
small and uses no overlays or .DLLs. The Windows version 32-bit VPW.EXE
is only 500K; the DOS version VEDIT.EXE is only 150K.

VEDIT for Windows and DOS
The 32-bit Windows version of VEDIT is optimized for
95/98/ME/NT4/2000/XP. The DOS version runs under MS-
DOS/PCDOS/DR-DOS. It also runs well under Windows 3.1 and OS/2, and
has long filename support under Windows 95/98/ME.

Older versions of VEDIT are available, by special request, for QNX 4, SCO
UNIX, FlexOS and IBM 4680.

Attractive pricing is available for additional site licensing and networks. A
cost-effective software subscription program is available.

10 Chapter 1 Introduction Welcome to VEDIT

Main Features
� Multiple file editing. VEDIT can simultaneously edit up to 99 files, each

up to 2 Gigabytes (2000 Megabytes) in size. Efficiently edits huge text
and binary/data files. (The DOS version is limited to 32 simultaneous
files.)

� Multi-mode editing. File modes support DOS, UNIX and Mac text, IBM’s
EBCDIC, binary and many fixed-length-record formats.

� Flexible windowing. (Windows version uses “MDI” type windows; DOS
version simulates it.) Any file can be viewed in any window, or different
parts of one file can be displayed in separate windows. Windows can be
tiled, cascaded or zoomed.

� Multi-mode display. Each window can display in five different ASCII
modes, hexadecimal, octal or EBCDIC. The screen can be split to view a
file in multiple modes at once.

� File translating. Each character in a block or an entire file can be translated
according to a custom translate table. Tables for translating between
ASCII and EBCDIC, and between OEM (IBM PC) and ANSI (Windows)
non-English characters are supplied.

� File conversion. All “newlines” (Carriage-Return and/or Line-Feed) in a
block or file can be converted between the type use for DOS/Win, UNIX
and Macintosh text files. Fixed-length record files can be converted into
text files and vice versa.

� Stream, column and line blocks. VEDIT has every type of block operation
imaginable. Blocks may be moved or copied directly, or 100 scratchpad
buffers can be used for extensive “cut and paste” operations. Blocks can
be copied from one file to another. The clipboard is used to exchange
blocks with other Windows programs.

� More block functions. Switch blocks to upper/lower case, fill blocks,
insert empty blocks, strip the “high” (8th) bit, and much more.

� Powerful search and replace. Supports sophisticated pattern matching,
regular expressions, reverse searching, selective and global replace. Also
incremental searching, search all open files, open all files containing a
search string, or compare two files.

� The WILDFILE macro permits search/replace in large groups of files in
a directory or all subdirectories. It can even perform numerous search/re-
place on all files.

� Undo and Redo. Up to 1000 of the most recent edit changes can be
reversed either step-by-step or line-by-line. Deleted text can be re-inserted
in its original position or anywhere else.

� Auto-save of files. VEDIT can automatically save all modified files after
a configurable number of minutes. This helps prevent losing your work
due to power failures, etc.

Main Features Chapter 1 Introduction 11

� Automatic indenting simplifies editing of structured programs; it is also
advantageous for word processing. Block indent/undent permits quick
restructuring. Parentheses matching aids C programming.

� Execute single DOS commands (DIR, compilers, V-SPELL, etc.), or enter
DOS and return later.

� Flexible printing with variable margins and page size. Print a block of text
or the entire file with variable spacing. The Windows version supports a
selectable printer font and size. The PRINT macro adds a convenient
header (file name, date and page number) and optional line numbers and
rulers.

� ASCII table. Display the full ASCII table and use it to insert any desired
control, printer or graphic character into the file.

� Horizontal scrolling for editing long lines. Alternatively, long lines can
be wrapped onto multiple screen lines.

� Word processing. Word wrap, paragraph formatting between adjustable
margins, optional justification and printing. (VEDIT does not enter any
special control characters into the text.) Read/write WordStar compatible
files.

� Integrated compiler support. Popular compilers, assemblers, linkers,
debuggers and Make programs can be run from within VEDIT. The cursor
will be automatically positioned on source code lines containing compi-
lation errors.

� Color syntax highlighting displays different logical parts of a program in
different colors. For C, HTML, Pascal, Basic, Perl, Clipper, Systat and
many others. Users can set up syntax highlighting for other languages or
applications.

� Template editing performs shorthand expansion by recognizing a key-
word and expanding it to the full string of characters. For C and HTML.

� The “Normal” keyboard is very similar to many Microsoft products. Or
chose a very compatible WordStar, Word Perfect or Brief layout. The
keyboard layout can be modified at any time.

� Unlimited keystroke macros. VEDIT allows single-key access to menu
functions and the creation of custom editing functions. Keystroke macros
may be built into VEDIT, saved to and loaded from disk.

� Fully adjustable tab stops. The <Tab> key can enter a tab character or,
optionally, spaces to the next tab position. Configurable “tab-fill”,
“newline” and “null” display characters.

� Word processor emulation. VEDIT can closely emulate other editors and
word processors. Contains options for emulating common cursor position-
ing modes, other block operations, various styles of searching, functions
performed by the <Tab> and <Enter> keys, and much more.

� Totally configurable with over 200 parameters. VEDIT can be configured
using menus or with easily edited vedit.cfg and vedit.key files.

12 Chapter 1 Introduction Main Features

Ready-To-Use Macros
VEDIT includes a powerful macro programming language; the VEDIT Macro
Language Reference Manual describes it in detail. VEDIT is supplied with
about 100 “macros” which are ready to use.

The most useful macros are documented in Chapter 5. Most of them can be
run from the {MISC} or {MISC, More macros} menus. You can also create
Windows icons or DOS batch files to automatically run macros when VEDIT
is started.

The following are some of the macros supplied with VEDIT:

� CFUNC - This “C program outlining” macro lists each C program routine
declaration in a separate window; as you move through the list, the original
window moves through the C program.

� PFUNC - Similar macro to CFUNC, but for Pascal programs.

� COMPARE - This “file comparison” macro displays the differences
between two files on the screen and lets you merge or edit them in any
way desired. After displaying a difference, the macro can realign the files
and continue looking for further differences. For example, after finding
where revisions were made, you can copy blocks of text from one file to
the other.

� COMPDIR - This “directory comparison” macro compares all files in two
directories and displays a list of which files are different. It also lists those
files that are in one directory and not in the other.

� COMPILE - The “integrated compiler support” macro is described below.

� DISPLAY - This simple “file display” macro permits a computer user with
no VEDIT experience to browse through a file. (It is used during the
automated installation.)

� CTAGS - The “ctags” facility is useful when working on a program with
many files. Once set up, placing the cursor on any function name and
pressing a “hot-key” opens the file in which the function is declared, with
the cursor on the function declaration.

� PRINT - This “print formatting macro” can be accessed from the normal
Printing dialog box or can immediately be executed when VEDIT starts
up. It adds the filename, date and page number at the top of each page. It
optionally prints line numbers, file offsets and rulers on each page.

� SORT - Sorts multi-line records, such as a typical mailing list of names
and addresses. (Other sorting options are built into VEDIT.)

� WILDFILE - This very useful “multiple file processing” macro lets you
perform a search, search and replace, or run another macro on an entire
group of files. The group of files may be specified using the wildcard
characters “?” and “*”. These files will be searched in the current directory
and, optionally, in all subdirectories. (WILDFILE performs a superset of
the UNIX “grep” command.)

Ready-To-Use Macros Chapter 1 Introduction 13

Custom Macros and {USER} Menu
VEDIT comes with a library of additional “keystroke macros” that can be built
into the editor and assigned to a “hot-key”.

� KEY-MAC.LIB - Keystroke macro library. Includes selecting window
color from a color chart, duplicating characters and lines, moving the
cursor by sentence, listing lines containing a text string, transposing
characters, counting words and much more.

A set of custom editing functions can be added to the main menu; they appear
in the special {USER} menu. The default {USER} menu includes some
popular functions from key-mac.lib. As with all menu functions, the
custom functions can have hot-keys assigned to them.

The editing functions in the {USER} menu are implemented using the VEDIT
macro language. Although knowledge of the macro language is is needed to
fully realize its potential, VEDIT users can modify the existing functions or
add new ones by copying macros from key-mac.lib.

V-SPELL Spelling Corrector
V-SPELL is a DOS spelling corrector which can be used stand-alone or can
be run from within the Windows or DOS versions of VEDIT.

V-SPELL is exceptionally fast, displays misspelled words in context and can
instantly suggest corrections for any misspelling. Since it automatically cor-
rects the words in the document, there is no need to go back to the word
processor. The 70,000 word main dictionary is expandable — you can have
your own supplemental dictionaries and/or merge them into the main diction-
ary. You can even create your own main dictionary.

For typesetting, desktop publishing and other applications, V-SPELL can
perform perfect hyphenation by inserting “soft hyphens” in all words of a
document. Since the hyphenation points are built into the dictionary, you can
be sure it is 100% correct — no error-prone algorithms are used! The list price
with printed manual is $49. However, a downloaded version ordered on-line
is only $19. (The text of the manual is on disk.)

14 Chapter 1 Introduction Ready-To-Use Macros

Integrated Compiler Support
The integrated compiler support lets you run popular compilers, assemblers,
linkers, debuggers and Make programs from within VEDIT. If compilation
errors occur, VEDIT automatically loads the correct source file and positions
the cursor on the error. You can then make corrections and press a key to move
to the next error, or recompile.

The compiler support automatically adjusts to the needs of different programs
in different directories, e.g. one program may be compiled as “large model”
while another is compiled as “small model”. Compiler and other options can
also be changed easily via menus.

The compiler support works with “make” programs and “makefiles” to further
automate program development. It even tracks compilation errors reported by
different compilers run within one Make script.

The following “make” programs are supported:

� Microsoft NMAKE

� Borland MAKE

� Avocet MAKE

� Other UNIX style Make programs

VEDIT supports these and other compilers:

� Microsoft: C/C++, Quick C, Quick Basic, Basic Compiler, Fortran, Cobol,
MASM Assembler

� Borland: C++, Turbo C, Turbo Assembler, Turbo Pascal

� Sun: Java SDK

� Lahey: Fortran 77, Personal Fortran 77

� Metaware: High C

� Micro Focus: Cobol

� Microrim: Rbase Compiler

� Nantucket: Clipper Compiler

� Realia: Cobol

� SDS C/C++ CrossCode Compiler

� Watcom: C/C++ Compiler

� Whitesmith: 68HC11 C Compiler

� Zortech: C++

� Others: 2500 A.D., Acucobol, Avocet, Microtec, SVS, etc.

Ready-To-Use Macros Chapter 1 Introduction 15

EBCDIC Conversion Software
VEDIT is a great tool for any project involving editing or converting EBCDIC
files. It is ideal for Mainframe-to-PC migration which requires EBCDIC to
ASCII conversion.

Specialized EBCDIC conversion packages are available (at additional cost)
that can convert any data file with packed-decimal, packed-binary, zoned and
other special fields accurately and quickly into ASCII. Ready for importing
into SQL, Access (tm) or other PC databases.

The EBCDIC conversion packages are specifically designed to convert
COBOL data files. However, they can convert many other types of EBCDIC
files too. The conversion is controlled by an easy-to-edit data layout which we
call a “.LAY” file. In many cases, the .LAY file can be created by simply
pasting a COBOL “copy-book” into it. EBCDIC files with multiple record
types and variable length records require more complicated .LAY files; in these
cases, most customers have us create the .LAY file for them and thoroughly
test it on some sample files.

Once the .LAY file has been created, the actual conversion is fully automated.
It consists of simply running a batch file or clicking an icon on the desktop.
The conversion has no user interaction, although it displays a progress report
and reports any problems with bad data into an error file.

We have been able to convert every EBCDIC file encountered in the past
several years; well over a hundred different formats. Many were too complex
for other conversion tools. Some of the more complicated EBCDIC files that
we have converted include:

� Various FDR (First Data Resources) billing files for different industries.

� Various ADP payroll and accounting files.

� Various accounting files used in the Banking and Investment industries.

� Various patient information files used by Blue Cross Blue Shield and other
Healthcare providers.

� Telephone switching files created by Siemens and Nortel switching equip-
ment. (We wrote custom conversion macros for some of these files.)

We have even been able to convert EBCDIC files for which the file (field)
specifications were unavailable or incomplete.

For more information about our EBCDIC conversion software and services,
please visit the EBCDIC page of our website at:

www.vedit.com/ebcdic.htm
Or call us at 1-800-458-3348 (US and Canada) or (734) 996-1300.

16 Chapter 1 Introduction EBCDIC Conversion Software

System Requirements
The Microsoft Windows version requires:

� Windows 95/98/ME or Windows NT 4.0/2000/XP or later.

� VEDIT works well with minimal memory.

� 3 Megabytes of free disk space.

The DOS version requires:

� MS-DOS or PCDOS version 3.1 or later, or a compatible DOS such as
OS/2 or DR DOS. The DOS version works very well under Windows.
Windows 95/98/ME long filenames and OS/2 extended attributes are
supported.

� An IBM PC compatible computer with an 80386 or better processor.

� At least 640 Kbytes of memory.

� A hard disk is highly recommended, but VEDIT can be installed on, and
will run from, a floppy disk. A full installation with the compiler support
requires about 3 Megabytes of disk space.

� A monochrome, CGA, MCGA, EGA, VGA or compatible display adapter
and display.

� A special “Telnet” MS-DOS version supports most CRT terminals on the
market, including terminals externally connected to an IBM PC via Telnet,
serial ports and/or modems.

System Requirements Chapter 1 Introduction 17

Using this Manual
This manual assumes that you have a working knowledge of your computer
and its basic operation. It is organized into the following chapters:

Introduction (Chapter 1)
Introduces VEDIT and lists the main features and system requirements.

Getting Started (Chapter 2)
Explains how to install VEDIT and make sure that it is working correctly.
It lists the files on disk and the “Normal” keyboard layout.

Quick Tutorial (Chapter 3)
This short tutorial familiarizes you with the basic aspects of using VEDIT.
It describes useful “shortcuts” and special features unique to VEDIT.

Editing Guide (Chapter 4)
This chapter covers the operation and main features of VEDIT in detail.
It is the most important chapter and we hope you will find time to read it.

Advanced Topics (Chapter 5)
The startup macro startup.vdm, {USER} menu, color syntax high-
lighting and template editing are covered in detail. Describes how to use
the “command macros” supplied with VEDIT.

Menu Reference (Chapter 6)
Describes each item in the Menu system in detail. It includes many
step-by-step directions for using the features of VEDIT.

The {CONFIG} menu described here lets you configure VEDIT and
fine-tune it to your personal preferences and applications.

Edit Function Reference (Chapter 7)
Describes each basic edit function in detail.

Configuration (Chapter 8)
For the most part, you can configure VEDIT with the {CONFIG} menu.
Alternatively, you can change the keyboard configuration by directly
editing the vedit.key and vedit.cfg files described in this chapter.

Messages (Chapter 9)
Lists and explains all error messages and common prompting messages.

Appendices
Topics include technical descriptions of VEDIT’s file handling, network
support and memory management.

Also includes a summary of search pattern matching, regular expressions
and additional keyboard layout information.

Troubleshooting.

18 Chapter 1 Introduction Using this Manual

Notation
<Ctrl-x> A control character, such as <Ctrl-U>, which is typed

by holding down the “Ctrl” (Control) key and typing
the letter, in this case “U”.

<Alt-x> A control key, such as <Alt-E>, which is typed by
holding down the “Alt” key and typing the letter, in
this case “E”. “Alt” keys are frequently used to directly
access menus, in this case the {EDIT} menu.

<Alt-Bksp> This is an abbreviation for <Alt-Backspace>. Other
abbreviations used are <Ctrl-Bksp> and
<Shft-Bksp>.

<Enter> The “Enter” key. Also labeled “Return” or “CR” on
some keyboards.

<key> Any other individual key such as <Esc>,
<Backspace>, <Space bar> or <F2>.

<F1> The default key for the [HELP] function. The actual
key is displayed on the left side of the status line.

<F10> The default key for accessing the main menu.

[function] A basic editing function such as [CURSOR UP] or
[ERASE LINE]. Each edit function name is usually
followed with the keypress corresponding to the “Nor-
mal” keyboard layout. However, the keyboard layout
is user configurable. The actual key assignments are
displayed by selecting {HELP, Keyboard layout}.

{menu, menu-item} x Menu system selections are shown within braces op-
tionally followed by “x” to indicate variable parame-
ters. The main menu is selected with the [MENU]
function (<F10>). For example, {GOTO, Line #} 71
denotes that you select “Goto” from the main menu,
select “Line #” from the “Goto” menu, and then enter
the value “71” at the line number prompt.

File_Open(“file”) Describes the prototype for a macro language com-
mand. Items in italics are arguments.

File_Open(“myfile.txt”) An example of an actual command. Commands
can be entered in any combination of upper and
lower case. The “_” is optional and is used to
improve readability. Our convention is to capital-
ize each word of a command.

Search(“|D|D”) The Search() command uses pattern matching. The
“|” is the <Shift-\> keyboard character. (This character
is also used as the “OR” operator and is sometimes
called the “pipe” character or “vertical bar”.)

Notation Chapter 1 Introduction 19

Product Support
Greenview Data provides free technical support for VEDIT to all registered
users for 3 months. Should you have any problems that are not covered in this
manual, please contact us, preferably by e-mail to support@vedit.com. Or
call us. Please provide the following information when requesting support:

� VEDIT’s exact version number and serial number. They are available by
selecting the menu item {HELP, About}. We need both the version
number and following date.

� Operating system and version number. Particularly whether it is Windows
95/98/ME, Windows NT/2000/XP or DOS.

� We will often ask for copies of your vpw.exe, vedit.ini,
startup.vdm, ustartup.vdm, vedit.cfg and vedit.key
files. Please “zip” them up and attach them to the e-mail message.

Web site: http://www.vedit.com
The following services are currently available on our extensive Web site:

� Free updates. During the 3 months of support, you can download newer
versions. After the 3 months, you can purchase individual updates or the
18-month Software Subscription Plan.

� User Discussion Conference. Interact and share ideas and macros with
other users.

� FAQ - the “Frequently Asked Questions” section contains common tech-
nical support questions and their answers.

� Detailed list of all enhancements and bug fixes. This helps you decide if
an update is worthwhile.

� News and general marketing/sales information about VEDIT.

Return the Registration Card!
Registering your copy of VEDIT helps us support you. Please take a moment
to fill out the enclosed registration card and drop it in the mail. You can also
register on-line at www.vedit.com/register.htm.

Registered users receive these benefits:

� Technical support for 3 months by mail, telephone or FAX. Or send e-mail
to support@vedit.com. Most questions are answered within 24 hours.

� Newsletters to keep you abreast of added features, new releases and
helpful hints from other users.

� Discounts on future releases.

We welcome your comments and suggestions.

20 Chapter 1 Introduction Product Support

Chapter 2

Getting Started

Installation
The exact steps for installation depend upon which version of VEDIT you have
— Windows or DOS.

NOTES: If you received a damaged CD, please contact us directly (and not
your dealer). You can download the software from our Web site.
Your serial number will activate the downloaded software as the full
product.

Be sure to read the file README.TXT (DOS: README.BAT)
before installing VEDIT. This file may contain last minute installation
instructions.

Refer to Appendix D (Troubleshooting) if you have any trouble
running VEDIT.

The Windows and DOS versions are supplied with an automated installation
procedure that is both easy and flexible to use.

If you wish to install both the Windows and DOS versions, you must follow
each installation procedure. We highly recommend installing both versions
into the same directory; they will then have the same keyboard layout and
configuration.

The automated installation performs the following operations:

� Installs the VEDIT files in the default c:\vedit or any other desired drive
and directory.

� Selects whether the optional compiler support files are installed.

� Selects the initial keyboard layout, color scheme and other common
configuration parameters.

-OR- If a previous VEDIT is found, optionally transfers the current
keyboard layout and configuration to the new version. Alternatively, the
previous version can be archived (moved) to another directory.

� The Windows version creates the “VEDIT” program group and creates
the initial icons in it. It creates the file vedit.ini in the VEDIT
directory.

Installation Chapter 2 Getting Started 21

The Windows version is optionally installed into the Windows “Registry”.
This is highly recommended, but optional. It allows file types to be
associated with VEDIT.

� The DOS version configures VEDIT to the specific operating system
being used: DOS, Windows 3.1, Windows 95/98/ME, Windows
NT/2000/XP or OS/2.

Once installed, VEDIT can immediately be used; there is no need to reboot the
computer.

GOOD
NEWS:

The VEDIT installation does not modify your CONFIG.SYS,
AUTOEXEC.BAT, WIN.INI or any other system files. Although we
recommend installing VEDIT into the Windows registry, even that
is optional and is only needed to associate file types with VEDIT.
Also, since VEDIT does not use any .DLL files, installing (or
uninstalling) it will not affect other programs.

QNX: The Supplemental manual supplied with the QNX version of VEDIT
PLUS describes the installation and configuration in detail. If this
supplement is not available, first install VEDIT PLUS with the
command “/etc/install /dev/fd0”. Then print the supplemental text
file /qnx4/vedit/readme.doc.

Windows Installation

NOTE: Be sure to read the file README.TXT before installing VEDIT. This
file may contain last minute installation instructions.

� To install the Windows version of VEDIT:
1. Insert the VEDIT CD-ROM into your computer. The VEDIT installation

will normally start automatically. If it does not start automatically, navi-
gate to the “setup.exe” file on the CD-ROM and double-click it.

22 Chapter 2 Getting Started Windows Installation

2. A pop-up dialog box will inform you that you are about to install VEDIT.
Select [Ok] to continue.

3. VEDIT will then start! Instead of using a traditional installation program,
VEDIT installs itself using a very flexible “macro”.

4. You are then given the option of performing a detailed [Product] installa-
tion or a [Quick] installation. [Product] explains the installation step-by-
step and gives you many options. [Quick] uses the default options and lets
you install (or update) with a minimum number of steps.

5. One of the first selections is the destination directory into which to install
VEDIT. This will later be referred to as the VEDIT Home Directory.

The default is c:\vedit, but you can select any other directory such as
c:\program files\vedit. If you are installing both the Windows and DOS
versions, we highly suggest installing them both into c:\vedit. This will
later be referred to as the VEDIT Home Directory.

If this directory already exists, the installation assumes it contains a
previous version of VEDIT. You are then given the option of archiving
the entire directory by moving it to another directory, transferring the
configuration from the previous VEDIT to the new one, or simply over-
writing the previous VEDIT. Even if you choose overwriting, all configu-
ration related files are first copied to the .\OLD subdirectory.

6. To activate VEDIT as the full product you should enter the serial-regis-
tration number when the installation prompts you. If you purchased
VEDIT as a download, you should have received the serial number by
email. If you purchased VEDIT with printed manuals, the serial number
should be printed on the CD-ROM envelope. Otherwise, you can enter the
serial number later by selecting {HELP, Register VEDIT}.

7. Follow the remaining prompts on the screen. It is easy to later change any
configurations that you now select, such as the color scheme, without
having to re-install.

We highly suggest selecting the “Normal” keyboard layout which closely
follows Microsoft conventions. Otherwise, commonly used VEDIT functions
will often not be accessible via a “hot-key”.

� Skip to the topic “Initial Configuration” later in this chapter. Please also read
the topic “Keyboard Layout” before using VEDIT.

Windows Installation Chapter 2 Getting Started 23

Un-installing VEDIT
If VEDIT was installed into the Windows Registry, you can select “Add/Re-
move Programs” in the Control Panel to uninstall VEDIT. (This is the normal
way to uninstall Windows programs.)

Alternatively, you can select the “Uninstall VEDIT” icon from the VEDIT
Program group.

VEDIT will then start up and give you the following un-install options:

Besides completely uninstalling VEDIT, experienced users may find it useful
to be able to only remove VEDIT from the Windows registry, or only remove
(delete) the VEDIT files.

For example, if you think that VEDIT has somehow gotten corrupted, you may
want to uninstall and re-install VEDIT. By leaving VEDIT in the registry, your
file associations will not be lost.

It is also easy to manually uninstall VEDIT, e.g. the DOS version.

� To manually remove (uninstall) VEDIT:
1. Delete all files from the directory into which you installed VEDIT, by

default c:\vedit. Also delete all subdirectories.

2. Remove the VEDIT directory, e.g. c:\vedit.
3. Delete all icons from the “VEDIT” program group; then delete the group.

4. If you configured VEDIT to create backup files by copying the original
file to a backup directory, e.g. c:\backup, you may wish to delete this
directory too.

24 Chapter 2 Getting Started Windows Installation

DOS Installation
NOTES: Be sure to refer to the file README.BAT before installing VEDIT

— give the DOS command readme. This file may contain last
minute installation instructions.

The DOS version is fully compatible with MS-DOS or PCDOS 3.0
or later, DR-DOS and OS/2. It also works very well under Windows
95/98/ME and has long filename support. Although it will run, we
do not recommend using it with Windows NT/2000/XP; for one thing
it does not have long filename support under these OS.

Be sure to read the following sections in this chapter:
“CONFIG.SYS and AUTOEXEC.BAT Files”, “Path Command”,
“VEDPATH Environment Variable”, “V-SWAP Installation” and
“Hardware Configuration”.

DOS Automated Installation
1. Insert the VEDIT CD-ROM into your computer. Start the installation by

running the “install.bat” file which is in the root of the CD-ROM. For
example, if your CD-ROM is drive “d:” and you are running from a DOS
prompt, give the following commands:

d: <Enter>
install <Enter>

2. VEDIT will then start! Instead of using a traditional installation program,
VEDIT installs itself using a very flexible “macro”.

3. Continue with Step 4. in the earlier topic “Windows Installation”.

� Skip to the topic “CONFIG.SYS and AUTOEXEC.BAT Files” (later in this
chapter) for further important installation instructions.

Then refer to the topic “Testing your Installation”.

DOS Installation Chapter 2 Getting Started 25

Hardware Configuration (DOS Version)
In order for the DOS version of VEDIT to run reliably and satisfy your needs,
you should be aware of several important configuration options:

� Setting the Keyboard Typematic Rate

� Disabling Keyboard Polling for Windows NT and OS/2

Setting the Keyboard Typematic Rate
The rate at which the keyboard repeats keys when you hold them down is called
the “typematic rate”. The default rate of about 10 keys per second is slow for
editing and should be speeded up.

VEDIT can optionally speed up the keyboard typematic rate inside VEDIT.
However, this interferes with a faster rate you may have already set. It also
causes problems with some machines resulting in slow startup, slow exiting or
a “frozen” keyboard on exit. To disable having VEDIT change the typematic
rate, set {CONFIG, Misc, Keyboard typematic rate} to “0”. Then select
{CONFIG, Misc, Save into VEDIT.EXE}.

NOTE: The DOS automated installation disables the features (sets it to “0”)
if you specify that your Operating System (OS) is Windows
95/98/ME/NT/2000/XP.

With DOS 5.0 and later and OS/2 we highly recommend that you set VEDIT’s
“Keyboard typematic rate” to “0” and instead set the desired typematic rate in
your OS.

The DOS command “MODE CON RATE=xx DELAY=2” will set the rate to
‘xx’. You could add the following command to your AUTOEXEC.BAT file
to set a very fast typematic rate:

MODE CON RATE=32 DELAY=2

Disabling Keyboard Polling (Technical, DOS only)
VEDIT normally polls the keyboard constantly. This is the most compatible
mode with DOS and won’t interfere with other programs. However, it wastes
CPU resource in a multi-tasking environment such as Windows.

Setting {CONFIG, Misc, Keyboard polling} to “1” turns off the constant
polling. This is desirable with Windows and OS/2. However, it may cause
conflicts with other programs and may not work on some systems.

Technical: To operate without polling, VEDIT must “hook” various
hardware interrupts and set up mouse and timer handlers
that directly modify the BIOS keyboard buffer. This can
cause conflicts with memory-resident programs (TSRs).

The DOS automated installation disables keyboard polling (sets it to “1”) if
you specify that your Operating System (OS) is Windows or OS/2.

26 Chapter 2 Getting Started DOS Installation

Installing DOS VEDIT in Windows
The DOS version of VEDIT is designed to work very well with Microsoft
Windows. It can be installed with the supplied VEDIT.ICO icon.

Installing DOS VEDIT in Windows 95/98/ME
� To install DOS VEDIT icon as a Windows 95/98/ME “shortcut”:

1. From Explorer or the Desktop, select the folder (group) to which to add
VEDIT’s icon. It can also be added to the top-level Desktop.

2. Right-click in any empty area of the folder or desktop and select “New”;
then select “Shortcut”.

3. The “Create shortcut” wizard will then prompt you.

For “Command Line:”, enter the full pathname to the VEDIT.EXE file.
E.g. enter “c:\vedit\vedit.exe”.

For “Select a name for the shortcut”, enter the program name you want to
see under the icon, e.g. “VEDIT (DOS) ”.

For “Select an icon”, just press [Finish]; the VEDIT icon cannot be
selected from here.

4. Right-click the new icon and select “Properties”. Then select the
“Program” tab.

Be sure “Close on exit” is not enabled.

5. Select [Change Icon...].
For “File name:” enter the full pathname to the VEDIT.ICO file, e.g.
c:\vedit\vedit.ico. Select the [Ok] buttons twice.

Notes:

From within VEDIT, press <Alt-Enter> to switch VEDIT between a full
screen application and a windowed application. It works well in either mode.

The topic “Changing the VEDIT Icon Properties” in Chapter 4 describes how
to set any desired startup invocation options.

Installing DOS VEDIT in Windows 3.1
VEDIT runs best from within Windows 3.x with the supplied VEDIT.PIF file.
A “.PIF” file contains parameters on how to optimally run a program, e.g. how
much memory to give it. Experienced users can use the Windows “PIF Editor”
to change any desired parameters.

� To install VEDIT into Program Manager with an icon:
1. From inside Microsoft Windows, select the “Program Manager”.

2. Select the Group to which you want to add the VEDIT icon. The “Main”
group is a good choice.

3. Select the menu item {FILE, New}. Then select “Program Item”.

DOS Installation Chapter 2 Getting Started 27

4. Fill in the dialog box. For “Description,” enter the program name you want
to see under the icon, e.g. “VEDIT”.

For “Command Line”, enter the full pathname to the VEDIT.PIF file. E.g.
enter “c:\vedit\vedit.pif”.

For “Working Directory”, enter the full pathname of the VEDIT Home
Directory, e.g. “c:\vedit”.

Leave “Shortcut Key” set to “None”.

5. Select the [Change Icon] button. Windows warns you that no icon is
available for VEDIT. Select the [Ok] button.

6. For “File name”, enter the full pathname to the VEDIT.ICO file, e.g.
“c:\vedit\vedit.ico”. VEDIT’s icon should be displayed. Select [Ok].

7. You should now be back at main dialog box. Select [Ok].
The “VEDIT” icon should be displayed in your current Windows group.

8. Select the “VEDIT” icon. VEDIT should start up in full screen mode.

Installing DOS VEDIT in IBM OS/2
VEDIT can be installed under OS/2 as a normal DOS application. It can be run
from the “C>” prompt in a normal DOS box or from its own icon.

We suggest making two configuration changes to VEDIT for use with OS/2:

� Set {CONFIG, Misc, Keyboard Polling} to “1” to turn off VEDIT’s
constant polling of the keyboard.

� Set {CONFIG, Misc, Keyboard typematic rate} to “0” and set the
desired typematic rate with OS/2’s “Keyboard Setup”.

Remember to select {CONFIG, Misc, Save into VEDIT.EXE} to make any
configuration changes permanent.

The default OS/2 “DOS Settings” work quite well with VEDIT and none are
critical. However, the following settings may help VEDIT run better:

Background_Execution Should be turned “Off” unless you set {CONFIG,
Misc, Keyboard Polling} to “1”.

DOS_Files Should be set to “80” or more since VEDIT needs
three handles for each file being edited.

Idle Sensitivity Setting this to “100” gives more CPU time to DOS
programs at the expense of multi-tasking. Some
DOS programs work dramatically better with a
setting of “100”; VEDIT runs a little better. It
probably doesn’t matter if {CONFIG, Misc,
Keyboard Polling} is set to “1”.

VEDIT automatically detects when it is running as a DOS application within
OS/2 (2.1 and later including Warp); it then maintains the “Extended Attrib-
utes” when editing OS/2 files. Please note that newly created files will not be
given any extended attributes.

28 Chapter 2 Getting Started DOS Installation

Testing the VEDIT DOS Installation
After installing VEDIT, start it up to make sure that everything is working.

1. Assuming that your PATH command includes the directory containing
VEDIT, you can start up VEDIT from any directory by typing:

vedit <Enter>

VEDIT will start up and display its sign-on message on the bottom line.
There should also be a (flashing) cursor in the upper-left corner.

2. Press the <Esc> key to display the {ESCAPE} menu in the middle of the
screen.

If you cannot read the menu, cannot tell which item is currently selected,
or cannot tell which letter in each item is highlighted, your screen colors
are not set correctly. If you have a monochrome (black and white) display,
you may need to start up VEDIT with the “-m” option. Refer to
{CONFIG, Colors} in Chapter 6 (Menu Reference) on how to configure
VEDIT for a monochrome display.

3. Press the [HELP] key. With the “Normal” keyboard layout it is <F1>.
The key assigned to the [HELP] function is displayed on the status line.

You should now see a “pop-up” window that displays help information
about the {ESCAPE} menu.

If you get the error message “FILE NOT FOUND:”, VEDIT could not
find its on-line help file vphelp.hlp. Change {CONFIG, Misc,
VEDIT Home Directory} to the directory into which you installed
VEDIT and which should containvphelp.hlp. Then select {CONFIG,
Misc, Save into VEDIT.EXE} to make the change permanent.

Press <Esc> to exit the on-line help window.

4. Exit VEDIT by selecting “Exit” from the {ESCAPE} menu. You should
now be back in DOS.

Refer to Appendix D (Troubleshooting) if you encounter any trouble running
VEDIT.

If you encounter any problems with the keyboard or mouse, or VEDIT appears
to crash on startup or exit, you should change the following configuration
settings to their most compatible settings:

� Set {CONFIG, Misc, Keyboard typematic rate} to “0”.

� Set {CONFIG, Misc, Keyboard polling} to “0”.

� Set {CONFIG, Misc, Mouse cursor} to “65” or “66”.

If necessary, you can force the first two configuration settings on startup with
the “-j” and “-k” invocation options:

vedit -j -k

Then select {CONFIG, Misc, Save into VEDIT.EXE} to make these con-
figuration settings permanent.

DOS Installation Chapter 2 Getting Started 29

CONFIG.SYS and
AUTOEXEC.BAT Files

This topic applies only if you are running:

� VEDIT for DOS.

� VEDIT for DOS under Windows 3.1.

With DOS and Windows 3.1, you should check the CONFIG.SYS file in the
root directory of your hard (boot) disk. It should contain the two lines:

FILES=80
BUFFERS=10

It is OK if the numbers are larger than these!
To simultaneously edit as many files as possible (32), we recommend that your
CONFIG.SYS file contain “FILES=99”. VEDIT gives the error “TOO MANY
FILES” if you attempt to edit more files than the “FILES=xx” statement
allows.

The “BUFFERS=10” statement is not really necessary, but speeds up not only
VEDIT, but virtually every other program. No DOS computer should be
without it.

PATH Command
To run the DOS VEDIT, DOS must know where to find VEDIT.EXE. We
suggest simply copying VEDIT.EXE to a directory, typically “\DOS” or
“\BIN”, that DOS already searches for its other programs. Alternatively, add
the VEDIT Home Directory, e.g. “C:\VEDIT”, to the PATH command in your
AUTOEXEC.BAT file.

V-SWAP Installation
We highly recommend that all DOS VEDIT users install the supplied V-SWAP
program via their AUTOEXEC.BAT file. V-SWAP works in conjunction with
VEDIT to swap out not only the editor but any desired memory resident
programs (TSRs) when running DOS programs from within VEDIT.

Although V-SWAP is primarily intended for running compilers from within
VEDIT, almost all VEDIT users will find V-SWAP useful. V-SWAP is very
small and unlikely to cause conflicts with other programs.

The on-line help topic “VSWAP” describes V-SWAP and its installation in
detail, including how to use V-SWAP with Microsoft Windows (tm).

30 Chapter 2 Getting Started CONFIG.SYS and AUTOEXEC.BAT Files

Network Installation
Customers that have purchased two or more licenses of VEDIT (such as the
5-User Pack) can simply install VEDIT on each licensed user’s workstation.

Alternatively, some network administrators may prefer to install VEDIT on
the network server. This makes it easier to update the software and monitor
license usage. The network installation is designed so that each user only needs
“Read” access, and not “Read/Write” access, to the VEDIT files on the server.

When VEDIT is installed on a network server, each user can still have their
own personal configuration and keyboard layout. Each user can also set up
their own color syntax highlighting, template editing, a {USER} menu, etc.

� To install VEDIT on a network server:
1. Install VEDIT on the server, following the normal installation instruc-

tions. Let’s assume it is installed into the directory “h:\apps\vedit”. This
will be the VEDIT Home Directory.

2. Create the same directory (folder) on each user’s local hard disk. Let’s
assume it is c:\vedit. This will be the User Config Directory. It will
only contain the startup.vdm, ustartup.vdm, vedit.cfg and
vedit.key files. The Windows version will also contain vedit.ini.

3. Within the User Config Directory on each user’s local hard disk, create a
subdirectory (folder) called “backup”, e.g. create the subdirectory
c:\vedit\backup. Users can optionally configure VEDIT to save a
backup copy of each edited file in this directory.

4. Within the User Config Directory on each user’s local hard disk, create a
subdirectory (folder) called “temp”, e.g. create the subdirectory
c:\vedit\temp. Some macros supplied with VEDIT use this direc-
tory.

5. Within the User Config Directory on each user’s local hard disk, create a
subdirectory (folder) called “file-cfg”, e.g. create the subdirectory
c:\vedit\file-cfg. This will be used for the file-open configura-
tion feature.

The \FILE-CFG subdirectory can be left empty, but it may help users get
started if you copy the .CFT files from VEDIT’s \FILE-CFG subdirectory
on the server to each user’s local hard disk. E.g. on each user’s machine,
copy all files from h:\apps\vedit\file-cfg to
c:\vedit\file-cfg.

6. Within the User Config Directory on each user’s local hard disk, create a
subdirectory (folder) called “user-mac”, e.g. create the subdirectory
c:\vedit\user-mac. Experienced users can save their own custom
VEDIT macros here.

Network Installation Chapter 2 Getting Started 31

7. Edit thevedit.ini file on the server to reference the correct directories.
For example, it should contain the lines:

HomeDir=h:\apps\vedit
MacroDir=h:\apps\vedit\macros
BackupDir=c:\vedit\backup
UserCfgDir=c:\vedit
UserMacroDir=c:\vedit\user-mac
FileCfgDir=c:\vedit\file-cfg
VeditTempDir=c:\vedit\temp
Startup=startup.vdm

8. Copy the modified vedit.ini file from the server to each user’s local
directory e.g. copy it to c:\vedit\vedit.ini.

9. Copy the startup.vdm, ustartup.vdm, vedit.cfg and
vedit.key files from the server to each user’s local directory e.g. copy
them from h:\apps\vedit to c:\vedit.

On startup, VEDIT looks for thestartup.vdm file first in the “current”
directory, then in the User Config Directory, and last in the VEDIT Home
Directory.

10. Create a VEDIT icon on each user’s workstation. Set the VEDIT icon’s
properties “Target” to:

h:\apps\vedit\vpw.exe

See also:

The topic “Configuration” in Chapter 8.

The topic “Startup.vdm File” in Chapter 5.

32 Chapter 2 Getting Started Network Installation

Initial Configuration
Just about every aspect of VEDIT’s operation is configurable. As you become
more familiar with VEDIT, you will probably configure VEDIT more and
more to your needs and personal preferences.

� Most configuration changes are made with the {CONFIG} menu. This is
described in Chapter 6 (Menu Reference).

The keyboard layout can be changed with the {CONFIG, Keyboard
layout} sub-menu.

� The configuration and keyboard layout can alternatively be changed by
directly editing the vedit.cfg and vedit.key files as described in
Chapter 8 (Configuration). Experienced users often prefer this method.

� More advanced configuration topics such as changing the {USER} menu
and setting up color syntax highlighting are described in Chapter 5
(Advanced Topics).

The “File-open configuration” feature can auto-configure VEDIT accord-
ing to the filename extension or even specific filenames. VEDIT supports
different configurations for each open file. This can enable color syntax
highlighting, template editing, word processing, etc. For example, with a
“.C” file, auto-indenting is enabled, while with a “.TXT” file, word wrap
is enabled.

Here are some non-default configuration changes you may want to make soon.

� Set {CONFIG, File handling, Auto-save interval} to “15” to have
VEDIT auto-save your changes every 15 minutes.

� By default, VEDIT creates backup files by renaming the original file with
a “.BAK” filename extension. Alternatively, set {CONFIG, File
handling, Backup files} to “2” to create backup files by copying the
original file to the VEDIT Backup Directory, by default c:\vedit\backup.

� Set {CONFIG, Tab/fill, Tab stops} to your preferred tab stops or tab stop
interval.

Saving Configuration Changes
By default, {CONFIG, Auto-save config} is enabled. Any changes you make
in the {CONFIG} menus are then automatically saved for the next time you
run VEDIT, just as if you had manually selected {CONFIG, Save config}.
As you become more experienced with VEDIT, you may want to disable
{CONFIG, Auto-save config}. You can then make temporary configuration
changes that are not automatically saved, i.e. they are lost when you exit
VEDIT. To make changes permanent, you must then explicitly select
{CONFIG, Save config}.

Initial Configuration Chapter 2 Getting Started 33

Description of Files
Windows Version

README.TXT Last minute notes to read before getting started.

SETUP.EXE Installation program. It starts up VEDIT with the
INSTALLW.VDM macro to perform the actual instal-
lation and initial configuration.

VPW.EXE Executable VEDIT (32-bit) for Windows
95/98/ME/NT/2000/XP.

INSTALLW.VDM VEDIT macro that controls the automated installation.

VEDIT.INI VEDIT for Windows file which stores startup and
configuration information. It is fully commented.

VEDIT.FON VEDIT font file for Windows provides attractive and
useful fixed-width display fonts in various sizes in
both the “ANSI” and “OEM” character sets.

VPW-FILS.CAB The installation expands this file to create the Win-
dows version specific files, in particular the on-line
help file VEDITPW.HLP and the .PIF files.

The following files are placed into the VEDIT directory during installation by
expanding the VPW-FILS.CAB file.

VEDITPW.HLP The VEDIT for Windows on-line help file.

MSDOS95.PIF A .PIF file used to shell out to a maximized (large)
DOS box in Windows 95/98/ME with {MISC, DOS
Shell}.

MSDOS95I.PIF A .PIF file used to shell out to a minimized (invisible)
DOS box in Windows 95/98/ME.

MSDOS95W.PIF A .PIF file used to shell out to a windowed DOS box
in Windows 95/98/ME with {MISC, Run DOS
program}.

MSDOS95C.PIF A .PIF file used to shell out to a windowed, self-closing
DOS box in Windows 95/98/ME.

MSDOSNT*.PIF Similar files for Windows NT/2000/XP.

Windows and DOS Version (Common Files)
VP-FILS.CAB The installation expands this file to create many addi-

tional files, in particular the .VDM macro files.

VCS-FILS.CAB The installation optionally expands this file to create
the compiler support files in the .\COMPILE subdirec-
tory.

34 Chapter 2 Getting Started Description of Files

TUTORFIL.CAB The installation expands this file to create the tutorial
files in the .\TUTOR subdirectory.

USER-MAC.CAB The installation expands this file to create the user
supplied macros placed in the .\USER-MAC subdirec-
tory. ERRATA.TXT describes the files.

EBCDIC-T.CAB The installation optionally expands this file which
contains a trial version of our EBCDIC Level-2
conversion software. This can convert EBCDIC
(mainframe) files with packed, signed, zoned and other
special fields into ASCII. A COBOL “copy-book” can
control the conversion. See the file EBCDIC-T.TXT
(in the VEDIT directory) for details.

ERRATA.TXT Contains errata to this manual and describes recent
enhancements that are not documented in the manual.
Please note that the on-line help is always completely
up-to-date.

WHATSNEW.TXT Description of new features added to this release of
VEDIT; primarily oriented to previous VEDIT users.

NEW-CMDS.TXT A summary of recently added, changed or enhanced
macro language commands; primarily oriented to
technical users.

The following files are placed into the VEDIT directory during installation by
expanding VP-FILS.CAB.

KEY-MAC.LIB Library of useful keystroke macros that can be added
to VEDIT. View the beginning of this file for more
information. The topic “Keystroke Macros” in Chapter
4 (Editing Guide) contains a step-by-step example.

BRIEF.KEY Keyboard layout file to emulate Brief (tm). Described
in BRIEF.TXT.

WORDSTAR.KEY Keyboard layout file to emulate WordStar (tm).
Described in WORDSTAR.TXT.

WORDPERF.KEY (DOS only) Keyboard layout file to emulate WordPer-
fect (tm). Described in WORDPERF.TXT.

USER.MNU The default {USER} menu; it is loaded by the
startup.vdm file.

TUTOR.MNU A {TUTORIAL} menu can optionally replace the
{TOOLS} menu; it is loaded by the startup.vdm
file.

ANSI.TBL Translation table for converting between OEM (IBM
PC) graphics characters and ANSI (Windows) graph-
ics characters. Note that ANSI.TBL is built into
VEDIT.

Description of Files Chapter 2 Getting Started 35

EBCDIC.TBL Translation table for converting between the ASCII
and EBCDIC (IBM mainframe) character sets. Note
that EBCDIC.TBL is built into VEDIT.

USER.TBL A prototype translation table that can be used to create
a custom translation table.

*.SYN Color syntax highlighting files are supplied for C,
Clipper, Cobol, Folio, HTML, Java, MBasic, Pascal,
Perl, Rexx, SQL, Systat and others. They can be manu-
ally loaded with {MISC, Load syntax file} or auto-
matically loaded by the startup.vdm file.

*.VTM Template editing macros are supplied for C, HTML,
Java and VEDIT. They can be manually loaded with
{MISC, Load template file} or automatically loaded
by the startup.vdm file.

*.VDM VEDIT is supplied with many macros which have a
.vdm filename extension. Some are automatically run
by menu functions while others are run from {MISC,
More macros} or {MISC, Load and execute macro}.
See the on-line help topic “Description of Files” (DOS:
“FILES”) for a description of most of the macros.

STARTUP.VDM This special macro that is executed when VEDIT starts
up. A copy of the original macro is supplied as
startup.org. Extensively described in Chapter 5.

DOS Version Only
READ-DOS.TXT Last minute notes to read before getting started.

INSTALL.BAT Batch file to start up the automated installation using
VEDIT.EXE and INSTALL.VDM.

INSTALL.VDM VEDIT macro that controls the automated installation.

EXTRACT.EXE The program to expand (similar to “unzipping”) the
.CAB files. It is used only during installation.

VEDIT.EXE Executable VEDIT program for DOS.

VEDIT.ICO “Icon” file for installing the DOS version of VEDIT
into Windows.

VEDIT.PIF “Program Information File” for running the DOS ver-
sion of VEDIT under Microsoft Windows 3.x.

VPD-FILS.CAB The installation expands this file to create the DOS
version specific files, in particular the on-line help file
VPHELP.HLP.

The following files are placed into the VEDIT directory during installation by
expanding the VPD-FILS.CAB file.

VPHELP.HLP VEDIT DOS on-line help file.

P.BAT Batch program to start up the PRINT.VDM macro.

36 Chapter 2 Getting Started Description of Files

VV.BAT A batch file for loading V-SWAP and running VEDIT.
See the on-line help topic “VSWAP” for details.

WILD.BAT Batch file to start up the WILDFILE.VDM macro.

VGA34.COM Tiny program that puts a VGA into 34-line mode by
switching into 480 scan-line mode. This may also
reduce flicker on some monitors. Use the DOS “mode
co80” command to return to normal 25-line mode.

VSWAP.EXE Program for swapping the DOS version of VEDIT out
of memory during a “DOS Shell”.

VPLUSOS2.ICO VEDIT icon for OS/2.

Compiler Support File Names
The following files make up VEDIT’s Compiler Support. See “Integrated
Compiler Support” in Chapter 5 for more information.

COMPILE.VDM This macro is executed by {MISC, Load compiler
support} to load the compiler support items into the
{TOOLS} menu.

COMPILE.CNF Configuration file that is edited by the user to specify
the default Compiler, Linker, Debugger and Make
commands.

COMPILE.MNU This file sets up the Compiler support items in the
{TOOLS} menu. It can be loaded by {MISC, Load
compiler support} or by the startup.vdm macro.

C-*.VDM These macro implement each of the compiler support
items in the {TOOLS} menu. These files reside in the
.\COMPILE subdirectory.

JAVA-SDK.CNF Configuration file that is edited by the user to specify
the default Java SDK commands.

JAVA-SDK.MNU This file sets up the Compiler support items in the
{JavaTools} menu. It can be loaded by {MISC, Load
compiler support} or by the startup.vdm macro.

*.VCS Compiler specific macros; there is a file for each
supported compiler. These files reside in the
.\COMPILE subdirectory.

GENERIC.VCS Generic macro for running any compiler. It only dis-
plays the compiler’s output; it does not automatically
track errors.

SAMPLE.VCS This sample compiler specific macro is heavily com-
mented and can be used as a model for developing a
custom support for other compilers.

Description of Files Chapter 2 Getting Started 37

Keyboard Layout
VEDIT’s keyboard layout is completely configurable. The automated instal-
lation lets you select the initial keyboard layout. You can later modify the initial
layout with {CONFIG, Keyboard layout, Edit/view layout} or by directly
editing the vedit.key file.

Unless you have a very strong personal preference, we recommend you start
with the “Normal” keyboard layout. It is very compatible with modern
Microsoft and other Windows programs. Additional keys have been carefully
chosen to work well with VEDIT’s special features.

All examples in this manual list the name of the edit function or menu item
and the corresponding keystroke in the “Normal” keyboard layout. Examples
are: [HELP] (<F1>) and {FILE, Print} (<Ctrl-P>).

The initial Windows and DOS keyboard layouts are:

� NORMAL. The recommended layout.

� WORDSTAR. Emulates WordStar using control, cursor and function
keys. It is fully described in the file WORDSTAR.TXT.

� WORDPERF. (DOS Version Only) Emulates Word Perfect. Since it has
few menu “hot-keys”, it helps to access menu functions with a mouse. It
is fully described in the file WORDPERF.TXT. It is incompatible with
Windows conventions and therefore not supplied with the Windows
version.

� BRIEF. Emulates the Brief (tm) editor. It is fully described in the file
BRIEF.TXT.

Why <Ctrl-S> is different in VEDIT
Most Windows programs assign <Ctrl-S> to {FILE, Save}, but VEDIT does
not. By default, the key is unassigned because it is too easy to press by mistake.

Our experience is that you may be making temporary editing changes during
a complicated “cut and paste” operation that you don’t want to save. Also,
when editing a huge multi-megabyte file, an unneeded file save can waste
several minutes. (It may take several minutes to copy a 100 Megabyte file and
it takes VEDIT just as long to save the file.)

Sometimes saving unwanted editing changes can be disastrous. Therefore, the
default hot-key for {FILE, Save} is <Ctrl-Shift-S>, which you are much less
likely to hit by mistake. For the same reason, VEDIT’s “auto file save” feature
is disabled by default.

If you don’t like our reasons, you certainly can assign <Ctrl-S> to {FILE,
Save}. The topic “Editing the Keyboard Layout” in Chapter 4 (Editing Guide)
describes in detail how to change the keyboard layout.

Otherwise, you may want to assign <Ctrl-S> to {GOTO, Set marker} in place
of the default <Ctrl-D>.

38 Chapter 2 Getting Started Keyboard Layout

Compiler Support uses <Alt-N>, <Alt-P>,
<Shift-F5> through <Shift-F8> and <Shift-F10>

The “Normal” keyboard layout assigns these seven function keys as hot-keys
to the compiler support functions in the {TOOLS} menu:

<Shift-F5> Run the compiler
<Shift-F6> Run the linker
<Shift-F7> Run the debugger
<Shift-F8> Run Make
<Shift-F10> Stop compiler support, resume editing
<Alt-N> Go to next compiler reported error
<Alt-P> Go to previous compiler reported error

If you do not use the compiler support, you can use these function keys for
other purposes. Or you may want to delete them from your layout to reduce
confusion. The topic “Editing the Keyboard Layout” in Chapter 4 (Editing
Guide) describes in detail how to change the keyboard layout.

Numeric Keypad Options
Full-sized keyboards have a numeric keypad on the right-hand side. This pad
typically also includes five additional keys which we refer to as <Numpad/>,
<Numpad*>, <Numpad->, <Numpad+> and <Numpad.Enter>. VEDIT
can optionally use these convenient keys as additional function keys.

{CONFIG, Misc, Numpad function mode} controls whether the numeric
keypad keys “/” “*”, “-”, “+” and “Enter” work as function keys or normal
keypad keys.

0 The keys always work as normal keypad keys.

1 (Default) The keys work as normal keypad keys when “NumLock” is on;
they work as function keys when “NumLock” is off.

2 The keys always work as function keys.

The “Normal” layout redundantly assigns [T-REG INSERT] to <F11> and
<Numpad*>, [T-REG COPY] to <CTRL-F11> and <Numpad+>, and
[T-REG MOVE] to <Alt-F11> and <Numpad->. Although we suggest using
the <Numpad> keys, many laptop computers do not have <Numpad> keys.
If desired, you can un-assign one set of keys; refer to the topics “Keystroke
Macros” and “Editing the Keyboard Layout” in Chapter 4 (Editing Guide).

NOTES: The following pages list the “Normal” layout in alphabetic order by
function name and the keystroke macros in alphabetic order by key
name.

Appendix E lists the entire layout in alphabetic order by key name.

The current (actual) keyboard layout can be viewed by selecting
{HELP, Keyboard layout} and {CONFIG, Keyboard layout,
Edit/view layout}, from which you can also print the layout.

Keyboard Layout Chapter 2 Getting Started 39

“Normal” IBM PC Keyboard Layout
[RETURN] <Enter>
[BACKSPACE] <Backspace>
[BACKTAB] <Shift-Tab>
[CANCEL] <Ctrl-\> or <Ctrl-Break>
[CURSOR UP] <Up Arrow>
[CURSOR DOWN] <Down Arrow>
[CURSOR RIGHT] <Right Arrow>
[CURSOR LEFT] <Left Arrow>
[DELETE]
[DEL PREV WORD] <Ctrl-Bksp>
[DEL NEXT WORD] <Ctrl-Del>
[ENTER CTRL] <Ctrl-Q> or <Ctrl-Shift-^>
[ERASE BOL] <Ctrl-J>
[ERASE EOL] <Ctrl-K>
[ERASE LINE] <Ctrl-L>
[ESCAPE] <Esc>
[HELP] <F1>
[INSERT TOGGLE] <Ins>
[LINE BEGIN] <Home>
[LINE END] <End>
[MENU] <F10> or just tap <Alt>
[NEXT LINE] <Ctrl-Enter>
[NEXT PARAGRAPH] <Ctrl-Down Arrow>
[NEXT TAB STOP] Not assigned
[NEXT WORD] <Ctrl-Right Arrow>
[PAGE UP] <PgUp>
[PAGE DOWN] <PgDn>
[PREV PARAGRAPH] <Ctrl-Up Arrow>
[PREV WORD] <Ctrl-Left Arrow>
[REPEAT] <Ctrl-R>
[REPEAT LAST] <Alt-R>
[SCREEN BEGIN] <Ctrl-PgUp>
[SCREEN END] <Ctrl-PgDn>
[SCROLL UP] <Alt-Up Arrow>
[SCROLL DOWN] <Alt-Down Arrow>
[SCROLL RIGHT] <Alt-Right Arrow>
[SCROLL LEFT] <Alt-Left Arrow>
[TAB CHARACTER] <Tab>
[T-REG COPY] <Ctrl-F11> or <Numpad+>
[T-REG MOVE] <Alt-F11> or <Numpad->
[T-REG INSERT] <F11> or <Numpad*>
[VISUAL ESCAPE] <Ctrl-Shift-E> or <Alt-F10>
[VISUAL EXIT] <Ctrl-E> or <Ctrl-F10>

NOTES: {HELP, Keyboard layout} displays the current basic layout.

The topic “Basic Edit Functions” in Chapter 7 describes these basic
edit functions.

40 Chapter 2 Getting Started Keyboard Layout

“Normal” Built-in Keystroke Macros (Hot-keys)
<Alt-A> Add a new keystroke macro
<Alt-D> Toggle current window through display modes
<Alt-I> Set a “column” type block marker
<Alt-J> Toggle between window colors
<Alt-K> Start/stop recording a new keystroke macro
<Alt-L> Set a “line” type block marker
<Alt-N> Go to next compiler support reported error
<Alt-O> Open a new file in same (current) buffer
<Alt-P> Go to previous compiler support reported error
<Alt-Q> Toggle File-selector window on and off.
<Alt-X> Exit VEDIT. Same as <Alt-F4>.
<Alt-Y> Open another file in a horizontal window
<Alt-Z> Zoom or de-zoom windows
<Alt-0> Open file mynotes.txt for editing personal notes
<Alt-=> Toggle binary/text display mode
<Alt-\> Toggle hex mode split
<Alt-/> Create (remove) command mode window
<Alt-[> Goto the beginning of the block
<Alt-]> Goto the end of the block
<Alt-Bksp> Undo last edit operation (keystroke)
<Alt-Enter> Display file properties and VEDIT status
<Alt-F1> Display the current basic keyboard layout
<Alt-F2> Start a new search & replace
<Alt-F4> Exit VEDIT - save/abandon file(s)
<Alt-F5> Switch to the selected window (file)
<Alt-F9> Highlight, move block to cursor position
<Ctrl-A> Select entire file as a block
<Ctrl-B> Format the current paragraph
<Ctrl-C> Copy to Windows clipboard
<Ctrl-D> Set a text marker
<Ctrl-F> Start a new search
<Ctrl-G> Goto a text marker
<Ctrl-H> Start a new search & replace
<Ctrl-I> Start a new incremental search
<Ctrl-N> Open a new (empty) buffer.
<Ctrl-O> Open another file in new buffer; full window
<Ctrl-P> Print current file or highlighted block
<Ctrl-U> Undo current/previous line
<Ctrl-V> Insert (paste) the Windows clipboard
<Ctrl-W> Close current file (buffer)
<Ctrl-X> Move (cut) to Windows clipboard
<Ctrl-Y> Redo last undo operation
<Ctrl-Z> Undo last edit operation (keystroke)
<Ctrl-]> Goto matching parenthesis - () < > [] { }
<Ctrl-End> Goto the end of the file
<Ctrl-F1> Help - search for a keyword
<Ctrl-F2> Start a new search of all open buffers (files)
<Ctrl-F3> Compare any two open buffers (files)
<Ctrl-F4> Close current window (file/buffer)

Keyboard Layout Chapter 2 Getting Started 41

<Ctrl-F5> Switch to the previous window
<Ctrl-F6> Switch to the next window
<Ctrl-F7> Load a macro in a text register and execute it
<Ctrl-F8> Execute the command macro in a text register
<Ctrl-F9> Highlight, copy block to cursor position
<Ctrl-Home> Goto the beginning of the file
<Ctrl-Ins> Copy to the clipboard. Same as <Ctrl-C>.
<Ctrl-Shift-C> Copy to register 0 (the “scratchpad”)
<Ctrl-Shift-O> Open another file; use simple (quick) prompt
<Ctrl-Shift-P> Play back the quick macro
<Ctrl-Shift-R> Record a quick macro
<Ctrl-Shift-S> Save current file; continue editing
<Ctrl-Shift-V> Insert (paste) register 0 (the “scratchpad”)
<Ctrl-Shift-X> Move (cut) to register 0 (the “scratchpad”)
<Ctrl-Shift-Z> Undo current/previous line
<Ctrl-Tab> Switch to next window; same as <Ctrl-F6>
<F2> Start a new search
<F3> Search/replace again for next occurrence
<F4> Switch to the selected buffer (file)
<F5 Switch to the previous buffer (file)
<F6> Switch to the next buffer (file)
<F7> Undent left margin or highlighted block
<F8> Indent left margin or highlighted block
<F9> Set a “stream” type block marker
<F12> Perform a “ctags” lookup of the current symbol.
<Numpad+> Copy block to selected text register
<Numpad-> Move (cut) block to selected text register
<Numpad*> Insert (paste) selected text register
<Shift-Del> Move (cut) to the clipboard. Same as <Ctrl-X>.
<Shift-F3> Search/replace again for previous occurrence
<Shift-F4> Search/replace again for previous occurrence
<Shift-F5> Run the compiler (Compiler support)
<Shift-F6> Run the linker (Compiler support)
<Shift-F7> Run the debugger (Compiler support)
<Shift-F8> Run Make (Compiler support)
<Shift-F9> Remove (cancel) any block markers
<Shift-F10> Stop compiler support, resume editing
<Shift-Ins> Insert (paste) the clipboard. Same as <Ctrl-V>.

Optional Keys assigned in USTARTUP.VDM
The ustartup.vdm file can optionally set up the following keystroke
macros. See the comments in ustartup.vdm for details.

<Alt-F12> Configure VEDIT to an xBase “.DBF” file.
<Ctrl-F11> Run the V-SPELL spelling corrector.
<Numpad/> Toggle {CONFIG, Programming, Lower/Upper

case key conversion} on and off. Useful for assembly
language programming.

<Numpad.Enter> Alternative key for [VISUAL EXIT]. Useful with
WILDFILE macro to search for next occurrence.

42 Chapter 2 Getting Started Keyboard Layout

Chapter 3

Quick Tutorial

Let’s take a quick tour of VEDIT. This chapter covers the basics of opening,
editing, printing and saving a file. In short, you will know all that’s required
to really use VEDIT!

Each basic editing function in VEDIT has a name that we normally show such
as [HELP] and [CURSOR RIGHT]. We also show which key to press to
perform these editing functions: <F1> and <Cursor Right>.

To keep things simple, this quick tutorial often just lists which key to press to
perform various editing operations. However, the rest of VEDIT’s documen-
tation and on-line help is oriented towards the names of the editing functions.

NOTE: Since this quick tutorial is specific on which keys to press, it
assumes that you have installed the Windows or DOS version of
VEDIT and selected the “Normal” keyboard layout.

If you notice something about VEDIT’s behavior that you don’t like, don’t
worry. As you will see, just about everything about VEDIT is configurable.
For example, you can easily configure common keys like <Enter>, <Tab>,
<Begin>, <End> and the cursor “arrows” to emulate any other editor.

VEDIT Chapter 3 Quick Tutorial 43

Starting VEDIT
� To start VEDIT and begin editing a file:

1. Double-click the VEDIT icon with the mouse.

2. Select {FILE, Open}. This notation means that you select “File” from the
main menu and then select the “Open” item.

As a convenience, this function can be used both to open an existing file
or to create a new file.

Alternatively, just press <Ctrl-O> which is the “hot-key” for this function.
The menu displays what the hot-keys are.

Alternatively, press the “Open” icon on the toolbar.

3. You are now in the File-Open dialog box. At the “Filename:” prompt,
enter the desired filename, e.g. “news.txt”. If the file does not exist, it will
be created.

To edit an existing file, you can also use the typical Windows “Point &
Shoot” to select the file.

If possible, select an existing file which you can safely experiment with.

You can now edit the new or existing file as desired. Note the “status line” at
the bottom of the screen.

Notes:

You can also open existing files by using “drag and drop” to drag the desired
file(s) to the VEDIT icon, or onto a running VEDIT.

If the toolbar is not displayed, select {VIEW, Toolbar} to enable it.

44 Chapter 3 Quick Tutorial VEDIT

Entering New Text
If you didn’t select an existing file, you should enter one or two short
paragraphs of text.

By default, VEDIT starts up in “Insert” mode — text you type is inserted at
the cursor position instead of overstriking existing text. Note the “INS” on the
status line. If you do not see “INS” on the status line, press <Ins> once. VEDIT
is usually configured to have distinctive cursors in Insert Mode and Overstrike
Mode.

When entering lines of text, press the <Enter> key at the end of each line.
Pressing the <Enter> key moves the cursor to the beginning of the next line.
Pressing <Enter> while in Insert mode, or at the end of the file, inserts a
“newline” character. Every text line ends in a (invisible) “newline” character.

Therefore, pressing <Enter> in the middle of a line splits the line into two
lines. (You must be in Insert mode.)

Now try typing a very long line. When you go past the right window edge,
VEDIT will horizontally scroll the window to handle the long line.

To simplify entering text for word processing, you can enable “word wrap”.
VEDIT then automatically wraps words to the next line when you reach the
right edge of the window or a configurable “right margin”.

� To enable “word wrap” to simplify word processing:
1. Enable {CONFIG, Word processing, Enable word wrap and format-

ting}. This notation for configuration parameters means:

1a. Select the {CONFIG} menu and then the “Word processing” item.

1b. Select the item “Enable word wrap and Format Paragraph”.

1c. Select the [Close] button to exit the configuration dialog box.

2. The default right margin is the edge of the window. Alternatively, you can
select a specific right margin. For example, a right margin of “70” is often
good for printing.

If desired, select a specific right margin with {CONFIG, Word process-
ing, Right margin}.

Now try entering a long line of text and notice how words are wrapped to the
next line when you reach the right margin.

Unlike word processors, VEDIT never adds strange control characters to your
file, even when using word wrap. VEDIT simply inserts the “newline” char-
acter to start a new line, just as if you had pressed <Enter>.

Notes:

The “newline” character is usually two characters - <CR> Carriage-Return and
<LF> Line-Feed. Technically, it depends upon whether you are editing a
DOS/Windows, Unix or Macintosh file. See the topic “File Types” in Chapter
4 for details.

VEDIT Chapter 3 Quick Tutorial 45

The “newline” character(s) is normally invisible, but you can make it visible
by selecting {VIEW, Options, Show newlines (CR/LF)}.
VEDIT does not automatically reformat paragraphs when you change the right
margin, e.g. resize the window. You can reformat paragraphs with {EDIT,
Formatting, Formatting, Format paragraph} (<Ctrl-B> or toolbar). See
the topic “Word Processing” in Chapter 4 for more details.

Instead of using horizontal scrolling, VEDIT can also wrap long lines onto
multiple screen lines. This is independent of word wrap. See the topic “Wrap-
ping Long Lines on the Screen” in Chapter 4.

Another common way to handle long text lines is to wrap them onto multiple
lines at word boundaries. This option can be selected with {VIEW, Word
wrap display} (or toolbar).

Deleting Text
As is typical of most editors, pressing deletes the character at the cursor;
pressing <Backspace> deletes the character just before the cursor.

When the cursor is at the end of a line, pressing deletes the “newline”
character, effectively appending the following line.

Similarly, when the cursor is at the beginning of a line, pressing <Backspace>
deletes the previous “newline”. This appends the current line to the end of the
previous line.

In short, when you are at the beginning of a line and want to append it to the
previous line, press <Backspace>. When you are at the end of a line and want
to append the following line, press .

The behavior with respect to deleting “newlines” is configurable with
{CONFIG, Emulation, [BACKSPACE] emulation mode} and {CONFIG,
Emulation, Special emulation modes}.

Deleting Lines
VEDIT has three functions for deleting partial or entire lines:

<Ctrl-J> [ERASE BOL] Erase to beginning-of-line
<Ctrl-K> [ERASE EOL] Erase to end-of-line
<Ctrl-L> [ERASE LINE] Erase (delete) entire line

Press <Ctrl-L> to delete an entire line; any following lines will then move up.

Press <Ctrl-K> to delete text from the cursor position to the end of the line.
You can “blank out” the current line by first pressing <Home> and then
<Ctrl-K>. This is different from <Ctrl-L> in that it changes a line of text to
a blank (empty) line instead of erasing it entirely.

46 Chapter 3 Quick Tutorial VEDIT

Deleting Words
VEDIT can delete the word before or after the cursor position.

<Ctrl-Bksp> [DEL PREV WORD] Delete previous word.
<Ctrl-Del> [DEL NEXT WORD] Delete next word.

Pressed once, it deletes the characters that make up the word; pressed again, it
deletes the space(s) between the words. Therefore, you must press these
functions twice for each word to be deleted.

Moving the Cursor
VEDIT has a full range of cursor movement functions in addition to the four
basic “arrow” keys. You can move the cursor by words, paragraphs, pages and
to the beginning or end of a line or screen. Other movements using the
{GOTO} menu are described in Chapter 6.

Moving past the beginning/end of a line
Pressing <Cursor Left> at the beginning of a line, moves the cursor to the end
of the previous line. Similarly, pressing <Cursor Right> at the end of a line,
moves to the beginning of the following line. (This behavior is configurable.)

You can configure how VEDIT handles the cursor when it is past the end of a
line, e.g. what happens when you press <Cursor Down> from a long line past
a short line. By default, VEDIT allows the cursor past the end of a short line,
but as soon as you type, it zips the cursor left to the “real” text. Alternatively,
VEDIT can pad the short line with enough spaces to reach the cursor position.

See {CONFIG, Emulation, Cursor position mode} in Chapter 6 for a more
detailed description.

Moving by Words
You can move forwards and backwards by words:

<Ctrl-Right Arrow> [NEXT WORD]
<Ctrl-Left Arrow> [PREV WORD]

Moving to the Beginning or End of a Line
To move the cursor to the end of the current line, press:

<End> [LINE END]
If the cursor is already at the end of a line, <End> moves the cursor to the end
of the next line.

To move the cursor to the beginning of the current line, press:

<Home> [LINE BEGIN]
If the cursor is already at the beginning of a line, <Home> moves the cursor
to the beginning of the previous line.

VEDIT Chapter 3 Quick Tutorial 47

NOTE: Once they are used to it, most users like having <End> move the
cursor to the ends of successive lines. If you don’t, you can change
this behavior with {CONFIG, Emulation, [LINE BEGIN/END]
emulation mode}.

Moving by Pages
Well, actually just less than a screen “page”. VEDIT shows some overlap
between “pages” for easier reading. This overlap is about two lines in a typical
20 line window. The overlap is larger for bigger windows; there is no overlap
for very small windows.

<PgDn> [PAGE DOWN]
<PgUp> [PAGE UP]

Even though these functions refer to “pages”, they bear no relation to printed
pages of a document. They are simply “screen” pages and their size depends
on the number of lines in the current window.

Moving by Paragraphs
What is a paragraph? Unlike most word processors, VEDIT does not use
unseen control characters to mark where one paragraph ends and the next
begins. Instead, it simply considers a blank line as a break between paragraphs.
(See the topic “Word Processing” in Chapter 4 for some exceptions.)

<Ctrl-Down Arrow> [NEXT PARAGRAPH]
<Ctrl-Up Arrow> [PREV PARAGRAPH]

[PREV PARAGRAPH] first moves the cursor to the beginning of the current
paragraph. Pressed again, it moves to the beginning of the previous paragraph.
[NEXT PARAGRAPH] also moves the cursor to the first character of the next
paragraph.

48 Chapter 3 Quick Tutorial VEDIT

Undo and Redo
VEDIT offers you the luxury of changing your mind. Perhaps you changed
some text, then decided it was better before the change. Rather than deleting
and retyping, you can have VEDIT “undo” those changes.

To undo your last action press:

<Ctrl-Z> or <Alt-Backspace>
Each press of <Ctrl-Z> undoes the next previous action. Actions that can be
“undone” in this way include inserting or overwriting characters, deleting
characters and cursor movements. Up to the last 1,000 of these actions can be
undone by repeatedly pressing <Ctrl-Z>.

To try it, first delete a line of text by pressing <Ctrl-L>. Then press <Ctrl-Z>
and the line comes back. Go ahead and make some other changes — deleting,
overwriting and inserting text. Repeatedly pressing <Ctrl-Z> will reverse
these changes step by step.

To undo all changes to the current line press:

<Ctrl-Shift-Z>
Pressing <Ctrl-Shift-Z> again just moves the cursor to the last line you were
on. Pressing it again then undoes the changes to that line, and so on. This is a
quick way to undo the changes you just made line-by-line. Pressing <Ctrl-
Shift-Z> is equivalent to pressing <Ctrl-Z> several (or many) times.

Sometimes when you use Undo you accidentally go too far and remove
changes you wanted to keep. Or you simply change your mind and want to
“undo” the undo. This capability is called “Redo”.

To redo your last undo press:

<Ctrl-Y>
To try it out, enter a few short lines of new text. Then repeatedly press
<Ctrl-Shift-Z> (the undo line function) until the new text is gone. Now
repeatedly press (or hold down) <Ctrl-Y>; your text should come back
character by character.

Since each <Ctrl-Y> will redo one <Ctrl-Z>, it usually takes several (or
many) <Ctrl-Y>’s to redo one <Ctrl-Shift-Z>.

VEDIT Chapter 3 Quick Tutorial 49

Repeating Operations
It is often desirable to repeat an editing operation such as inserting the same
character many times. With the [REPEAT] function (<Ctrl-R>), you can
perform these operations a specified number of times without having to press
the same key over and over again.

For example, if you needed to enter 50 “*” (asterisk) characters into your text,
you could press the “*” key fifty times, counting very carefully. However, the
better way is to use the [REPEAT] function.

� Example - To enter 50 “*” characters into your text:
1. Press <Ctrl-R>. The status line will prompt you with:

Enter repeat count:

2. Type “50” and press <Enter>. The status line now prompts:
Press key to repeat:

3. Press “*”. Fifty “*” (asterisk) characters will be entered into your text.

At the “Enter repeat count” you can enter any number up to 256. (This
maximum of 256 is configurable up to 65,535.)

After the repeat count is entered, you can press any text character or press any
editing function such as [ERASE LINE].
For example, to delete 75 lines, press <Ctrl-R>. At the prompt type “75” and
<Enter>. Then press <Ctrl-L> (the [ERASE LINE] function).

You can also repeat the last editing operation by pressing [REPEAT LAST]
(<Alt-R>). Each successive [REPEAT LAST] repeats the last editing opera-
tion one more time.

VEDIT also lets you repeatedly perform a sequence of editing steps over and
over again. This is done using “keystroke macros” which are extensively
covered in their own topic in Chapter 4 (Editing Guide).

“Cut and Paste” a Block
VEDIT has an exceptionally wide range of block operations. You can see most
of them in the {BLOCK} and {EDIT, Convert} menus.

Probably the most common block operation is to “cut” a block from one
location and “paste” it into another location. Most Windows editors give you
just one way. VEDIT gives you at least three ways:

� You can “cut and paste” using the Windows “clipboard”. This is identical
to other editors.

� You can “cut and paste” using any of VEDIT’s 100 “text registers”. For
simplicity, one text register is reserved as the “scratchpad”.

� You can directly copy or move a highlighted block to the current cursor
position.

50 Chapter 3 Quick Tutorial VEDIT

We suggest using VEDIT’s “scratchpad” or other text registers instead of the
Windows “clipboard” for copying blocks within VEDIT.

Marking (highlighting) a Block
VEDIT gives you three main ways to mark a block of text:

� Use the mouse to “drag” over the selected text.

� Hold down the <Shift> key while moving the cursor.

� Select {BLOCK, Set stream marker} in the menus, or press the equiva-
lent hot-key <F9>, or select it from the toolbar.

Since you probably already know how to highlight a block with the mouse or
<Shift> key, let’s highlight a block using the hot-key for {BLOCK, Set
stream marker}.

� To highlight a block using a “hot-key”:
1. Position the cursor on the first character to be included in the block.

2. Press <F9> to set the first block marker. Or select “Set stream marker”
from the toolbar. Note the message “1-END” on the status line.

3. Move the cursor to the end of the block; any desired method can be used.
For example, you could search for text at the end of the block.

Position the cursor just past the last character of the block. To include the
“newline” at the end of a line, position the cursor at the beginning of the
next line.

4. Press <F9> again to set the second block marker. Note the message
“BLOCK” on the status line, which is followed by the size of the block in
bytes.

For most block operations, you do not have to explicitly set the second block
marker. The cursor position is used as the second block marker.

After marking a block of text, you will notice that VEDIT’s blocks are
“persistent” if {BLOCK, Persistent blocks} is enabled (checked). A block
remains marked until you process it or explicitly clear the markers. One
advantage is that you can directly copy the block to another location using
{BLOCK, Copy to cursor}.
If you decide not to use a marked block, you have to explicitly clear the
markers. (This assumes you have “persistent” blocks enabled.) VEDIT makes
this as easy as possible:

� Simultaneously press both mouse buttons.

� Double-tap the <Ctrl> key. This is probably the easiest way to clear the
block markers.

� Press [CANCEL] (<Ctrl-\>).

� Select “Clear markers” from the mouse context (right-click) menu.

� Select {EDIT, Clear markers} or {BLOCK, Clear markers}
(<Shift-F9> or toolbar) or {ESCAPE, Clear block markers}.

VEDIT Chapter 3 Quick Tutorial 51

Directly copying a block
After marking a block, you can directly copy or move it to the current cursor
position without using the clipboard or a text register.

� To directly copy/move a block.
1. Make sure {BLOCK, Persistent blocks} is enabled (checked).

2. Highlight the block to be copied, e.g. follow steps 1. through 4. above.

3. Move the cursor to the destination for the block.

4. Press <Ctrl-F9> to copy the block to the cursor position.

Alternatively, press <Alt-F9> to move the block.

“Cut and Paste” with the VEDIT “Scratchpad”
Since you probably already know how to “cut and paste” using the Window’s
clipboard, let’s use the VEDIT “scratchpad” instead.

� To “cut and paste” with the “scratchpad”:
1. Highlight the block to be “cut”. E.g. Use any method desired. For example,

follow steps 1. through 4. on the previous page.

2. Press <Alt-F11> or <Numpad->, the equivalent hot-keys for {BLOCK,
Move to register}.
At the “Move to register” dialog box, simply press <Alt-F11> or
<Numpad-> again to select the default register “0”, also called the
“scratchpad”.

Alternatively, press <Ctrl-F11> or <Numpad+> to copy the block.

3. Move the cursor to the destination for the block.

4. Similarly, double-press <F11> or <Numpad*>, the hot-keys for
{BLOCK, Insert register}.

HINT: If you double-press <Ctrl-F11> or <Numpad+>, or <Alt-F11> or
<Numpad-> when no block is highlighted, it copies/moves the
current line to the scratchpad. Then move the cursor and double-
press <F11> or <Numpad*> to insert the line. This makes it very
easy to copy or move a single line.

Notes:

You may have noticed that there is also an {EDIT, Scratchpad} sub-menu
and scratchpad icons on the toolbar. We wanted to demonstrate the text register
selection dialog box and how easy it is to select the scratchpad.

As you become more familiar with VEDIT, you will probably use additional
text registers. For example, registers “1” through “9” can be used to store small
blocks of text that are inserted over and over again.

The availability of the <Numpad> keys depends upon the setting of
{CONFIG, Misc, Numpad function mode}.

52 Chapter 3 Quick Tutorial VEDIT

Printing Text
You can print the entire file or just a highlighted block.

� To print the entire file:
1. Select {FILE, Print} (default: <Ctrl-P>).

2. Assuming a block of text is not highlighted, “All” is automatically
selected; otherwise, manually select “All”.

If you prefer to have the filename, page number and date printed at the top
of each page, select “PRINT.VDM macro” instead.

3. If needed, select [Setup] to select a different printer or change its proper-
ties.

If desired, select [Font] to select the font used to print the entire file (or
block).

4. Select the [Ok] button or press <Enter>. The entire file should print.

You can change VEDIT’s top, bottom and left margins for printing with
{CONFIG, Printer}. You can also select single, double or triple spacing.

Notes:

The [Font] button lets you print the text in any desired font and size.

The “[] Raw” option lets you print a file without margins or other processing
by VEDIT.

Disabling the “[] Auto-close print job” option lets you print two or more
blocks on the same page.

The topic “Printing” in Chapter 4 describes printing in more detail.

VEDIT Chapter 3 Quick Tutorial 53

Saving Your Work
You should periodically save your work to disk. This protects you against
power failures, system “crashes” and mistakes on your part.

� To save your work and continue editing:
1. Select {FILE, Save} (default: <Ctrl-Shift-S>).

Or, select {FILE, Save all} if you are editing multiple files and want to
save all of them,.

Notes:

You can also let VEDIT automatically save your work, say every 20 minutes,
by setting {CONFIG, File handling, Auto-save interval}. This is described
in the topic “Auto-file Save”. (In Chapter 4.)

Exiting VEDIT
� To save your work and exit VEDIT:

1. Select {FILE, Exit} (<Alt-F4> or <Alt-X>).

2. If any modified files are open in VEDIT, you will be prompted whether
to save or abandon them. A typical prompt would be:

Select [Yes] to save this file

Select [No] to abandon (quit) this file without saving changes.

Select [Save-all] to save all remaining files and exit VEDIT.

Select [Quit-all] to abandon all remaining files and exit VEDIT.

Notes:

See the topic “Exiting” in Chapter 4 for more information.

That’s It!
That’s all you need to create and edit text files. Obviously, there is much more
VEDIT can do for you. Take some time to get comfortable with basic editing,
then read the more detailed chapters that follow.

We have enjoyed creating VEDIT and sincerely hope it serves you well.

54 Chapter 3 Quick Tutorial VEDIT

Chapter 4

Editing Guide

Starting (Invoking) VEDIT
The details of starting VEDIT are different for the Windows and non-Windows
(DOS) versions. However, several aspects are the same for all:

� VEDIT can be started without an initial filename. All files are then opened
with {FILE, Open}.

� VEDIT can also be started with one or more initial filenames. Each of the
files is opened for immediate editing.

� Various invocation options can be selected. For example, you can start
VEDIT in read-only mode, skip loading the configuration files, or auto-
execute a macro such as WILDFILE.VDM.

Starting VEDIT for Windows
There are many ways to start VEDIT under Windows.

� Like all Windows programs, you can start VEDIT by double-clicking its
icon with the mouse. If {FILE, Enable edit restore} was enabled, this
starts VEDIT with the previously loaded files; otherwise, it starts VEDIT
without any open files.

� Using “drag and drop”, drag the desired file(s) to the VEDIT icon. This
starts VEDIT and immediately opens these files.

You can also right-click on a file and select “Copy”, then right-click on
the VEDIT icon and select “Paste”. This is an alternative to “drag and
drop” when the file and VEDIT icons are not visible at the same time.

� In Explorer, you can double-click on files whose “type” or filename
extension is associated with VEDIT.

The preferred way of associating file types with VEDIT is by selecting
{CONFIG, Associate file types}.

� Select the “Run” command from the “Start” menu and enter the pathname
of the executable VEDIT, any desired invocation options and any desired
filenames. This is one way to start up VEDIT with invocation options.

� You can start VEDIT from the DOS/NT command prompt (e.g., “C:\>”).
This very flexible method is described in detail below.

Starting (Invoking) VEDIT Chapter 4 Editing Guide 55

See Also:

The topic “Opening Files”. (Described later in this chapter).

Changing the VEDIT Icon Properties
The VEDIT icon properties can be changed to set the initial directory for the
File-open dialog box. For example, in the picture below, the initial directory
has been set to c:\projects\webs\cafe.

You can also make copies of the VEDIT icon and then change the new icon’s
properties. For example, you might set up the new icon to auto-execute a
VEDIT macro.

The following example demonstrates how to create a new VEDIT icon that
auto-executes the COMPARE.VDM macro to compare/merge two files.

You could simply set the new icon’s target to the following line:

c:\vedit\vpw.exe -x compare.vdm

However, for reasons only Microsoft knows, when you drag and drop files
onto an icon, Windows strips all options from the icon’s Target. Therefore,
the “-x compare.vdm” above would be stripped. The only way to get around
this is to create a .BAT “batch” file which contains the complete command
line and have the icon’s Target run the batch file.

� To create a VEDIT file comparison icon:
1. In the VEDIT Home Directory, create a file named wcompare.bat

which consists of just the following line:

c:\vedit\vpw.exe -x compare.vdm %1 %2 %3 %4 %5 %6

2. Select the VEDIT program group (or folder) which contains the main
VEDIT icon.

56 Chapter 4 Editing Guide Starting (Invoking) VEDIT

While holding down the <Ctrl> key, make a copy of the VEDIT icon by
dragging it to a new location within the same group.

3. Open the icon’s properties dialog box by right-clicking the icon and select
“Properties”.

4. Change the “Target” to read:

c:\vedit\wcompare.bat

(This assumes VEDIT was installed into “c:\vedit”.)

5. If desired, select “Change icon” to pick a different icon.

6. Close the dialog box. Then right-click the icon, select “Rename” and
change the name to “VEDIT Compare Macro”.

You can test the new icon by double-clicking it. VEDIT should start and run
the COMPARE.VDM macro which will prompt you for the files to compare.
Or you can drag and drop the two files onto the new icon.

Running VEDIT for Windows (and DOS)
from DOS/NT Command Prompt

Both the Windows and DOS versions of VEDIT can be run from a DOS/NT
command prompt. In fact, the most flexible way to run the Windows version
of VEDIT is from a DOS/NT command prompt — you can specify the file(s)
to open, any desired invocation options, macros to auto-execute, etc.

If you are going to regularly run VEDIT from a DOS/NT prompt, you should
add the VEDIT Home Directory to the Windows PATH variable. In Windows
95/98/ME, edit the “SET PATH=...” command in your autoexec.bat file.
(Then reboot.) In Windows NT/2000/XP, select “System Properties -
Advanced - Environment variables” and change the PATH variable.

The Windows and DOS versions of VEDIT are run in exactly the same way
from a DOS/NT command prompt. The following examples use the Windows
version of VEDIT which has a program name of vpw. To run the DOS version,
use vedit instead of vpw.

Start VEDIT by typing the name of the VEDIT program; this is vpw for the
Windows version and vedit for the DOS version. Although not necessary, this
is normally followed by the name of the file or files you want to edit or create.
For example:

vpw letter.txt

After you have modified and saved letter.txt, you will have
both an updated file and a backup file named letter.bak. You
can optionally turn off backups or have backups copied to a special
directory.

You can open several files at once; you can specify the full pathname to a file.
Some examples are:

Starting (Invoking) VEDIT Chapter 4 Editing Guide 57

vpw file1 file2 file3
vpw chapter1.txt chapter2.txt d:\archive\oldchap1.txt

If the specified file does not exist, it is created. When creating a new file, the
message “New file” is temporarily displayed on the status line.

Starting VEDIT from the DOS/NT command prompt is a particularly conven-
ient way of opening many files at once. (Up to 99 files.) The wildcards “*” and
“?” can be used to specify entire groups of files. For example, you can edit all
.c and .h files in your current directory with the command:

vpw *.c *.h

You can open the file main.cpp on line 953 with:

vpw main.cpp -l 953 -or- vpw -953 main.cpp

When specifying filenames that contain spaces, you must enclose the filename
in double-quotes:

vpw "January Report.txt"

You can open a (prototype) file and save it (Save As) with a new name. For
example, to load the existing file faxsheet.sav and save it (with any
changes) as the file tomjones.292:

vpw faxsheet.sav -a tomjones.292

The “-a” option may be used with multiple files. For example, to load the file
chap1.txt, and save it as chap1.new, and load chap2.txt, and save
it as chap2.new, type:

vpw chap1.txt -a chap1.new chap2.txt -a chap2.new

When you invoke the Windows version of VEDIT with the vpw command
followed by filename(s), it normally starts a new copy (instance) of VEDIT
and opens the files in that instance. However, you can optionally open the files
in an existing (already-running) copy of VEDIT with the “-s” option:

vpw -s chapter5.txt

Opens chapter5.txt in an existing instance of VEDIT. If no
instance of VEDIT is already running, it opens the file normally.

If {CONFIG, Misc, Instance control} is set to “1”, VEDIT attempts to open
all files in one instance of VEDIT. You can then use the “-s0” option to force
another instance of VEDIT:

vpw -s0 newdata1.dat

Opens newdata1.txt in a new instance (copy) of VEDIT, over-
riding the “Instance control” configuration setting.

You may even want to create .BAT “batch” files for commonly used invoca-
tion options. For example, the supplied wwild.bat file starts VEDIT and
auto-executes the WILDFILE.VDM macro for processing entire groups of
files.

wwild

58 Chapter 4 Editing Guide Starting (Invoking) VEDIT

Invocation Options (All Versions)
VEDIT supports numerous invocation options. The syntax is:

vpw +options -options filename -a outfile

(VEDIT for Windows is named vpw; VEDIT for DOS is vedit.

DOS: The DOS version has additional invocation options related to
hardware and memory usage. See the DOS on-line help topic
“STARTUP” for details. To see a summary of all DOS version
invocation options, give the command:

vedit /?

In the Windows version, invocation options can be specified by changing the
icon’s properties, by using the “Run” command or by running vpw from a
DOS/NT command prompt.

In addition to the filename(s), one or more “invocation options” can be
specified (in upper or lower case) when you start up VEDIT:

-b Puts VEDIT into “browse-only” mode. All files are opened in
read-only mode; you can view them, but cannot alter them.

Note: You can put individual files into browse-only mode by
following the filename with “-b”; see below.

-c command The VEDIT macro language command line ‘command’ is
executed upon startup. The ‘command’ may be delimited with
quotation marks ("); otherwise, it ends on the first space. The
commands are executed after the startup.vdm file.

+c command Same as “-c”, except that the commands are executed before
the startup.vdm file.

-d Disables Windows 95/98/ME/NT/2000/XP long filename
support. VEDIT will only recognize the short 8.3 names.

-e Disables the edit session restore feature. Only needed when
invoking VEDIT without any filenames and when VEDIT
was last exited with {FILE, Enable edit restore} enabled.

-g Disables auto-configuration; the vedit.cfg and
vedit.key files are not loaded during startup.

-i execfile ‘execfile’ is executed in place of the normal startup.vdm
startup macro. This file contains the macro language com-
mands which control the startup process. The option “-i xxx”,
where ‘xxx’ is a non-existent file, can be used to start VEDIT
without any startup file.

-k Disables reading the vedit.ini file on startup and saving
a new vedit.ini file when exiting. A default size and font
are used on startup; the final size and font are not saved. Since
the serial number is stored in the vedit.ini file, VEDIT
will run as a “trial version”.

Starting (Invoking) VEDIT Chapter 4 Editing Guide 59

Note: You may want to also use the “-z” option to suppress
the trial version message dialog boxes.

-kinifile ‘inifile’ is used as the Windows parameter file in place of the
normal vedit.ini file. The full pathname should be speci-
fied.

Note: There must not be a space between the “-k” and the
filename.

-n nnn Passes the numeric value ‘nnn’ to a command macro as an
option. For example, the SORTMAIL.VDM macro uses this
option. (Technical: This value is accessed with the N_Option
command.)

-p Prints the specified file and immediately exits. This is equiva-
lent to selecting {FILE, Print} and then “All - entire file”.

-q Runs VEDIT in “quiet” (minimized) mode without displaying
it on the screen. It is typically followed by the “-x” or “-c”
options to execute a macro. When the macro is done, it
automatically saves all files and exits.

-r Restricted: only the file(s) specified on startup can be edited.
All editing operations can be performed, but additional files
cannot be opened. Useful when shelling to VEDIT from
another program where you don’t want the user to be able to
edit any files other than the specified ones.

-s, -s0 or -s2 (Windows only) “-s” attempts to open the specified files in a
currently running instance (copy) of VEDIT. “-s0” and “-s2”
force the specified files to be opened in a new instance (copy)
of VEDIT; “-s2” prevents this instance of VEDIT from ac-
cepting additional filenames to open. It overrides {CONFIG,
Misc, Instance control}.

-u The rest of the command line is ignored, i.e. any specified files
are not opened. Allows a macro to parse the command line via
the CMD_LINE string value.

-v Starts up VEDIT in Command Mode at the “COMMAND:”
prompt.

-x execfile ‘execfile’ is loaded into text register 100 and executed as a
VEDIT command macro. If no filename extension is given
“.VDM” is assumed. ‘execfile’ is executed after the
startup.vdm file. This is the normal way to auto-execute
command macros.

+x execfile Same as “-x”, except that ‘execfile’ is executed before the
startup.vdm file.

-z Suppresses the trial version registration and information dia-
log boxes on startup.

- - Signals the end of the options. This is only needed when the
filename being edited begins with a “-”.

60 Chapter 4 Editing Guide Starting (Invoking) VEDIT

filename The name of the file or files to edit. The wildcard characters
“*” and “?” may be used to load a group of files. Long
filenames containing spaces or commas must be enclosed in
double-quotes. All filenames may include full drive and path
specifications.

Each single filename may be followed by one or more of the following options:

-a outfile The preceding file being edited will be saved under the name
‘outfile’. This is similar to using the {FILE, Save as} function.

-b The preceding file is opened in “browse-only” mode; you can
view the file but not alter it.

Note that you can put all files opened by VEDIT into browse-
only mode by preceding the first filename with “-b”. See
above.

-l nnn Editing of the preceding file will start on line ‘nnn’. If there
are fewer than ‘nnn’ lines in the file, it will start at the end of
the file. You can also specify a numeric expression such as
“-l(7890/3)”.

Note: When opening just one file, you can also use the
following syntax to open the file on line ‘nnn’:

vpw -nnn filename

-t nnn The preceding file is opened with a file-type or record length
of ‘nnn’. This lets you set {CONFIG, File handling, File
type} when you open the file.

Notes:

All options beginning with “+” must be specified before any options beginning
with “-”. The startup.vdm file will be executed after any “+” options and
before any “-” options.

See Also:

The topic “Exiting VEDIT and Backup Files”. (Described later in this chapter).

The topic “Auto-execution”. (Described in Chapter 5).

VEDIT Environment Variable
If you use the same invocation options over and over again, you can set up the
environment variable “VEDIT” with any desired default options.

Any options specified by this environment variable are processed by VEDIT
before those given on the command line. Therefore, the options specified by
the environment variable should usually be preceded with “+”.

For example, if you always want VEDIT to use toms.vdm as the startup file
instead of the default startup.vdm, you could add the following line to
your AUTOEXEC.BAT file:

SET VEDIT=+i c:\vedit\toms.vdm

Starting (Invoking) VEDIT Chapter 4 Editing Guide 61

Opening Files
Besides the typical {FILE, Open} function, VEDIT has many other ways of
opening files. It has convenient ways of opening multiple files at once.

You can open files when VEDIT is invoked (started):

� In the Windows desktop or Explorer, you can “drag and drop” one or more
files onto the VEDIT icon.

� In Explorer, you can double-click any file whose “type” (i.e. filename
extension) is associated with VEDIT. There are several ways in Windows
to associate file-types with programs, but with VEDIT we highly suggest
using {CONFIG, Associate file types}.

� In Explorer, you can right-click on any file and select “Send to -> VEDIT”
in the context menu. This requires adding the VEDIT icon to the “Send
to” folder. This is explained below.

� As described in the topic “Starting VEDIT - Running VEDIT from
DOS/NT Command Prompt”, you can start VEDIT from a DOS/NT
command prompt and specify the files to open. This works with both the
Windows and DOS versions of VEDIT.

Note: This is a good way to open multiple files. E.g., the command
vpw *.c *.h opens all .C and .H files in the current directory.

� Simply double-clicking the VEDIT icon will start VEDIT with the pre-
viously loaded files if {FILE, Enable edit restore} is enabled.

Here are the most common ways of opening files from within VEDIT:

� Select {FILE, Open}. This displays an enhanced file-open dialog box
from which you can open one or more files.

Hint: This dialog box can also be used to create a new file. Simply
type the name of the file to be created in the “File name”
field and press [Open].

� Select {FILE, Open (more), Quick open}. This displays a simple dialog
box into which you can type the names of the file or files to open. While
this simple dialog box has no browsing function, it has several advantages
over the normal file-open dialog box:

� You can enter a string such as “*.c *.h” to immediately open all .C
and .H files in the specified directory.

� You can enter the names of several files, separated by commas. (To
open a filename that contains spaces or commas, you must enclose
the filename in double-quotes.)

� The simple dialog box opens immediately. The normal file-open
dialog box is sometimes slow to open, especially in a network
directory containing thousands of files.

62 Chapter 4 Editing Guide Opening Files

� The {FILE, Open (more)} sub-menu contains other functions for opening
files. These are explained in the topic “Editing Multiple Files”. (Described
later in this Chapter.)

� (Technical) The VEDIT macro language has a flexible File_Open()
command for opening files. Experienced users can create keystroke mac-
ros, assigned to hot-keys, which open files in any special manner desired.

See also:

The topic “Starting VEDIT”. (Described earlier in this chapter).

The topic “File-open Configuration” in Chapter 5.

The menu item {FILE, Open} in Chapter 6 (Menu Reference).

Adding VEDIT to the “Send to” Context Menu
In Explorer, you can right-click on any file to bring up the “Context” menu.
One standard item in the context menu is the “Send to” function which has a
sub-menu of locations and programs.

If you add VEDIT to the “Send to” folder, you can easily open any file with
VEDIT.

� To add VEDIT to the “Send to” folder:
1. Right-click on the VEDIT icon and select “Copy”.

2. In Explorer, navigate to the “Send to” folder.

In Windows 95/98/ME, this is typically C:\Windows\SendTo.

In Windows NT4, this is typically C:\WinNT\Profiles\
Username\SendTo where Username is the logon name of the current user.
You will have to repeat steps 2 and 3 for each user.

In Windows 2000/XP, this is typically C:\WinNT\Documents and
Settings\All Users\SendTo.

3. Right-click the mouse in the “Send to” folder and select “Paste”.

Opening Multiple Files
Up to 99 files can be simultaneously opened within VEDIT. (32 in the DOS
version.) Since it would be tedious to have to go through several steps to open
each file, VEDIT makes it easy to open many files at the same time.

There are several ways to open entire groups of files in VEDIT:

� Starting VEDIT from the DOS/NT command prompt is a very convenient
way of opening many files at once. The wildcards “*” and “?” can be used
to specify entire groups of files. For example, you can open all .cpp and
.h files in your current directory with the command:

vpw *.cpp *.h

Opening Files Chapter 4 Editing Guide 63

� You can select multiple files to open in the standard File-open dialog box.
As is typical in Windows programs, you can select multiple files by
holding down the <Shift> or <Ctrl> key.

In the Windows version, you could open all .cpp by entering “*.cpp” in
the “File name” field of the File-open dialog box. Then click in the list
and press <Ctrl-A> to select all files. Then press [Open] to open all the
files. To reduce the number of steps, we suggest using {FILE, Open
(more), Quick open}.
In the DOS version, you could open all .cpp by entering “*.cpp” in the
“Filename” field of the File-open dialog box. Then select
[x] Load multiple files. Then press [Ok] to open all files.

� Select {FILE, Open (more), Quick open}. You can then use the wild-
cards “*” and “?” to specify entire groups of files. For example, to open
all .cpp and .h files, enter:

*.cpp *.h

� (Technical) You can load multiple files from Command Mode with the
File_Open() command. For example:

File_Open("chapter*.txt")

Once all your files are open in VEDIT, there are many ways to switch between
them. The topic “Editing Multiple Files” (later in this chapter) describes this
in detail. In short:

� {FILE, Previous buffer} (<F5> or toolbar) and {FILE, Next buffer}
(<F6> or toolbar) will toggle between the files.

� The “Open” tab in the “File selector” lets you easily switch to any open
file. The File selector can be enabled with {VIEW, File selector}, its
normal hot-key <Alt-Q> or the toolbar.

� If {VIEW, Tabbar} is enabled, VEDIT displays convenient tabs for each
open file. Simply click on the desired tab.

See also:

The topic “File Selector”. (Described later in this chapter).

The topic “Editing Multiple Files”. (Described later in this chapter).

Opening Multiple Instances of VEDIT
(This topic applies only to the Windows version of VEDIT.)

When you open files from Explorer or the DOS/NT command prompt, you can
control whether they are opening in another copy of VEDIT, or in an existing
(already-running) copy of VEDIT. We refer to each running copy of VEDIT
as an “instance” of VEDIT.

Some users prefer to have multiple instances (copies) of VEDIT running when
editing many files. For example, all program source code files might be open
in one instance, while all documentation files are open in another instance. You
would then switch from the source code files to the documentation files by

64 Chapter 4 Editing Guide Opening Files

selecting the correct instance of VEDIT on the Windows “Taskbar” or by
pressing <Alt-Tab> to switch between Windows programs.

Other users prefer to open all files in one instance (copy) of VEDIT. Some
users find this method less confusing.

The number of instances of VEDIT can be controlled with {CONFIG, Misc,
Instance control} and with the “-s” invocation option.

With {CONFIG, Misc, Instance control} set to the default value of “0=Auto”,
VEDIT’s behavior is:

� File types that have been associated with VEDIT using {CONFIG,
Associate file types} will be opened in an existing instance of VEDIT. (If
no instance of VEDIT is running, this starts the first instance.)

� File types that have been associated with VEDIT in other ways, or files
opened via the “Send to” function will be opened in another instance of
VEDIT.

� Each invocation of VEDIT from a DOS/NT command prompt opens
another instance of VEDIT. However, if you specify the “-s” invocation
option, the specified files will be opened in an existing instance of VEDIT.

NOTE: Files types should be associated with VEDIT using {CONFIG,
Associate file types}. If you associate them using Explorer, they
will open in another instance of VEDIT instead of in an existing
instance.

If desired, you can have all files opened from Explorer and the DOS/NT
command prompt open in one instance of VEDIT.

� To open all files in one instance of VEDIT:
1. Set {CONFIG, Misc, Instance control} to “1”.

As much as possible, all files opened from Explorer or the DOS/NT command
prompt will then open in just one instance of VEDIT. However, if you specify
the “-s2” invocation option, the specified files will be opened in a new instance
of VEDIT. Also invoking VEDIT with just the vpw command and no file-
names will start another instance of VEDIT.

If you prefer to always open files from Explorer in another instance of VEDIT,
set {CONFIG, Misc, Instance control} to “2”.

(Technical) Explorer and VEDIT use the Windows “DDE” protocol to send
the names of the files to open to a running instance of VEDIT. You may notice
that another instance of VEDIT runs temporarily and then immediately closes
itself; in this case the temporary VEDIT uses “DDE” to send the file names to
an existing instance of VEDIT.

Opening Files Chapter 4 Editing Guide 65

Opening Files with Fixed-Length
Records

VEDIT is very well suited for editing data files, including files downloaded
from mainframe computers and database files. Many data files have “fixed-
length records”; the length of the records is called the “record length”. For
example, if the record length is 300, then the first 300 bytes in the file are the
first record, the next 300 bytes are the second record, and so on. Typically,
there are no “newline” characters, e.g. Carriage-Return and Line-Feed, be-
tween the records.

When such a data file is opened, VEDIT will initially treat it as a binary file
and display it with 64 characters per line. Since there is no automatic way of
determining the record length, you must explicitly set the correct record length.

There are two ways to set a file’s record length in VEDIT:

� You can set the record length in the file-open dialog box when you initially
open the file. At the bottom of the dialog box, select () Record/binary
and enter the record length in the “Length” field.

� You can set (or change) the record length at any time with {CONFIG,
File handling, File type}.

Some data files, such as xBase .DBF files, also have a header before the first
record. You can also set length of this header in the file-open dialog box or
with {CONFIG, File handling, Record header size}.
You are very limited in how you can edit a file with fixed-length records. For
example, you cannot insert or delete characters since this would change the
length of the current record and thereby corrupt the entire file. Similarly, you
cannot delete a field by highlighting it as a columnar block.

NOTE: This limitation on editing files with fixed-length records is controlled
with {CONFIG, File handling, Overwrite-only mode}. You can
turn it off, but you must then be extra careful not to corrupt the file.
See the following topic “Overwrite only mode”.

Therefore, when possible, you should convert the data file into a standard text
file with Carriage-Return and Line-Feed after each record. See the topic
“Converting Files - Converting from Fixed-Length to Normal Text”.

Notes:

Sometimes the documented record length is a bit different from the actual data
file. If the records are not quite aligned on the screen, try changing the record
length by one or two.

Data files downloaded from a mainframe computer sometimes have had a
Carriage-Return and Line-Feed appended to each record. In this case the
records will immediately appear aligned when you open the file; you should
then just treat it as a normal text file, don’t try setting the record length.

See also:

The topic “File Types”. (Described later in this chapter).

66 Chapter 4 Editing Guide Opening Files

The sub-topic “Binary/Data Files (Record Mode)”.

The topic “Converting Files”.

Starting (Default) Directory for
File-Open

VEDIT gives you flexibility determining in what directory most file selection
dialog boxes start. Starting in the correct directory can save a lot of time. For
some dialog boxes, VEDIT selects the most likely directory. Others start in the
directory of the current file, or optionally in the “current” directory, which can
be changed.

By default, the starting directory for {FILE, Open}, {FILE, Open (more),
Quick open}, {FILE, Save as}, {EDIT, Insert, Insert file} and {FILE, Save
block as} is the same directory as the file in the current buffer. If the current
buffer has no file open, e.g. following {FILE, New}, the starting directory is
the “current” directory.

Most file selection dialog boxes include a [] Change directory option.
Initially, the box is not enabled and the dialog box starts in the same directory
as the file in the current buffer.

If you check the [] Change directory box, the last directory you select in the
dialog box becomes the new “current” directory. Also, these dialog boxes will
then start in the “current” directory.

HINT: When editing multiple files in different directories, first switch to a
file which is in the same directory as the next file you want to open.
{FILE, Open} will then start in the desired directory.

{MISC, Load/exec macro} starts in the VEDIT Macro Directory, e.g.
c:\vedit\macros, because VEDIT macro files are usually located there.
Similarly, {MISC, Load/exec user macro} starts in the User Macro Direc-
tory, e.g. c:\vedit\user-mac, because user macro files are usually
located there. Similarly, {CONFIG, Save / Load config} starts in the User
Config Directory because the user’s configuration files are located there.

The Initial “Current” Directory
The initial “current” directory for the Windows version of VEDIT is deter-
mined as follows:

1. If VEDIT is started by dragging and dropping a file on its icon, the
directory containing the file becomes the current directory.

2. If VEDIT is started by clicking its icon, the current directory can be
selected by setting the icon properties’ “Start in” field.

However, the first file opened with {FILE, Open} or by dragging and
dropping a file onto a VEDIT window will set the current directory.

3. If the Windows or DOS version of VEDIT is started from the DOS/NT
prompt, the “current” directory is the current DOS/NT directory.

Opening Files Chapter 4 Editing Guide 67

Read-only (Browse) Mode
To view a file you don’t want to accidentally alter, enable the “[x] Read-only”
option in the file-open dialog box. This has the added benefit of letting you
navigate through the file more quickly. {GOTO, Beginning of file}, {GOTO,
End of file} and relative jumps using the mouse will then work instantly on
even multi-megabyte files.

Files opened in read-only mode are indicated with a “!” preceding their
filename on the status line.

CD-ROM files are automatically opened in read-only mode and can be quickly
navigated.

Files on your hard disk (or network) which have the “read-only” attribute set
are also opened in read-only mode. To check/change a file’s attributes, right-
click on it within Explorer and select “Properties”.

If a file is already open in another program, e.g. in another instance of VEDIT,
the file will be opened in read-only mode. Keep in mind when editing network
files, that the file may already be open in another user’s program, or that you
might not have read-write permission to the file or the directory it is in.

If VEDIT is invoked with the “-b” option, all files are opened in read-only
mode and the “[x] Read-only” option is always enabled.

You can temporarily prevent making any changes to a file by selecting {EDIT,
Browse mode}. The current file then cannot be altered any further. However,
this is not quite the same as read-only mode, because navigating is not as fast;
you can also disable browse mode when desired.

SECRETS: If you copy files from a CD-ROM to your hard disk using Explorer,
Windows (inconveniently) sets their file attributes to “read-only”.
Therefore, VEDIT will open them in read-only mode. You must turn
off the “read-only” attributes before any program can edit them.

In Explorer, you can highlight many files and change all attributes in
one step. Alternatively, use the DOS/NT ATTRIB command to
change the attributes of many files at once. You should use the
DOS/NT COPY or XCOPY commands to copy files from a CD-
ROM to your hard disk without changing the file attributes.

Notes:

You cannot disable browse mode if you invoked VEDIT with “-b” or opened
the file in read-only mode.

VEDIT does not always know the current line number when navigating a
read-only file; the line number is then displayed as “?????”. If you must know
the line number in a browsed file, set {CONFIG, File Handling, Enable fast
browse mode} to “No”. Browsing will be slower, but the correct line number
will always be displayed.

See Also:

The menu item {EDIT, Browse mode}. See Chapter 6 (Menu Reference).

68 Chapter 4 Editing Guide Opening Files

Overwrite-Only Mode
When editing some types of files, particularly binary (e.g., .EXE) and database
(e.g., .DBF), it is important not to change the size of the file or the file would
become corrupted and unusable.

In “overwrite-only” mode, deletions and insertions that would change the file
size are not allowed. Only character overstriking, block overwrites, and other
editing operations that don’t change the file size are allowed. Search/replace
operations are allowed, but only when the replacement text is the same size as
the search text.

Overwrite-only mode is controlled with {CONFIG, File handling, Over-
write-only mode}. It has three settings:

0. Disabled

1. (Default) Record/binary mode. Overwrite-only mode is only enabled if
the “File type” is set to “8” or greater for editing binary files or data files
with fixed-length records.

2. Enabled for all file types.

The default value of “1” only enables overwrite-only mode when {CONFIG,
File handling, File type} is set to “8” or greater. This is the normal setting for
editing binary and data files, which are precisely the types of files whose size
should not be changed.

Therefore, by default, VEDIT selects overwrite-only mode when editing
binary/data files.

Notes:

In overwrite-only mode, {BLOCK, Copy to cursor}, {BLOCK, Move to
cursor} and {BLOCK, Insert register} always overwrite the existing text at
the cursor.

Similarly, {BLOCK, Move to cursor} and {BLOCK, Move to register} fill
the original source block with the configurable “block fill” character, typically
spaces. {EDIT, Delete} also fills the block instead of deleting it.

If you disable {CONFIG, Config all buffers}, you can have overwrite-only
mode enabled for some of the files you are editing and not for others.

(DOS version only) Disk sector editing is always in overwrite-only mode.

See Also:

The topic “File Types”. (Described later in this chapter).

Opening Files Chapter 4 Editing Guide 69

Exiting VEDIT
VEDIT gives you a great deal of flexibility when exiting, especially when you
are editing multiple files. You can selectively save or abandon each file (buffer)
that has been modified, or save or abandon all files at once.

� To exit VEDIT and save or abandon the current file(s):
1. Select either {FILE, Exit} or {ESCAPE, Exit}.

If no modified files are open in VEDIT, this will immediately exit VEDIT.
Otherwise, it displays each modified file and prompts whether it is to be
saved or abandoned. It repeats this for each file and exits VEDIT. A typical
prompt would be:

2. Select [Yes] to save this file. If the file has no assigned filename, you are
prompted for one.

Select [No-abandon] to abandon (quit) this file; the changes are not saved.

Select [Save-all] to save all remaining files and exit VEDIT. (Note: it only
saves those buffers that have assigned filenames!)

Select [Quit-all] to abandon all remaining files and exit VEDIT. If there
are additional modified files open, you are prompted for confirmation.

Notes:

When you abandon a file, you only discard any changes made to the text since
the last time you saved the file (e.g., with {FILE, Save and continue}) or the
auto-save feature saved all files.

VEDIT checks to see if any changes have been made since the file was opened
or last saved, and only prompts for modified files.

If there is insufficient disk space to save the modified file, VEDIT displays an
error and aborts the request to exit. If this happens, you have several options.
You can quit and abandon any changes made or delete unneeded files from
your disk. Or you can use {FILE, Save as} to save the file on another drive.

{MISC, DOS shell} and {MISC, Run program} let you execute DOS
commands for deleting files. Be careful not to delete any files that start with
the same name as the file(s) you are editing. VEDIT may be using these files
for temporary storage.

70 Chapter 4 Editing Guide Exiting VEDIT

See Also:

The topic “Starting VEDIT”. (Described earlier in this chapter).

The menu item {FILE, Exit} in Chapter 6 (Menu Reference).

Edit Session Restore
When {FILE, Enable edit restore} is set, VEDIT saves its entire status when
you exit. Subsequently invoking VEDIT without filenames resumes your
previous edit session, just as if you had never exited.

However, if you invoke VEDIT with filenames, the previous edit session status
is not used. To invoke VEDIT without filenames and without restoring the
previous edit session, use the “-e” option, e.g. “vpw -e”.

VEDIT’s status is saved in the files veditsav.env and veditsav.dat.
Depending upon the setting of {CONFIG, File handling, Save session in
current directory}, these two files are either stored in the current directory or
in the User Config Directory, typically c:\vedit.

When the edit session is saved in the User Config Directory, only one (the last)
session can be saved. If you then invoke VEDIT (without filenames) from
anywhere, you will be switched to the last directory you were in and the files
you were last editing. This is the default setting.

When the edit session is saved in the current directory, you can save multiple
sessions, each in a different directory. If you then invoke VEDIT without
filenames, it will restore the last edit session you had in that directory.

When VEDIT starts up, it searches for the filesveditsav.env andvedit-
sav.dat first in the current directory and then in the User Config Directory
regardless of how {CONFIG, File handling, Save session in current direc-
tory} is set. When found, the files are loaded and then immediately erased.

� To enable Edit Session Restore:
1. Select {FILE, Enable edit restore}.
2. Since this setting is not automatically saved for the next time you run

VEDIT, you must select {CONFIG, Save config}.

Notes:

Files that you abandon during {FILE, Exit} will be reloaded with their
previous contents. Files that you save will be reloaded with their current
contents.

Your entire configuration is saved/restored including changes that you did not
make permanent with {CONFIG, Save config}. This includes any changes to
the keyboard layout. (Exception: The previous setting of {FILE, Enable edit
restore} is not saved/restored.)

The only status not saved is the history of previously entered filenames, search
strings, i.e. the character strings you can recall with [CURSOR DOWN].
The status save is performed by the macro veditsav.vdm.

Exiting VEDIT Chapter 4 Editing Guide 71

Backup Files
When you edit and modify an existing file, VEDIT can optionally create a
backup of the original file in one of two ways:

� (Default) Rename the original file to have a “.BAK” filename extension.
Any existing “.BAK” file is deleted during this process.

� Move the original file to the “VEDIT Backup Directory”, typically
c:\vedit\backup or c:\backup. Any existing backup file by the
same name is deleted during this process.

Backup files take up additional disk space but provide important data protec-
tion. They provide a backup in case you make a major editing mistake that you
may not notice until days later. They also provide some protection against the
accidental deletion of files — the most recent revisions may be lost, but at least
the previous revisions are still there.

Which backup method you use is a matter of personal preference. Each method
has its advantages and disadvantages:

Rename Method Advantages:
� If you edit two files with exactly the same name in two directories, you

will have a backup of each.

� You can easily view the backup files in the current directory.

� Always fastest.

Rename Method Disadvantages:
� If you edit files in one directory with the same name, but different

extensions, e.g. “prog.c”, “prog.inc” and “prog.h”, you will only have a
backup of one of them, and you cannot predict which one.

� You end up with .BAK backup files all over the disk.

Move Method Advantages:
� If you edit files in one directory with the same name, but different

extensions, e.g. “prog.c”, “prog.inc” and “prog.h”, you will have a backup
of each one.

� All backup files are in one directory where they can easily be deleted.

Move Method Disadvantages:
� If you edit two files with exactly the same name in two directories, you

will only have a backup of the last one saved.

� When editing files on other drives, file saving is slower because the
original file must be copied to the Backup directory. (The move is
instantaneous on the same drive.)

If desired, you can delete the backup files when you are sure that you do not
need them anymore. With the move method, you can simply delete all files in
the Backup directory. With the rename method, you must delete all “*.BAK”
files in each directory.

72 Chapter 4 Editing Guide Exiting VEDIT

� To choose the backup method (or turn backups off):
1. Select {CONFIG, File handling, Backup-file mode}. Enter the value:

0 - turn off backup files entirely
1 - create backups by renaming original file with “.BAK” extension
2 - create backups by moving original file to the VEDIT Backup directory

2. Skip this step if you want to use the default VEDIT Backup Directory of
c:\vedit\backup. However, you may prefer to use c:\backup or another
directory.

(Windows version) Set the desired VEDIT Backup Directory by editing
the filevedit.ini, which is in the VEDIT Home Directory. Change the
item “BackupDir” to the desired directory.

(DOS version) Set the desired VEDIT Backup Directory with {CONFIG,
Directories, Change VEDIT Backup directory}. To make these
changes permanent, select {CONFIG, Save config}. It is a good idea to
also select {CONFIG, Misc, Save into VEDIT.EXE}.
Be sure to set the drive too; otherwise, you will receive an error when a
directory, such as “\vedit\backup”, does not exist on the current drive.

DOS: You can override the configured VEDIT Backup directory with the
environment variable “VBACKUP”.

Auto-file Save
VEDIT can optionally auto-save all modified files after a configurable number
of minutes. By default, this feature is turned off.

� To enable auto-save:
1. Select {CONFIG, File handling, Auto-save interval} and enter the

desired number of minutes. A typical value is “20”.

2. To ensure that the configuration change is permanent, select {CONFIG,
Save config}.

VEDIT will auto-save after the configured number of minutes from the time
of the last auto-save -or- you manually selected {FILE, Save all}.
We highly recommend that you enable auto-save set to around 20 minutes!
Just be careful not to accidentally alter files you don’t want to alter, or VEDIT
may auto-save the undesired alteration. You should open files you don’t want
to alter in read-only mode. (See the topic “Opening Files - Read-Only Mode”
, earlier in this Chapter.)

Exiting VEDIT Chapter 4 Editing Guide 73

File Selector (Windows only)
The File Selector lets you conveniently manage the
files you are currently editing, recently edited files
and create a set of “favorite” files. You can also use
it to explore your computer and easily open any file.

Since the File Selector takes up a moderate amount
of screen space, we have made it very easy to enable
and disable it (display and hide it). You can also
resize it to any desired width. When you enable it,
it will have the same size (width) as when you last
used it.

� To enable the File Selector:
Select {VIEW, File selector}.
-OR-
Press its hot-key. The default is <Alt-Q>.

-OR-

On the toolbar, select this icon:

You can disable (hide) the File Selector in the same
way. Or you can press the [X] in the upper-right
corner of the File Selector.

HINTS: Instead of completely hiding the File Selector, you can just resize
it to the minimum width.

Resizing the File Selector works best if you are using “Full-sized”
windows; the windows will then simply resize themselves. How-
ever, if you are using cascaded or tiled windows, they will be pushed
off the right side of the screen when you enlarge the File Selector.

The File Selector has four “Tabs”, one for each of its four functions.

Open
In this mode, the File Selector displays a list of the files which are currently
open in VEDIT.

You can switch to any desired file by double-clicking it.

Fav
In this mode, the File Selector displays a list of your “favorite” files. You must
explicitly add each desired file to this list. You can add a file (or files), by
pressing the [Add] button. (However, as described below, this button may be
hidden.) Up to 100 files may be added to this list.

74 Chapter 4 Editing Guide File Selector (Windows only)

To remove a file from the list, select it and press .

You can also add files to the list or delete them with the “context” menu. Move
the mouse to the File Selector and right-click it to access the “context” menu:

Open selected file
Opens the selected file in VEDIT. If the file is already open in VEDIT, it
switches to the file.

Add file to list
Displays a file-open dialog box. The file (or files) selected from the dialog
box will be added to your “Favorites” list.

Add current file
Adds the current file (i.e. the file open in the current buffer) to “Favorites”
list. If the file is already in the list, the request is ignored.

Remove file from list
Removes the selected file from your “Favorites” list. The file is not deleted
from your computer; it is only removed from this list.

HINT: You can quickly delete many (all) files from the list by holding down
the key.

Hide File Selector window
Hides (disables) the entire File Selector. You can display it again by
selecting {VIEW, File selector}.

Hide the Add button
A large [Add] button is typically displayed in the File Selector so that new
users can easily add new files to their “Favorites” list. Experienced users
can optionally hide this button; the only way to then add files is through
this context menu.

Rec
In this mode, the File Selector displays a list of recently edited files. This is
similar to the Most-Recently-Used (MRU) list in the {FILE} menu; it is just
longer. Up to the last 100 edited files will be listed.

You can easily re-open a file by double-clicking it. If the file is already open
in VEDIT, it switches to the file.

File Selector (Windows only) Chapter 4 Editing Guide 75

VEDIT automatically adds each edited file to the list when you close the file.
To remove a file from the list, select it and press . You can hold down
 to remove many or all files from the list.

This mode also has a mouse right-click “context” menu:

Open selected file
Opens the selected file in VEDIT. If the file is already open in VEDIT, it
switches to the file.

Remove file from list
Removes the selected file from the “Recent” list.

Hide File Selector window
Hides (disables) the entire File Selector. You can display it again by
selecting {VIEW, File selector}.

Xplor
In this mode, the File Selector is an “Explorer” for all the drives on your
computer, including mapped network drives. You can open drives and folders,
in the usual manner, to reach any file on your computer.

You can then open any file by double-clicking it.

You may need to sometimes press the [Refresh] button to refresh the list of
files. (However, as described below, this button may be hidden.) For example,
this is necessary, if you insert a different floppy disk or another program adds,
deletes or renames the files in the folder you are currently viewing.

This mode also has a mouse right-click “context” menu:

Open selected file
Opens the selected file in VEDIT. If the file is already open in VEDIT, it
switches to the file.

Hide File Selector window
Hides (disables) the entire File Selector. You can display it again by
selecting {VIEW, File selector}.

76 Chapter 4 Editing Guide File Selector (Windows only)

Hide the Refresh button
A large [Refresh] button is typically displayed in the File Selector so that
new users can easily refresh the window when necessary. Experienced
users can optionally hide this button.

SECRET: You can refresh the list of files in almost any Explorer-like window
in almost any Windows program by pressing <F5>.

Refresh
Refreshes the list of drives, folders and files. This may be needed if VEDIT
or another program adds, deletes or renames any files in the folder you
have open.

File Selector (Windows only) Chapter 4 Editing Guide 77

Toolbar, Tabbar and Rulers
The Windows version of VEDIT normally displays a “Toolbar” at the top, just
below the menu. It consists of buttons (icons) that you can click with the mouse
to perform common functions. You can determine what each button does by
moving the mouse to it; after a short delay a “tooltip” will display a brief
description.

� To toggle the toolbar on and off:
1. Select {VIEW, Toolbar}.
2. To display (or not display) the toolbar on startup, select {CONFIG, Save

config} to ensure that your current settings are saved.

This step is not needed if {CONFIG, Auto-save config} is enabled.

Configure Toolbar
To configure the toolbar, first double-click the mouse on the toolbar back-
ground where there are no buttons. This is either to the right of the right-most
toolbar button, or (carefully) in the space between button groups. This brings
up the standard Windows toolbar configuration dialog box:

78 Chapter 4 Editing Guide Toolbar, Tabbar and Rulers

You can easily add buttons, delete buttons, change their order and group them.
Press the [Help] button for detailed on-line help on using this dialog box.

SECRET: Many Windows programs also have a configurable toolbar, which is
configured in exactly the same way with the same dialog box.

Tabbar (Windows only)
VEDIT can optionally display a “Tabbar” near the top just below the toolbar.
The tabbar consists of a “tab” for each currently open file. The main uses for
the tabbar are:

� Quickly switch to another file by clicking on the corresponding tab.

� Quickly “Close” or “Save” a file by right-clicking on the corresponding
tab and selecting the desired function from the context menu.

� You can determine the full pathname of any open file by moving the
mouse over the corresponding tab; after a short delay a “tooltip” will
display the full pathname.

� To toggle the tabbar on and off:
1. Select {VIEW, Tabbar}.
2. To display (or not display) the tabbar on startup, select {CONFIG, Save

config} to ensure that your current settings are saved.

This step is not needed if {CONFIG, Auto-save config} is enabled.

See also:

The topic “Editing Multiple Files”.

Rulers (Windows only)
VEDIT can optionally display rulers in each editing window which indicate
the cursor's line number and column number. Note that the status line also
displays these numbers.

� To toggle the rulers on and off:
1. Select {VIEW, Rulers}.
2. You may want to also enable {CONFIG, Display options, Highlight

cursor line} and {CONFIG, Display options, Highlight cursor
column}; a “cross-hair” will then extend from the cursor to the rulers.

3. To display (or not display) the rulers on startup, select {CONFIG, Save
config} to ensure that your current settings are saved.

This step is not needed if {CONFIG, Auto-save config} is enabled.

See also:

The next topic “Status Line”.

Toolbar, Tabbar and Rulers Chapter 4 Editing Guide 79

Status Line
VEDIT provides a wide variety of information on the “Status Line”. The left
side of the status line is used as a message area. When there is no message to
display, the current key assignment to the [HELP] function is displayed.

Additional status information is available by selecting the menu item {HELP,
Status display} (normal hot-key is <Alt-Enter>).

#r The “#” is followed by the number of the active edit buffer.

BLOCK Indicates that both block markers have been set; it is
followed by the size of the highlighted block.

The block markers can be cleared by double-tapping the
<Ctrl> key, pressing [CANCEL] (<Ctrl-\>) or <Ctrl-
Break>, or by selecting “Clear markers” from the
{EDIT}, {BLOCK} or mouse right-click context menu.
The normal hot-key is <Shft-F9>; it is also on the toolbar.

BYTE: Indicates which byte from the beginning of the line/record
is being editing. “COL:” changes to “BYTE:” when
{CONFIG, File handling, File type} is set to “8” or
greater for editing binary/data files, or when editing in
hexadecimal or octal mode.

C-N-S The status of the Caps/Num/Scroll Lock is displayed on
the status line with the single letters “C”, “N” and “S”.

COL: xxxx Indicates in which column the cursor is. Changes to
“BYTE:” during Record mode or hex/octal editing.

Command Mode Indicates that VEDIT is running a “command macro”.
Only the edit buffer number and filename are displayed
on the status line in “Command Mode”.

DISK The current drive is full — you may have trouble saving
the current file. See the topic “Exiting VEDIT” earlier in
this chapter for more information.

EBCDIC The current window’s display mode is set to EBCDIC.
ASCII text will display as gibberish.

Note: If another translation table has been loaded, its
name will be displayed in place of “EBCDIC”.

filename Indicates the name of the file you are currently editing.
The full pathname is displayed on the window’s title bar.
If the filename is extremely long, use {HELP, Status
display} to display the full pathname.

The filename is preceded with “*” when the file has been
altered since the last time it was saved to disk.

The filename is preceded with “!” when the file was
opened in read-only mode. The file cannot be altered, but
you can browse through it more quickly.

80 Chapter 4 Editing Guide Status Line

INS Indicates that you are in “Insert” mode. Any typed text will
be inserted and not overwrite the existing text. Otherwise,
you are in “Overstrike” mode.

LINE: xxxx Indicates on what line of the file the cursor is.

A display of “?????” indicates you are browsing a file
opened in read-only mode. If you must know the line
number in a browsed file, set {CONFIG, File Handling,
Enable fast browse mode} to “No”. Browsing will be
slower, but the line number will always be displayed.

Note: The Windows version displays a ruler with line
numbers if {VIEW, Rulers} is enabled.

POS:yyyy:xxxx Displays the cursor’s offset into the file when editing in
hexadecimal.

RM: xx Right margin value — only displayed if the right margin
is set with {CONFIG, Word processing, Right margin}.

1-END Indicates that only one block marker is set; it is followed
by the size of the currently highlighted block. The block
of text is highlighted as you move the cursor. The block
marker can be cleared, as described above, for the
“BLOCK” message.

ddd/hhh The decimal and hexadecimal values of the character at
the cursor are displayed if {VIEW, Options, Show
character value} is enabled.

<< Indicates that the window is horizontally scrolled. The
following number indicates how far it is scrolled. This
message is only displayed when scroll bars are disabled.

Examples:

F1=Help #1 NEWS.TXT LINE: 1 COL: 1
INS N

The status line indicates that: the [HELP] function is assigned to <F1>;
the file “NEWS.TXT” is being edited in the main buffer #1; the cursor is
at the beginning of the file; “Insert” mode is on; and “Numlock” is enabled
on the keyboard.

1-END #1 !ACCOUNT.RPT LINE: 233 COL: 62
<< 40 INS CN

The status line indicates that: the file “ACCOUNT.RPT” is open in
read-only mode; the cursor is located at line 233 and column 62; the screen
is scrolled 40 columns to the right (the leftmost displayed column is
actually column 41); the first (but not the second) block marker is set; and
“CapsLock” and “Numlock” are on.

Status Line Chapter 4 Editing Guide 81

User Interface
The Windows version works in the usual “Windows” manner with regard to
menus, scroll bars, dialog boxes, mouse support, toolbar, etc. The “Normal”
keyboard layout is very similar to most Microsoft and other products.

HINTS: Right click the mouse to pop-up a menu of common functions.

If the toolbar is not displayed, select {VIEW, Toolbar}. To display
(or not display) the toolbar on startup, select {CONFIG, Save
config} to ensure that your current settings are saved.

Selecting Display Fonts (Windows version)
The display font used in the editing windows can be changed with {VIEW,
Font}. This displays the standard font selection dialog box; however, only
“fixed width” fonts are listed and supported by VEDIT.

The fonts “VEDIT Oem”, “VEDIT Ansi”, “Fixedsys” and “Terminal” look
and work best with VEDIT; each comes in several sizes. The True-Type font
“Courier New” can be set to any desired size, but displays most “non-text”
characters as a square block.

Fonts either display the “OEM” character set, in which character values 176 -
223 display the IBM PC line-drawing graphics, or the “ANSI” character set,
in which character values 160 - 255 display non-English and special characters.
The fonts “VEDIT Oem” and “Terminal” use the OEM character set. “VEDIT
Ansi”, “Fixedsys”, “Courier” and most other fonts use the ANSI character set.

The custom “VEDIT Ansi” font is the default. Instead of displaying control
characters with the standard IBM PC “smiley face” and arrows, it displays
more useful “^A”, “CR”, “LF”, etc. Also, values 0 and 255 are displayed as
“Nul” and “FF Hex”, instead of as spaces.

It is best to experiment to find a font you like; then select {MISC, ASCII table}
to see how all characters are displayed. The font selection is automatically
saved into the vedit.ini file for the next time you run VEDIT.

By editing the vedit.ini file directly, you can display extra space between
lines. OEM fonts tend to be tight; ANSI fonts tend to be looser. Change the
“LineSpace” parameter from “0” to “1”, “2” or more.

Shortcuts and Suggestions
VEDIT includes some unique shortcuts that save a few keystrokes and there-
fore speed your editing.

� As usual, you can mark a block of text with the mouse or <Shift> key.
However, large blocks are more easily marked with {BLOCK, Set stream
marker} (<F9> or the toolbar) or double-tapping the <Shift> key.

When highlighting huge blocks, we highly recommend having {BLOCK,
Persistent blocks} enabled. (It is enabled by default.)

82 Chapter 4 Editing Guide User Interface

� Only use the Windows clipboard to transfer text between VEDIT and other
programs. Use the VEDIT “scratchpad” and other text registers for “cut
and paste” operations within VEDIT.

� The default text register is “0”, also called the “scratchpad”. In text register
selection dialog boxes, you can immediately press <Enter> or simply
double-tap the function’s hot-key to select the scratchpad.

� When no block is highlighted, {BLOCK, Copy to register} (<Ctrl-F11>
or <Numpad+> or the toolbar) copies the current line. Therefore, double-
tapping <Ctrl-F11> or <Numpad+> copies the current line to the scratch-
pad. Similarly, double-tapping <F11> or <Numpad*> inserts the
scratchpad at the cursor position. This is a fast way to copy an entire line.

Similarly, when no block is highlighted, the “Cut/copy to clipboard”
functions cut/copy the current line. Therefore, you can duplicate a text line
by simply pressing <Ctrl-C> and <Ctrl-V>.

NOTE: The availability of the <Numpad> keys depends upon the setting
of {CONFIG, Misc, Numpad function mode}.

� In the {FILE, Open (more), Quick open} dialog box, you can open
several files at once by entering the filenames one after another, separated
by commas. You can open a file on any desired line number with the “-L”
option.

� At most prompts for a “number”, e.g. {GOTO, Line #}, you can enter
numeric expressions, such as (12345+4589)/13 and hexadecimal num-
bers, such as 0xF47B9.

Variables and “internal values” from the VEDIT macro language can also
be used. For example, to go to the exact middle of a file, select {GOTO,
File position} and enter “File_Size/2”.

DOS Version
The DOS version works very similar to the Windows version. The primary
exceptions are that the on-line help works differently and there is no mouse
Right-Click menu.

The DOS version has some special “shortcuts” not available in the Windows
version. They are primarily designed to save keystrokes while navigating the
menus and selecting default values in the dialog boxes.

� The on-line help topic “MENUS” describes the menu operation in detail.
VEDIT has several special menu features including “sub-menu preview”.

� The on-line help topic “DIALOG” describes the operation of the dialog
boxes in detail. “Terse” or “Full” dialog boxes can be selected. Each dialog
box also has its own on-line help.

� The on-line help topic “MOUSE” describes the DOS version’s extensive
mouse support. The right mouse button implements unique features such
as variable-speed scrolling, quick jumps within the file, and “stealth”
scroll bars.

User Interface Chapter 4 Editing Guide 83

Undo and Redo
VEDIT remembers each edit operation performed and can quickly undo them
in reverse order, including cursor movements, insertions, deletions and
search/replace. You can undo these operations keystroke-by-keystroke, line-
by-line or deletion-by-deletion. This not only lets you back out of mistakes,
but also lets you try out changes and “undo” them if they don’t work out.

Sometimes when you use Undo, you accidentally go too far and remove
changes you wanted to keep. Or you simply change your mind and want to
“undo” the undo. This capability is called “redo”.

VEDIT normally remembers the last 1000 edit operations in EACH file being
edited. As you continue to work and exceed the maximum number of edit
operations VEDIT can remember, oldest operations are forgotten. Because of
this, you can only go as far back as 1000 keystrokes.

Notes:

Each basic edit operation uses one “undo level”; VEDIT is typically configured
for 1000 undo levels. Therefore, VEDIT could undo the last 1000 cursor
movements, characters typed in, or single characters deleted. However, some
editing functions consume many undo levels. Therefore, you can undo far
fewer of these. These functions (and the number of undo levels used) include:
columnar block operations (3 levels per line), paragraph formatting (3 levels
per line), search and replace (3 levels per replacement). Obviously, keystroke
macros can also consume many undo levels.

In extreme cases, a single editing operation, e.g. a keystroke macro, may be so
complex that it consumes more than the available undo levels. Such operations
cannot be undone.

Two configuration parameters Config(U_UNDO_MAX) and
Config(U_UNDO_MIN) determine how many undo levels are available to
each file. When sufficient memory is available, 1000 levels are typically
available. As memory becomes tight as more files are opened, new buffers may
only have the minimum number of levels available; this is typically 100.

When deleting large blocks of text, VEDIT must save this text in memory in
case you want to “undo” the deletion. VEDIT allocates at most 256K (64K for
16-bit DOS version) for deleted text. If you delete either a single large block
of text or successive smaller blocks of text which exceed VEDIT’s undo
storage, you will get the following confirmation prompt:
Cannot undo this operation! Proceed anyway? [Yes] [No]

This is a warning that VEDIT won’t be able to undo the deletion if you go
ahead and confirm the deletion. This also resets the undo system.

See Also:

{EDIT, Undo} menu in Chapter 6 (Menu Reference).

84 Chapter 4 Editing Guide Undo and Redo

Scrolling the Screen

Vertical Scrolling
The screen scrolls automatically as the cursor is moved towards the very top
or bottom of the current window. By default, VEDIT scrolls when the cursor
reaches about the third line from the top or bottom of a 24-line window. This
ensures that you always see a few lines before and after the line you are editing.
(VEDIT automatically adjusts this value according to the size of the current
window.)

You can also use [SCROLL UP] (<Alt-Up Arrow>) and [SCROLL DOWN]
(<Alt-Down Arrow>) to scroll the screen without having to move the cursor.
This lets you view lines that are just off the screen.

Configuration Options:

The configuration parameters Config(S_PG_OVERLAP),
Config(S_TOP_MARG) and Config(S_BOT_MARG) determine how
many lines of overlap you will see with [PAGE UP] and [PAGE DOWN],
and how close to the top/bottom of the window the cursor can get before the
window scrolls. These parameters can only be changed by editing the
vedit.cfg file as described in Chapter 8 (Configuration).

{CONFIG, Emulation, Special emulation modes} can change [SCROLL
UP] and [SCROLL DOWN] to leave the cursor in the current screen line
instead of in the current text line.

Horizontal Scrolling
VEDIT can deal with long lines in two different ways:

� (Default) Long lines can be viewed with horizontal scrolling. Each dis-
played line corresponds to one text line (or record).

� Long lines can be wrapped onto multiple window lines. An entire long
line can be viewed at one time.

Horizontal scrolling is typically used for editing documents that are wider than
the display, such as spreadsheets or structured programs.

Similar to vertical scrolling, the screen automatically scrolls as the cursor is
moved toward the beginning or end of long lines. You can also scroll the screen
horizontally with [SCROLL RIGHT] (<Alt-Cursor Right>) and
[SCROLL LEFT] (<Alt-Cursor Left>).

When scrolling sideways, the screen normally jumps 20 columns at a time. If
desired, this can be changed with {CONFIG, Display options, Horizontal
scroll increment}.
When editing extremely long lines, you can quickly move the cursor to any
desired column with {GOTO, Column #}.

Scrolling the Screen Chapter 4 Editing Guide 85

Wrapping Long Lines on the Screen
Long lines normally extend off the right side of the screen. Alternatively, you
can have them wrap onto multiple screen lines. This lets you see an entire long
line at once.

There are two ways to wrap long lines on the screen:

� Set {VIEW, Word wrap (display)}. This is ideal for word processing
where there is a “hard” Carriage-Return and Line-Feed (CR+LF) only at
the end of each paragraph. In this mode, the long line (paragraph) simply
word wraps onto additional screen lines. The width of the window
determines where the lines wrap. For clarity, a special “newline” or
“paragraph” character is displayed at the end of the long line where the
“hard” CR+LF is.

� Select {CONFIG, Display options, Horizontal scroll margin} to set a
“horizontal scroll margin” which is the absolute column at which long
lines will be wrapped. It is typically the window width. (It is independent
of the word processing “right margin”.)

Lines longer than the horizontal scroll margin are wrapped to the next window
line. These additional screen lines are called “continuation lines” and are
indicated with a special “continuation character”, typically a reverse video “-”
(dash) in the leftmost column.

� To wrap long text lines onto multiple screen lines:
1. Select {CONFIG, Display options, Horizontal scroll margin}.
2. At the prompt enter a new value of “1”. This uses the current width of the

window as the horizontal scroll margin.

Alternatively, you can enter a value, such as 80 or 132, to only wrap lines
longer than this value.

The horizontal scroll margin can be set to values up to 2048 which is obviously
wider than your screen. In this case, only lines longer than the scroll margin
are wrapped, and normal horizontal scrolling is used to view columns up to
the scroll margin. Since continuation lines stand out on the screen, this lets you
flag lines longer than a specified length, e.g. lines that are too long for your
application.

EXAMPLE: For example, your compiler may not support lines longer
than 132 characters. In this case, set the horizontal scroll
margin to 132 and any longer lines will be obvious on the
screen.

Configuration Options:

The continuation character can be changed with the configuration parameter
Config(S_CONT_C) in the vedit.cfg file.

Notes:

Due to the continuation character in the first column, continuation lines display
one character per line less than the first line.

86 Chapter 4 Editing Guide Scrolling the Screen

Screen Display & Keyboard
Characters

VEDIT lets you display control and graphics characters in several different
ways. You can also display and edit any file in hexadecimal (or octal). This is
particularly useful for editing binary files.

EBCDIC (IBM mainframe) files can also be directly edited; they do not have
to be translated to/from ASCII.

VEDIT gives you great flexibility in how common keys such <Tab>, <Enter>
and the cursor keys work; you can emulate other editors and select from many
options.

Entering Control and Graphics
Characters

There are 256 possible characters on any computer. (A computer’s basic
memory unit, called a “byte”, allows 256 possible values). The first 32
characters are called “control characters” and have decimal values 0 through
31. The normal displayable characters have decimal values 32 through 127.
The characters with values of 128 through 255 are called “graphics characters”
or “high bit characters”; they are used for non-English characters.

To enter a control character into your text, you must precede it with [ENTER
CTRL] (<Ctrl-Q> or <Ctrl-Shift-^>). [ENTER CTRL] is fully described
under the equivalent {EDIT, Enter CTRL char}. (Chapter 6.)

In Windows and DOS, control and graphics characters can be entered directly
by holding down the <Alt> key, typing the decimal value of the desired
character on the keypad, and releasing the <Alt> key. All character values
except “00” (the “Null” character) can be entered in this way. Control charac-
ters entered this way do not need to be preceded with [ENTER CTRL].
Alternatively, you can enter control and graphics characters into your file using
{MISC, ASCII table}. The “Null” character can be entered this way.

Windows: To enter extended ANSI (non-English) characters using the <Alt>
key, you must precede the true decimal value with “0”, to prevent
Windows from translating the character from the IBM-PC (OEM) to
the ANSI character sets; e.g. to enter the “ü” (umlaut u) with value
252, type <Alt> 0252.

DOS: You can enter the “Null” character by pressing [ENTER CTRL]
(<Ctrl-Q>) and then <Ctrl-Shift-2>. You can also enter control
characters into search strings by preceding them with [ENTER
CTRL].

Screen Display & Keyboard Characters Chapter 4 Editing Guide 87

Control and Graphics Character Display
Most control characters are normally displayed literally (i.e. the “smiling face”
on an IBM PC). Alternatively, they can be displayed as a “^” followed by the
corresponding letter, i.e. <Ctrl-G> displays as “^G”.

Graphics characters are normally displayed literally, but can alternatively be
displayed as a decimal value in the format “<nnn>”.

<Ctrl-I> The Tab character is normally displayed as spaces to the next tab
stop. Alternatively, the Tab character can be displayed with any
other character by setting the configuration parameter {CONFIG,
Characters/Cursors, Tab display character}.

<Ctrl-J> The Line-Feed character is the true “newline” character at the end
of each line for Windows/DOS and UNIX style text files. The
“newline” character is normally invisible, but can be make visible
by selecting {VIEW, Options, Show newlines (CR/LF)}. With
Windows/DOS text files, a Line-Feed not preceded by the normal
Carriage-Return character is displayed as “<LF>”. With Mac text
files, a Line-Feed is always displayed as “<LF>”.

<Ctrl-M> The Carriage-Return character normally occurs just before the
Line-Feed in Windows/DOS text files; in this case it is considered
part of the “newline” and not displayed. With UNIX text files, a
Carriage-Return character is displayed as “<CR>”. With Mac text
files, a Carriage-Return is the true “newline” character at the end
of each line.

<Ctrl-@> The “Null” character is normally displayed as any other control
character. However, when displayed literally, it is indistinguish-
able from a space. Alternatively, a visible “Null” character can be
chosen with {CONFIG, Characters/Cursors, Null display
character}. For example, a good value might be “7”. Of course,
“Null” would then display the same as Ctrl-G (value 7), but this
is usually better than displaying it as a space.

Display Modes
You can easily display a file in any one of five ASCII modes, display and edit
each byte in hexadecimal, octal or bit-wise mode, or directly edit EBCDIC
files. The display can also translate between the ANSI and OEM (IBM PC)
character sets.

To find the desired mode, simply press <Alt-D>, the hot-key for {VIEW,
Toggle display mode}, several times to toggle through the modes. The status
line temporarily displays a short description of the new mode.

Although usually less convenient, you can directly set the desired mode with
the configuration parameter {CONFIG, Characters/Cursors, Screen
display mode}. The display mode and their configuration values are:

88 Chapter 4 Editing Guide Screen Display & Keyboard Characters

0 Normal - Display graphics and control characters literally. “Null”
(value 00) characters are displayed according to {CONFIG,
Characters/Cursors, Null display character}.

1 Expand Ctrl - Display graphics characters literally, but display con-
trol characters in the “^x” format.

2 Expand Graphic - Display control characters literally, but display
graphics characters as decimal values in the format “<nnn>”.

3 Expand Ctrl and Graphic - Display graphics characters in the
“<nnn>” format and control characters in the “^x” format.

4 Show all chars - Display all characters literally, including <Tab>,
<CR>, <LF> and <Null>. (This mode is used in the ASCII window
following {VIEW, Toggle hex mode split}).

8 Hex - Display all characters in hexadecimal. (This mode is used in
the Hex window following {VIEW, Toggle hex mode split}).

16 Octal - Display all characters in octal.

32 Bit-wise - Display all characters in bit-wise mode. Each character is
displayed as 8 bits - a “X” if the bit is set (1) and a space if the bit is
clear (0). This special mode can help in editing some bitmap graphics
files.

Note: {VIEW, Toggle display mode} only toggles into this
mode if the file type is set for fixed-length records, i.e. if
{CONFIG, File handling, File type} is set to “8” or more.

64 ANSI/OEM - All characters are processed by the built-in ANSI
translation table. If the display is using the OEM-PC character set
(default for DOS version), each character is translated from ANSI to
OEM. Each keyboard character is translated from OEM to ANSI
before it is inserted into the file. This mode makes it easy to directly
edit a file that uses the ANSI character set for non-English characters.

Assuming {VIEW, Font} is set to an ANSI font (default), each
displayed character is translated from OEM to ANSI. Conversely,
each keyboard character is translated from ANSI to OEM.

Note: Since the ANSI and OEM character sets are only differ-
ent for non-English and graphics characters with deci-
mal value 128 - 255, this mode does not change
characters with value 0 - 127.

128+4 EBCDIC - All characters are processed by the EBCDIC or custom
translation table. With the built-in table, each character is translated
from EBCDIC to ASCII so that an EBCDIC file is readable on the
screen. Each keyboard text character is translated to EBCDIC before
it is inserted into the file. This mode makes it easy to directly edit an
EBCDIC file.

The suggested mode is “128+4” so that all translated characters are
displayed literally.

Screen Display & Keyboard Characters Chapter 4 Editing Guide 89

The default EBCDIC translation table can be replaced with a custom
translation table via {EDIT, Translate, Load translate table}.

When the hexadecimal, octal or bit-wise display mode is selected, new text
must also be entered in the same mode. For example, in hex mode, only
hexadecimal digits are valid. In bit-wise mode you must type “x” or “1” to set
a bit and <Space> or “0” to clear a bit.

In EBCDIC mode, the ASCII keyboard characters will be translated to the
EBCDIC equivalent and entered into the file. Therefore, when you type “A”,
you will see “A” on the screen, even though the EBCDIC equivalent was
entered into the text. The text in EBCDIC mainframe files will then be
readable. However, normal ASCII files will display as gibberish.

See also:

The topic “ANSI and OEM Characters”. (Described later in this chapter).

The topic “Hex Mode Editing”. (Described later in this chapter).

The <Tab> Key and Tab Characters
The <Tab> key is almost always assigned to the [TAB CHARACTER]
function. In “Insert” mode, the <Tab> key normally inserts a “Tab” character
into the text. Tab characters are displayed using spaces to the next tab stop,
even though these spaces do not exist in the text. As a convenience, you do not
have to be in Insert mode to insert text on top of a Tab character; the Tab
character will not be overwritten until you reach its last displayed position.

When the cursor is within a highlighted block, [TAB CHARACTER] and
[BACKTAB] (<Shift-Tab>) indent and undent the entire block.

Because of the importance of the <Tab> key and Tab characters, several
configuration options are available:

� The tab stops are normally set to every eighth column, but can be changed
with {CONFIG, Tab/fill, Tab stops}. Tab stops can be set at any desired
columns, e.g. at 7, 20, 30 and 73. Tab characters past the last tab stop are
displayed as normal control characters, i.e. “^I”.

� VEDIT can be configured to insert multiple spaces (up to the next tab stop)
instead of a Tab character when <Tab> is pressed. Although this uses
more disk space, it is useful in applications whose tab stops are not the
same as VEDIT’s. This option is also handy with FORTRAN and COBOL
programs. It is selected with {CONFIG, Emulation, Expand <Tab> key
with spaces}.

� Instead of displaying Tab characters using spaces, you can select another
character with {CONFIG, Characters/Cursors, Tab display
character}. A suitable value on an IBM PC is “07”. This can make it easier
to distinguish between Tab characters and spaces in your file.

� The operation of the <Tab> key according to “Insert” mode and within
highlighted blocks can be changed with {CONFIG, Emulation, [TAB
CHARACTER] emulation mode}.

90 Chapter 4 Editing Guide Screen Display & Keyboard Characters

Converting Tab Characters to Spaces
It is sometimes desirable to convert all Tab characters in a file into spaces. This
is especially true if the file is being used with several programs that treat Tab
characters differently, e.g. use different tab stops.

The function {EDIT, Convert, Detab} converts Tab characters to spaces
according to the currently set tab stops. If a block is highlighted, it converts all
Tab characters within the block. If no block is marked, the entire file is
detabbed; however, any Tab characters within single or double-quotes are not
converted.

� To convert Tab characters in a file to spaces:
1. Make sure that the tab stops are set correctly. The file should look correct

on the screen. The tab stops can be changed with {CONFIG, Tab/fill,
Tab stops}.

2. If you want to leave Tab characters within single or double quotes
un-converted, skip to step 3.

To convert all Tab characters in the file, including those within single and
double-quotes, select {BLOCK, Select all} (<Ctrl-A>) to mark the entire
file as a block.

3. Select {EDIT, Convert, Detab}. If prompted, select [Yes] to convert the
entire file.

The converted file will not look any different on the screen. However, all
(most) Tab characters will have been converted into spaces.

Similarly, {EDIT, Convert, Retab} converts sequences of space characters to
the optimal number of Tabs and spaces, according to the currently set tab stops.
If a block is highlighted, it retabs only the spaces within the block. If no block
is marked, the entire file is retabbed; however, any spaces within single or
double-quotes are not converted. This is better for C and other programming
languages.

If you open a file which was created with tab stops at every four columns, and
have VEDIT set to the default of every eight columns, the text will not appear
aligned correctly. Although you can set VEDIT to every four columns, the
following example shows how to convert to file to have tab stops at every eight
columns.

� Convert from tab stops at every 4 columns to every 8 columns:
1. Assuming the file is already open, use {CONFIG, Tab/fill, Tab stops}

to set the tab stops at every 4 columns.

The file should now appear correctly on the screen.

2. Select {EDIT, Convert, Detab} to convert Tab characters into spaces.

3. Select {CONFIG, Tab/fill, Tab stops} and change the tab stops to every
8 columns.

4. Select {EDIT, Convert, Retab} to convert sequences of spaces into the
optimal number of Tabs and spaces.

Screen Display & Keyboard Characters Chapter 4 Editing Guide 91

Notes:

These functions are implemented by the detab.vdm and retab.vdm
macros.

Lower and Upper Case Conversion
This topic is primarily applicable to programmers, particularly assembly
language programmers.

Several modes are available for converting between lower and upper case
letters as they are typed on the keyboard. These modes are selected with the
parameter {CONFIG, Programming, Lower/upper case key conversion},
which can take these values:

0 No conversion takes place. This is the default.

1 All lower case letters are converted to upper case. This is similar to
the “Caps Lock” on a keyboard.

2 Conditional key conversion — lower case letters are converted to
upper case only when the cursor is to the left of the “key conversion
character” which is typically “;”.

3 Similar to (2) except that characters are reversed instead of being
forced to upper case.

4 All upper case letters are converted to lower case.

5 Similar to (2) except that characters are converted to lower case.

Modes “2” and “3” are specifically designed for assembly language program-
mers who prefer having the Label, Opcode and Operand in upper case and the
comment in upper and lower case.

In Mode “2”, lower case letters are converted to upper case if they occur to the
left of the “key conversion character”, typically “;”. To the right of the “;” they
are not converted. In this mode an assembly language program can be entered
with all lower case letters and VEDIT will automatically convert the labels,
opcodes and operands to upper case while leaving the comment fields alone.
The “key conversion character” may be changed with{CONFIG, Program-
ming, Key conversion character}.
Mode “3” is similar to Mode “2”; instead of converting lower case to upper
case, it reverses the case of letters appearing before the “;”. This makes it easier
to enter lower case strings into a program (Hold down the <Shift> key to enter
lower case letters).

NOTES: This upper/lower case conversion option does not affect any exist-
ing text; use the {EDIT, Convert} menu to convert existing text.

These modes only affect characters entered in Visual Mode, they
do not affect characters entered into dialog boxes or Command
Mode.

92 Chapter 4 Editing Guide Screen Display & Keyboard Characters

Key Emulation Modes
Not only can you assign the basic edit functions to any desired function or
control keys, but you can change how the commonly used edit functions work.
This lets you emulate other editors and word processors and/or fine tune
VEDIT to your preferences. The “emulation modes” can be changed with the
{CONFIG, Emulation} sub-menu. They are fully described in Chapter 6
(Menu Reference) and in the on-line help for that sub-menu.

The emulation modes include:

� Cursor positioning modes — control how the cursor keys move the cursor
past the ends of lines.

� [TAB CHARACTER] emulation modes — control how the <Tab> and
<Shift-Tab> keys work in “Insert” and “Overstrike” modes. Also whether
these keys perform Indent/Undent when the cursor is within a highlighted
block.

� <Enter> key emulation modes — control how the <Enter> key works in
“Insert” and “Overstrike” modes.

� [BACKSPACE] emulation modes — control whether this function is
destructive in Overstrike/Insert mode, and how it behaves at the beginning
of a line.

� Line emulation modes — control how the [LINE BEGIN] and [LINE
END] functions (<Home> and <End> keys) work when the cursor is
already at the beginning/end of the line.

� Special emulation modes — control how the [SCREEN BEGIN],
[SCREEN END], [SCROLL UP], [SCROLL DOWN], [SEARCH]
and [DELETE] functions work.

A little experimentation is best for understanding these modes and deciding
which you like best.

More sophisticated emulation can be performed with the use of keystroke
macros and the VEDIT macro language.

Screen Display & Keyboard Characters Chapter 4 Editing Guide 93

Other Keyboard Input Options
(Technical)

The parameter {CONFIG, Misc, Keyboard input options} controls several
rarely changed options:

� The “8th” bit can be enabled or stripped when reading the keyboard; you
always want it enabled on an IBM PC. Note that this has no effect on 8-bit
characters already in the file.

� 8-bit characters are normally treated as text (graphics) characters. Alter-
natively, they can be treated as function keys. This is not desirable on an
IBM PC; it is desirable when running VEDIT on external CRT terminals
(UNIX version).

� Unassigned function/control keys can enter their codes directly into the
text. This is not desirable on an IBM PC; it may be of use with some foreign
language CRT terminals.

� The case of all typed letters can be changed — e.g. typing “a” gives you
“A” and typing “A” gives you “a”. (We are not exactly sure why you
would want this, but many years ago some users asked for it.)

� In a key-sequence, the second and any following Ctrl characters can be
converted to the equivalent letter. This is useful for the WordStar emula-
tion keyboard layout so that e.g. ^K ^V is equivalent to ^K V. Since this
does not affect other layouts, it is the default.

(DOS only) Configuration parameter Config(H_KEY_IN) (Chapter 8) con-
trols whether VEDIT reads the IBM PC keyboard via “ROM BIOS” or
“System”. The default is “ROM BIOS” and is only very rarely changed.

Other Screen Display Issues
(DOS Only - Technical)

On the IBM PC, you can select from seven different cursor types — four
“software” cursors and three “system” cursors. VEDIT is typically configured
to have a different cursor appearance in “Insert” versus “Overstrike” mode.
For the software cursors, you can select the blink rate or a non-blinking cursor
and a specific cursor color. For the system cursors, you can choose a thin,
medium or full-height cursor. These options are a matter of personal preference
and are configured with the {CONFIG, Characters/Cursors} sub-menu.

VEDIT will interrupt screen updates when you are performing rapid screen
changes. Operations such as [PAGE DOWN] require updating the entire
screen. If you press another [PAGE DOWN] while the screen is updating,
VEDIT interrupts the unwanted update and restarts to display the most current
screen. You are most likely to notice this if you hold down the [PAGE DOWN]
key.

94 Chapter 4 Editing Guide Screen Display & Keyboard Characters

ANSI and OEM Characters
The original IBM PC represented special characters, including non-English
characters such as German “umlauts”, in the OEM character set. For example,
the “umlaut u” was represented by value 129 decimal (81 hex). The OEM
character set also had useful graphics characters called the “box drawing”
characters. The OEM character set was used by most DOS programs.

Windows, however, uses the ANSI character set in which all non-English
characters are represented by values different from their OEM values. For
example, the “umlaut u” in the ANSI character set is represented by value 252
decimal (FC hex). ANSI had no equivalent of the “box drawing” characters.

The Windows version of VEDIT gives you several options for overcoming the
problems inherent in editing older (legacy) DOS files that use the OEM
character set:

� Press <Alt-D> (the normal hot-key for {VIEW, Toggle display mode})
five times to toggle to the “ANSI/OEM” display mode. In this mode you
can view and edit all non-English language characters. VEDIT automat-
ically translates the keyboard characters from ANSI to OEM, and the
displayed characters from OEM to ANSI. (Make sure you have set
{VIEW, Font} to an ANSI font such as “VEDIT Ansi”.)

However, you will not be able to correctly view or edit the OEM (IBM
PC) “box drawing” characters.

� Using {VIEW, Font}, select the “VEDIT Oem”, “Terminal” or “Fixed-
Sys” fonts which use the OEM character set. VEDIT will then correctly
display all graphics characters, including the “box drawing” characters.

You can enter non-English characters with the <Alt>-keypad method or
with {MISC, ASCII table}. However, non-English language characters
typed on non-English keyboards will not be inserted correctly because
Windows will insert the ANSI value instead of the OEM value.

� Use {EDIT, Translate, OEM to ANSI} to translate the file from the
ANSI to the OEM character sets. Most non-English characters will
translate correctly, however, any “box drawing” characters will not trans-
late correctly.

This method is best if you plan on using the file exclusively with Windows
programs in the future. It cannot be used if you ever plan on opening the
file again with old (legacy) DOS programs.

See also:

The topic “Screen Display & Keyboard Characters - Display Modes”. (De-
scribed earlier in this chapter).

The topic “Printing - Printing ANSI and OEM Character Sets”. (Described
later in this chapter).

The topic “Hex Mode Editing”. (Described next in this chapter).

The topic “Translating Files”. (Described later in this chapter).

ANSI and OEM Characters Chapter 4 Editing Guide 95

Hex Mode Editing (and Octal)
For some types of editing, particularly “binary” files, it is easiest to display
and edit the file in hexadecimal. Octal editing is also available.

You can switch to hexadecimal (or octal) editing in three ways:

� Select {VIEW, Toggle hex mode split} (<Alt-\>). This is usually the
preferred way.

� Select {VIEW, Toggle display mode} (<Alt-D> or toolbar) several times
until the window is in hexadecimal or octal.

� Set {CONFIG, Characters/Cursors, Screen display mode} to “8” (or
“16” for octal).

{VIEW, Toggle hex mode split} lets you edit a file in two windows; one
displays in hexadecimal, the other in normal ASCII. (You can also display in
EBCDIC.) The ASCII window initially uses display mode “4” in which all
characters, including the “newline” <LF>, <CR> and <Tab> characters are
displayed literally (using the IBM PC character set). The cursors in both
windows are synchronized and will move together.

HINT: When editing in hexadecimal, you may find it easier to treat the file
as a binary file with a uniform 16 or 64 characters displayed per
screen line. You can easily enter Binary-16 mode by selecting
{VIEW, Toggle hex mode split} again. {VIEW, Toggle binary/text
mode} (<Alt-=>) toggles between Binary-16, Binary-64 and the
normal file types.

NOTE: By default, selecting a binary file type will only let you overstrike
characters and not insert or delete characters. If you need to
insert/delete, change {CONFIG, File handling, Overwrite mode}
to “0”.

Use {WINDOW, Next window} (<Ctrl-F6>), {WINDOW, Switch}
(<Alt-F5>) or the mouse to switch between the windows. If desired, use
{VIEW, Toggle display mode} (<Alt-D> or toolbar) to toggle either window
to a different display mode. For example, you can toggle the ASCII window
to EBCDIC so that you can edit in hex and EBCDIC at the same time.

� To edit a file in split-screen Hex and ASCII with 16 characters per line:
1. Select {VIEW, Toggle hex mode split} (normal hot-key is <Alt-\>).

2. Select it again to toggle to Binary-16 mode.

In a hex-mode window, new characters must be entered in hexadecimal, i.e.
by entering “00” through “FF”. Other characters cause an error beep. Similarly,
in octal-mode, new characters must be entered in octal, i.e. by entering “000”
through “377”.

When the current window is displayed in hexadecimal, the status line changes
to display the cursor’s hexadecimal offset into the file.

96 Chapter 4 Editing Guide Hex Mode Editing (and Octal)

Searching in Hex, Decimal or Octal
You can search for hexadecimal, octal or decimal values. With normal pattern
matching use “|Hhh” to search for hex value ‘hh’ Similarly, use “|Oooo” to
search for octal value ‘ooo’. Use “|ddd” to search for decimal value ‘ddd’.

|Hhh Match the character with hex value ‘hh’. Both digits must be
present. Each hex value must be preceded with “|H”

|Oooo Match the character with octal value ‘ooo’. All three digits must
be present.

|ddd Match the character with decimal value ‘ddd’.

Examples:

|h74|h68|h65 Search for the word “the” in hex.

|o164|o150|o145 Search for the word “the” in octal.

NOTES: “|” is the “pipe” character, which is <Shift>-\ on the keyboard. All
pattern matching codes begin with this character.

When you enter a letter in hex, decimal or octal, the search
automatically becomes case-sensitive.

Since it is tedious to precede hex values with “|H”, you can alternatively select
the “() Hex” search mode. In this mode, all search characters are entered as
two-character hex codes, “00” through “ff”, followed by a space. This is
identical to the way characters are displayed in VEDIT’s Hex mode. For
example, to search for “ABC123”, enter:

41 42 43 31 32 33

Alternatively, hex words, double-words and quad-words can be entered with-
out spaces, but with an optional “:”. The most significant byte is entered first.
Therefore, the following are equivalent:

0a496e79 23fa45e8
0a49:6e79 23fa:45e8
79 6e 49 0a e8 45 fa 23

NOTE: In hex-mode, only simple searches, without pattern matching, are
supported. The search is also case-sensitive.

See Also:

On-line help for the Search dialog box.

Entering Numbers in Hexadecimal
At any prompt for a number, e.g. {GOTO, Line #}, you can enter a hexadeci-
mal value by preceding it with “0x” or “0h”. Enter an octal value by preceding
the octal digits with “0o”. You can also enter numeric expressions and
mixed-radix expressions. Example of a mixed-radix numeric expression:

(0x3A6FF + 1000) / 2

Hex Mode Editing (and Octal) Chapter 4 Editing Guide 97

EBCDIC Editing
NOTE: This technical topic is intended only for users that need to edit

EBCDIC files, i.e. files downloaded from IBM mainframe comput-
ers. If you don't have EBCDIC files, you can skip this topic.

All PCs, Macintoshes and most other computers use ASCII characters. How-
ever, many files downloaded from IBM mainframe computers use EBCDIC
characters. An EBCDIC file will appear as complete gibberish in any ASCII
editor or PC program, assuming the editor/program can even open the file.

ASCII and EBCDIC refer to how text characters are represented. For example,
in ASCII, a byte with hex value “4E” represents the letter “N”. However, in
EBCDIC the same byte represents the character “+”. In EBCDIC, the letter
“N” is represented with hex value “D5”. Therefore, ASCII and EBCDIC have
completely different representations for all letters, digits and other characters.

Very few PC users will ever encounter an EBCDIC file. However, since very
few other PC editors can handle EBCDIC, a high percentage of VEDIT's users
work with EBCDIC files. There are several kinds of EBCDIC files:

� EBCDIC text files.

VEDIT can directly edit EBCDIC text files and can translate EBCDIC
text files to ASCII and vice versa.

� EBCDIC data files based on COBOL data structures.

Specialized EBCDIC conversion packages are available (at additional
cost) that can convert any COBOL data file with packed-decimal, packed-
binary, zoned and other special fields into ASCII. Ready for importing
into SQL, Access (tm) or other PC databases. Both fixed-length and
variable data, and multi-record types are supported.

� EBCDIC binary files, not based on COBOL. An example is the output
from Siemens telephone switching equipment.

Converting binary files into ASCII often requires a custom VEDIT macro.
It also requires detailed information about the file format.

NOTE: Greenview Data, Inc. specializes in EBCDIC conversion software
and services for converting EBCDIC (COBOL) files containing
packed fields and complex record layouts. Please contact us for
details and refer to the web page www.vedit.com/ebcdic.htm.

The rest of the topic describes how to directly edit EBCDIC text files.

See Also:

The topic “EBCDIC Conversion Software”. (Chapter 1 - Page 16)

The topic “Translating Between EBCDIC and ASCII”. (Chapter 4 - Page 190)

98 Chapter 4 Editing Guide EBCDIC Editing

Directly Edit EBCDIC Text Files
EBCDIC text files can be directly edited in VEDIT, without having to translate
them. This is best for EBCDIC files which will subsequently be transferred
back to the mainframe computer.

� To directly edit an EBCDIC text file:
1. Open the file in the usual manner, e.g. with {FILE, Open}.

The file will initially display as gibberish.

If you can immediately read the file after opening it, (i.e. it is not initially
gibberish), then it is not an EBCDIC file. Files transferred from a main-
frame are sometimes already translated to ASCII. (Although often not
correctly translated.)

2. Press <Alt-D> (the normal hot-key for {VIEW, Toggle display mode})
eight times to toggle to the “EBCDIC” display mode, as indicated on the
status line.

The text should now be readable, although the lines (records) many not
yet align correctly.

3. Depending upon whether the EBCDIC file has lines ending in ASCII
Carriage-Return / Line-Feed (hex value 0D / 0A) or in EBCDIC Line-Feed
(hex value 25), or has fixed-length records, you may need to change
{CONFIG, File handling, File type}.
If the EBCDIC lines end in ASCII Carriage-Return / Line-Feed, VEDIT
should have automatically detected this and set the File type correctly. The
lines should already be aligned on the screen.

Many EBCDIC files have fixed-length records, and you may have been
told what the record length is. Set {CONFIG, File handling, File type}
to the record length. You can also deduce the record length with some
experimentation.

Although rare, some EBCDIC lines end in EBCDIC Line-Feed. You can
try setting {CONFIG, File handling, File type} to “4” to see if this aligns
the lines on the screen.

You can now directly edit the EBCDIC file. Although the EBCDIC file itself
has not been translated or changed in any way, it now appears normal and can
be edited in VEDIT like a normal file.

In “EBCDIC” mode, VEDIT acts just as if you were editing the file on a
mainframe computer. When you save the file, it is still an EBCDIC file which
can be uploaded back to a mainframe. It is so easy to directly edit an EBCDIC
file in VEDIT that you might be wondering what the fuss is all about.

To let you easily edit EBCDIC files, VEDIT performs invisible translations:

� As each character in the file is displayed, it is translated to ASCII so that
it displays in readable form on the screen. The file is not changed.

EBCDIC Editing Chapter 4 Editing Guide 99

� Each character entered on the keyboard is translated from ASCII to
EBCDIC so that the correct character is entered into the EBCDIC file.
Therefore, when you type “A”, you will see “A” on the screen, even
though the EBCDIC equivalent was entered into the text.

Notes:

The instructions above are only intended to cover the most common types of
EBCDIC text files. We are always happy to help you edit or convert EBCDIC
files; simply “zip” a sample file and email it to support@vedit.com.

Since ASCII and EBCDIC have somewhat different character sets, not all
characters will translate correctly. Therefore, if you translate a file to EBCDIC
and then back again to ASCII, you may not have the same file again. Some
punctuation, e.g. “[”, “]”, “|”, and many control and graphics characters will
have changed.

Edit EBCDIC Binary/Data Files in
Hexadecimal

EBCDIC files containing binary data can be viewed and edited in a split
EBCDIC/Hex mode window. The text portions (fields) can be edited in the
EBCDIC window while the binary portions (fields) are edited in the hex
window.

� To edit a binary file in split EBCDIC and Hex windows:
1. Follow steps 1 and 3 above for “To directly edit an EBCDIC text file”.

You can skip step 2.

2. Select {VIEW, Toggle hex mode split}.
3. Click in the right window, and press <Alt-D> (the normal hot-key for

{VIEW, Toggle display mode}) four times to toggle to the “EBCDIC”
display mode, as indicated on the status line.

You can now edit the EBCDIC file in a combination of text and hex modes.

Translating EBCDIC Files
VEDIT can also translate EBCDIC text files to ASCII. This is described in the
topic “Translating Between EBCDIC and ASCII”. (Chapter 4 - Page 190)

EBCDIC data files often contain packed-decimal, signed, zoned, binary and
other special fields. Records often have a variable length and multiple kinds
of records are often combined into one file. Most EBCDIC data files are
generated by COBOL programs and a “copy-book” describes the data struc-
ture.

Greenview Data Inc. specializes in the software and services to convert these
complex EBCDIC data files into ASCII. Refer to the topic “EBCDIC Conver-
sion Software” (Chapter 1 - Page 16) and the “EBCDIC” page of our web site
for details.

100 Chapter 4 Editing Guide EBCDIC Editing

Keystroke Macros
You can assign a frequently-typed sequence of keystrokes to a single func-
tion/control key. Pressing the single function/control key then performs the
equivalent of typing the entire sequence of keys. This saves time, effort and
reduces the chance of error. These stored keystroke sequences are called
“keystroke macros”. You can define numerous keystroke macros and each may
contain up to several hundred keystrokes.

Keystroke macros have several purposes:

� The most common use of keystroke macros is as “hot-keys” for directly
accessing items within the menu system. Many such “hot-keys” are built
into the “Normal” and other supplied keyboard layouts. The menus
display any “hot-keys” that directly access each item.

� Keystroke macros can access the VEDIT macro language. Although this
manual does not describe the macro language in detail, Appendix C and
the file key-mac.lib list many useful macros.

� Since new keystroke macros can easily be added at any time, you can
define one whenever you find yourself typing the same sequence over and
over again. For example, you could define the key <Ctrl-T> to type out
the phrase “attached and included herein by reference” each time it was
pressed.

You can add new keystroke macros at any time. Each new keystroke macro is
normally assigned to a function or control key that is not already in use; these
available function/control keys can be displayed with {CONFIG, Keyboard
layout, Display unused keys}.
Keystroke macros can be added in several different ways:

� {MISC, Record quick macro} lets you quickly record a keystroke macro
as you edit the file. With the normal keyboard layout, simply press
<Ctrl-Shift-R> to start recording, perform the editing operation, and
press <Ctrl-Shift-R> again to stop the recording.

Then press <Ctrl-Shift-P> the normal hot-key for {MISC, Play quick
macro}, to repeat the editing operation as many times as desired.

� {CONFIG, Keyboard layout, Record keystroke macro} also lets you
record a new keystroke macro. Since the keystroke macro is assigned to
any (unused) key, you can record numerous editing operations.

� {CONFIG, Keyboard layout, Add Keystroke macro} lets you define a
new keystroke macro using a dialog box which records your keystrokes
without making any edit changes. Limited editing is provided.

� {CONFIG, Keyboard layout, Edit/view layout} lets you edit the entire
keyboard layout, including any keystroke macros, as a normal text file.
You can “cut and paste” between layouts, etc. These changes can be
temporary, or can be permanently saved in the vedit.key file.

The topic “Editing the Keyboard Layout” describes this in detail.

Keystroke Macros Chapter 4 Editing Guide 101

� You can directly edit thevedit.key file and make any desired changes.
This is similar to {CONFIG, Keyboard layout, Edit/view layout}.
Chapter 8 (Configuration) describes this in detail.

NOTE: VEDIT forgets new keystroke macros added with “Record quick
macro”, “Record keystroke macro” or “Add keystroke macro” when
you exit unless you make them permanent with {CONFIG,
Keyboard Layout, Save layout}.

Recording a “Quick” Macro
You can record a new keystroke macro while you perform a multi-step editing
operation. Afterwards, you can only have to press the hot-key to repeat (play
back) the entire editing operation.

The easiest way to record and play back an editing operation is with the {MISC,
Record quick macro} and {MISC, Play quick macro} functions.

� Example of recording a quick keystroke macro:
1. Assuming the normal keyboard layout, press <Ctrl-Shift-R> to start

recording. Or select {MISC, Record quick macro}.
2. Type a short line of text and press <Enter>.

3. Turn off (stop) recording by pressing <Ctrl-Shift-R> again. Everything
you did in step 2. is now recorded.

4. Play back the “quick” macro by pressing <Ctrl-Shift-P>, assuming the
normal keyboard layout; or select {MISC, Play quick macro}.
If desired, you can press <Ctrl-Shift-P> repeatedly to perform the re-
corded editing operation many times.

The “quick” macro is saved until you record another “quick” macro.

5. If desired, you can save the “quick” macro for the next time you run
VEDIT by selecting {CONFIG, Keyboard layout, Save layout} and
saving the layout into the default vedit.key file.

Recording Keystroke Macros
You can also record keystroke macros that are assigned to any desired (unused)
key. They can be for temporary use, or can be saved for permanent use.

The following (contrived) example demonstrates how to use {CONFIG,
Keyboard layout, Record keystroke macro} to record a keystroke macro. It
performs the following steps:

1. Go to the beginning of the current line and type “Begin:”.

2. Go to the end of the line and type “:End”.

3. Advance to the next line.

102 Chapter 4 Editing Guide Keystroke Macros

� Example of recording a keystroke macro:
1. Select {CONFIG, Keyboard layout, Record keystroke macro}

(<Alt-K>). You will see the following dialog box:

2. At the “Assigned hot-key:” prompt, press the desired “hot-key” for the
keystroke macro. For this example, press <Ctrl-T>.

If you make a mistake, press <Backspace> to delete the keystroke.

Press <Tab> to accept “Ctrl-T”. If the key is already in use, you will be
prompted for confirmation to overwrite it.

3. Assuming the “Normal” keyboard layout, press the following keys to go
to the beginning of the current line and type “Begin:”.

<Home> B e g i n :

Then press the following keys to go to the end of the current line, type
“:End” and advance to the next line.

<End> : E n d <Ctrl-Enter>

4. Turn off (stop) the Record Macro mode by pressing the key indicated on
the status line. With the “Normal” layout it is <Alt-K>. The new keystroke
macro is now fully defined.

5. Test the new keystroke macro by pressing its hot-key <Ctrl-T>.

6. To make new keystroke macro permanent, select {CONFIG, Keyboard
layout, Save layout} to save the layout into the vedit.key file.

Adding Keystroke Macros
{CONFIG, Keyboard layout, Add Keystroke macro} lets you define a new
keystroke macro using a dialog box that records your keystrokes without
making any changes to the files being edited. Experienced VEDIT users will
prefer it over “Record keystroke macro” for two reasons:

� It provides simple editing in case you make a mistake.

� You can add keystroke macros that access the VEDIT macro language.
The supplied file key-mac.lib provides many examples.

The following example creates the same keystroke macro as above.

Keystroke Macros Chapter 4 Editing Guide 103

� Example of adding a keystroke macro:
1. Select {CONFIG, Keyboard layout, Add keystroke macro} (<Alt-A>).

2. At the “Assigned hot-key:” prompt, press the desired “hot-key” for the
keystroke macro. For this example, press <Ctrl-T>.

Press <Tab> to accept <Ctrl-T>. If the key is already in use, you will be
prompted for confirmation to overwrite it.

3. At the “Edit sequence:” prompt, enter the same sequence of keys as for
the previous example.

Notice that when you press <Home>, “[LINE BEGIN]” is displayed.
VEDIT records edit functions by name and not by their currently assigned
keys. (See Notes: below.)

If you make a mistake, press <Backspace> to delete the keystroke.
Finally, press <Enter> to accept the edit sequence.

4. Test the new keystroke macro by pressing its hot-key <Ctrl-T>.

5. To make new keystroke macro permanent, select {CONFIG, Keyboard
layout, Save layout} to save the layout into the vedit.key file.

Notes:

{CONFIG, Keyboard layout, Edit/view layout} displays and lets you edit
all active keystroke macros. The <Ctrl-T> defined in the example above would
display as:
Ctrl-T [LINE BEGIN] Begin:[LINE END] :End[NEXT LINE]

You can then select {FILE, Print} to print the entire keyboard layout.

VEDIT records the edit functions in a keystroke macro by name and not by
their currently assigned keys. This lets you change the keyboard layout without
having to re-enter existing keystroke macros. In the example assignment to
<Ctrl-T> above, if you redefined the <Home> and <End> keys, the keystroke
macro would still work.

See Also:

The topic “Editing the Keyboard Layout”. (Described later in this chapter).

The sub-menu {CONFIG, Keyboard layout} in Chapter 6 (Menu Reference).

104 Chapter 4 Editing Guide Keystroke Macros

Adding Keystroke Macros from KEY-MAC.LIB
The file key-mac.lib includes many keystroke macros that you may find
useful. Although the VEDIT macro language is used in the keystroke macros,
they will also work in VEDIT.

NOTES: Keystroke macros that use the VEDIT macro language can be
added with “Add keystroke macro”, but not with “Record keystroke
macro”.

In practice it is easier to “cut and paste” keystrokes from
key-mac.lib into the keyboard layout with {CONFIG, Keyboard
layout, Edit/view layout}. The topic “Editing the Keyboard Layout”
gives a step-by-step example.

� Example - Add a keystroke macro from KEY-MAC.LIB:
This example shows how to add a typical keystroke macro from
key-mac.lib to VEDIT. In this case, the macro that inserts the current date
and time will be assigned to <Ctrl-F12>.

In practice, you can open the file key-mac.lib in VEDIT and scroll the
screen until the desired macro is visible in the lower half of the screen. The
macro is listed in key-mac.lib as:

[VISUAL EXIT]
Out_Ins() Date(NOCR) Ins_Text(" ") Time(NOCR)
Out_Ins(CLEAR)

1. Select {CONFIG, Keyboard layout, Add keystroke macro} (or press
<Alt-A>).

2. At the “Assigned hot-key:” prompt, press <Ctrl-F12>. Then press <Tab>
to accept <Ctrl-F12>.

3. At the “Edit sequence:” prompt, first press the key that is currently
assigned to [VISUAL EXIT]; this is typically <Ctrl-E>. The screen will
echo “[VISUAL EXIT]”. DO NOT type the characters “[VISUAL
EXIT]”.

DO NOT PRESS <Enter>. key-mac.lib lists the macros on multiple
lines for clarity and because some of them are quite long. Keystroke
macros are entered as one long line. The only exception is if the macro
contains a “[RETURN]”; in its place first press [ENTER CTRL]
(<Ctrl-Q>), then press <Enter>.

Enter the rest of the keystroke macro just as it appears in key-mac.lib.
If you make a mistake, press [BACKSPACE] to delete the keystroke.
Finally, press <Enter> to accept the edit sequence.

4. To make new keystroke macros permanent, select {CONFIG, Keyboard
layout, Save layout} to save the layout into vedit.key.

Keystroke Macros Chapter 4 Editing Guide 105

Modifying an Existing Keystroke Macro
While it is usually better to use {CONFIG, Keyboard layout, Edit layout}
to modify a keystroke macro, it can also be done with the “Add keystroke
macro” function.

� Modifying an existing keystroke macro:
1. Select {CONFIG, Keyboard layout, Add keystroke macro}.
2. Press the “Function/Control Key” assigned to the keystroke macro you

want to modify. Press <Tab>.

3. In response to “Redefine existing key? [Yes] [No]”, select [Yes].
4. For the “Edit Sequence”, press the same function/control key as you

pressed in step 2 above. The original macro sequence will be inserted for
you. Then use [BACKSPACE] to erase part of the macro and/or type in
additional keystrokes. When finished, press <Enter>.

In effect, VEDIT does not “forget” the keystroke macro until you are done
defining the new one. This is helpful, not only for editing existing macros, but
also for building a larger keystroke macro from smaller ones.

Deleting Keystroke Macros
Unused keystroke macros can be deleted by selecting {CONFIG, Keyboard
layout, Edit/view layout} and deleting the corresponding line. Or you can use
the “Add keystroke macro” function.

� To delete a keystroke macro (or assignment to an edit function):
1. Follow steps 1 - 3 above for “Modifying an Existing Keystroke Macro”.

2. At the “Edit Sequence:” prompt immediately press <Enter>. Since the
key is now assigned to “nothing”, it is removed from the list of assigned
keys.

See Also:

The topic “Editing the Keyboard Layout”. (Described next in this chapter).

106 Chapter 4 Editing Guide Keystroke Macros

Editing the Keyboard Layout
{CONFIG, Keyboard layout, Edit/view layout} lets you edit the current
keyboard layout as a normal text file. When done, the new layout is automat-
ically loaded, and can optionally be made permanent by saving it as the
vedit.key file.

� To edit the keyboard layout:
1. Select {CONFIG, Keyboard layout, Edit/view layout}.

This saves the current keyboard layout into the temporary file “vedit-
key.tmp” and opens the file for editing.

2. Edit the keyboard layout as desired. Follow these guidelines:

A. Do not move or alter the first line which assigns the <Enter> key to
the function [RETURN].

B. Notice that all lines have the same format. Each line begins with the
key or keys that you press to perform an editing function. This is
followed by one or more spaces/tabs. Then comes the entire editing
sequence on one line.

C. As long as each line has the correct format, you can add new lines,
delete lines and modify lines. Wherever you need a “tab” character
enter “[TAB CHARACTER]”; wherever you need a “newline” (i.e.
a “Carriage-Return, Line-Feed”) enter “[RETURN]”.

D. Any recorded “Quick” macro has a key name of “Quick”. You can
either leave it, delete it, or change the key name to another unused
key name.

IMPORTANT: Each (left side) key name should only appear once. If, for
example, you assigned two editing functions to <Ctrl-Q>,
the 2nd assignment would be ignored; no error is given.

3. Press [VISUAL EXIT] or <Ctrl-E> when done to save or abandon your
changes.

4. At the prompt, select whether you want to ignore (abandon) or save your
changes:

[Ignore] Your changes are ignored. The layout is not changed.

[Temporary] The layout takes effect, but is temporary - it will be lost
when you exit VEDIT.

[Save] The layout takes effect and is saved as the
vedit.key file, just as if you selected {CONFIG,
Keyboard layout, Save layout}.

After your selection, you are returned to your original file.

If VEDIT detects an error in the edited keyboard layout, it reports an error with
the line number and gives you a choice of editing the layout again or quitting
the function.

Editing the Keyboard Layout Chapter 4 Editing Guide 107

NOTES: If desired, select {FILE, Print} to print the keyboard layout.

The function {CONFIG, Keyboard layout, Edit/view layout} is
implemented by the keyedit.vdm macro which completely con-
trols its operation.

Adding a Keystroke Macro from
KEY-MAC.LIB
NOTE: This topic assumes you already know how to open and close files,

edit multiple files, and “cut and paste” blocks of text.

The file key-mac.lib is a library of useful keystroke macros that can be
added to VEDIT. Included are macros for moving the cursor by sentences,
counting words in a file, a window color selection chart and much more.
Although the VEDIT macro language is used in the keystroke macros, they
will also work in VEDIT.

� To add a keystroke macro from key-mac.lib:
1. Select {CONFIG, Keyboard layout, Edit layout} so that you can edit

the current keyboard layout as the file “veditkey.tmp”.

2. Open the filekey-mac.lib for editing. It should be in the VEDIT Home
Directory, typically c:\vedit\key-mac.lib.

3. Highlight the macro to be added. Most macros begin with
“[VISUAL EXIT]”. Copy the macro to the scratchpad (text register “0”).

4. Toggle back to the file “veditkey.tmp”. You can use {FILE, Next buffer}
(<F6> or toolbar).

5. Go to the end of the keyboard layout and insert the scratchpad (text register
“0”) containing the keystroke macro.

Edit it so that the entire macro appears on one line. Use other entries in
the layout as a guide. Be sure the line ends in a “newline” and that there
are no extra blank lines in the file.

6. At the beginning of the line, type the name of the key to which the macro
is assigned, e.g. “Ctrl-F12”.

You may want to perform a search for the key name to be sure it is not
already assigned to something else.

7. Press [VISUAL EXIT] or <Ctrl-E> when done editing the layout.

8. At the prompt, select whether you want to ignore (abandon) or save your
changes.

9. If desired, switch back to the file key-mac.lib and close it.

108 Chapter 4 Editing Guide Editing the Keyboard Layout

Notes:

A keystroke macro must begin with [VISUAL EXIT] (<Ctrl-E>) to enter
Command Mode. When done, the keystroke macro will automatically return
to normal editing.

A “Visual” command at the end of the keystroke macro (to return to Visual
mode) is not needed and should even be avoided.

The upper limit for the length of a single keystroke macro is 4000 characters.
Complex macros that display menus, etc., should be loaded into text registers.

Macro language commands can also be mixed with normal edit functions and
menu selections. Use [VISUAL EXIT] to switch to Command Mode. VEDIT
automatically switches back (to Visual Mode) when any edit function, e.g.
[MENU] or [CURSOR UP], is encountered. When necessary, [ESCAPE] can
be used to force switching back to Visual Mode.

Loading a New Keyboard Layout
You can easily load a different keyboard layout, e.g. WordStar or a custom
layout, without re-installing.

In general, you can change the entire keyboard layout “on the fly” and load
different sets of keystroke macros for different editing tasks. This is also useful
when several people use a computer and would like different keyboard layouts.
This is described under {CONFIG, Keyboard Layout, Load layout} in
Chapter 6 (Menu Reference).

� Example - Load the WordStar keyboard layout:
1. Select {CONFIG, Keyboard layout, Load layout}.
2. Change the default filename of “vedit.key” to “wordstar.key” and press

<Enter>. Alternatively, change the filename to “*.key” for point-and-
shoot file selection. The new keyboard layout will be loaded.

3. To make the new keyboard layout permanent, select {CONFIG, Key-
board layout, Save layout} to save the layout into the vedit.key file.

Notes:

You could also change the keyboard layout by simply copying “wordstar.key”
or “brief.key” to “vedit.key”.

You can load a keyboard layout when you start up VEDIT. For example, the
command to load the WordStar keyboard layout on startup is:

vpw -c"key_load('wordstar.key')"

Therefore, you could create different VEDIT icons, each with a different
keyboard layout. (See the topic “Starting (Invoking) VEDIT - Changing the
VEDIT Icon Properties”.)

The ustartup.vdm file shows how to define custom keystroke macros at
startup; these will override any assignments in the vedit.key file.

Editing the Keyboard Layout Chapter 4 Editing Guide 109

Block Operations
VEDIT has an exceptionally wide range of block operations. Not only can you
copy, move and delete blocks, you can also fill blocks with any desired
character, indent blocks and insert an empty block between two columns. A
“block” can be any amount of text from one character to an entire file.

VEDIT supports three types of blocks:

� Stream block. This is a block of contiguous characters. You precisely
determine the characters in the block. For example, it can be all characters
from the middle of one line to the middle of another line.

� Line block. This block consists of entire lines including the “newline” at
the end of each text line. (For fixed-length records, it includes all charac-
ters in the record.)

� Columnar block. This block is a rectangle of characters in your text, i.e.
only those characters that are within the specified columns.

Stream blocks are the default and most commonly used type of block. You can
think of line blocks as simply a shortcut way of selecting a stream block that
consists of entire lines. However, columnar blocks are quite different from
stream blocks and VEDIT has many special columnar block features.

A block is selected (marked) by setting beginning and ending “block markers”.
VEDIT highlights this area so that you can see what you have selected.

Block editing functions such as {BLOCK, Copy to register} are not available
until you have selected (highlighted) a block of text.

Selecting a block of text changes the operation of some editing functions (the
cursor must also be within the block):

� [DELETE] deletes the entire block of text. (This is configurable.)

� {EDIT, Formatting, Indent} and {EDIT, Formatting, Undent} func-
tions indent/undent all lines in the block.

� [TAB CHARACTER] and [BACKTAB] are equivalent to {EDIT,
Formatting, Indent} and {EDIT, Formatting, Undent}. (This is config-
urable.)

� {SEARCH, Search} and {SEARCH, Replace} by default are restricted
to the characters in the block. This can be selected in the Search and
Replace dialog boxes.

Marking (selecting) a Block of Text
There are three main ways to mark a block of text:

� Hold down the <Shift> key while moving the cursor to mark a stream
block. You can use the cursor keys and almost any cursor movement
function. For example, <Shift><Ctrl-End> marks from the current posi-
tion to the end of the file. This method only works well with small blocks.

110 Chapter 4 Editing Guide Block Operations

� Select the {BLOCK} menu items or the equivalent “hot-keys” to mark
the desired type of block. Stream and columnar blocks can also be set from
the toolbar. This method works best with large blocks.

� Use the mouse to “drag” over the desired stream block.

To highlight a large block, first highlight a small section at the beginning
of the block; then go to the end of the block; finally, hold down the <Shift>
key and finish highlighting the entire block. Holding down the <Shift>
key lets you expand the size of a highlighted block.

HINTS: To highlight a small columnar block, you can drag over the desired
block with the mouse while holding down the <Alt> key.

Use the {BLOCK} hot-keys, e.g. <F9> and <Alt-I> to highlight large
multi-page (or even multi-megabyte) blocks.

Small block are easily marked with the <Shift> key or mouse. It sets both the
beginning and ending block markers; all block operations are then available.
However, the {BLOCK} menu items or equivalent hot-keys give you more
flexibility and make it easier to mark a very large block.

� To mark a large block of text (assuming no block markers are set):
1. Position the cursor on the first character to be included in the block. (Or

you can mark the end of the block first.)

2. Set the first block marker with {BLOCK, Set stream marker} (<F9> or
toolbar or double-tapping <Shift>). Note the message “1-END” on the
status line.

Alternatively, select a columnar block with {BLOCK, Set column
marker} (<Alt-I> or toolbar).

3. Move the cursor to the end of the block; any desired method can be used.
For example, you can search for text at the end of the block.

For stream blocks, the cursor should be positioned just past the last
character of the block. To include the “newline” at the end of a line,
position the cursor at the beginning of the next line.

4. Set the second marker by again selecting {BLOCK, Set stream marker}
or {BLOCK, Set column marker}. Note the message “BLOCK” on the
status line.

After marking a block, you can change its size and/or the type of block. Move
the cursor to the desired end of the block and then select “Set stream marker”,
“Set column marker” or “Set line marker” from the {BLOCK} menu.

NOTE: (Details) The “Normal” keyboard layout <F9> is the “hot-key” for
{BLOCK, Set stream marker}. Alternatively, you can press
{BLOCK, Copy to cursor} (<Ctrl-F9>) to mark a block. Until both
block markers are set, “Copy to cursor” only sets the block
markers; when both block markers are set, it copies the block to
the current cursor position.

Block Operations Chapter 4 Editing Guide 111

What exactly does the block include?
For “stream” blocks you must mark the end of the block with the cursor one
character PAST the last character to be included in the block. In other words,
the character just before the cursor is the last character included in the block.

Therefore, if you end a stream block at the end of a line, the (invisible)
“newline” character will not be included. If you end the block at the beginning
of the next line, the preceding “newline” character will be included. When
marking entire lines, you may find it easier to select “line” blocks.

This exclusion of the character at the cursor position may not make sense at
first, but once you are used to it, it simplifies block operations.

However, when marking columnar blocks, it is much more intuitive and useful
to include the character at the cursor position when marking the end of a
columnar block.

Double-Tapping <Shift> and <Ctrl>
Unique to VEDIT, you can begin highlighting a block by double-tapping the
<Shift> key; this is identical to pressing <F9> (the normal hot-key for
{BLOCK, Set stream marker}).
It is usually easier to double-tap the <Shift> key than trying to hold down the
<Shift> key while highlighting a large block.

Similarly, you can clear the block highlighting by double-tapping the <Ctrl>
key; this is identical to selecting {EDIT, Clear markers} or {BLOCK, Clear
markers}.

NOTE: The double-tapping of <Shift> and <Ctrl> only work when
{CONFIG, Emulation, Alt/Ctrl/Shift key shortcuts} is enabled. It
is enabled by default.

Clearing Block Markers (Highlighting)
We suggest using “persistent” block highlighting in VEDIT; this is fully
described in the next section. When enabled, a highlighted block remains
marked until you process it or explicitly clear the markers. Simply moving the
cursor doesn’t clear (remove) the markers.

You can explicitly clear the block markers in many ways:

� Double-tap the <Ctrl> key. This assumes {CONFIG, Emulation,
Alt/Ctrl/Shift key shortcuts} is enabled.

� Press [CANCEL] (normal: <Ctrl-\>) or <Ctrl-Break>.

� Simultaneously press both mouse buttons. The preferred way is to hold
down the right button while you click the left button; this will not move
the cursor. You can of course also hold down the left button while you
click the right button, but this will move the cursor.

112 Chapter 4 Editing Guide Block Operations

� Select “Clear markers” from the mouse context (right-click) menu.

� Select {EDIT, Clear markers} or {BLOCK, Clear markers}
(<Shift-F9>).

� Select {ESCAPE, Clear block markers}.

� On the toolbar, select this icon:

See Also:

The next topic “Persistent Blocks”.

“Persistent” Blocks
VEDIT gives you the option of using “persistent” block highlighting. When
enabled, a highlighted block remains marked until you process it or explicitly
clear the markers. Simply moving the cursor doesn’t clear the markers. When
disabled, moving the cursor clears the highlighting from a block; this is typical
of most Windows programs.

Persistent blocks offer flexibility you otherwise can’t have:

� After marking a block, you can move the cursor anywhere and then
directly copy/move the block to the new position without using a scratch-
pad/clipboard; this saves keystrokes.

{BLOCK, Copy to cursor} and {BLOCK, Move to cursor} perform the
move. The normal hot-keys are <Ctrl-F9> and <Alt-F9>.

� After marking a block, you can easily change its size. Simply move the
cursor to another location and press <F9>, the hot-key for {BLOCK, Set
stream marker}. There is no need to hold <Shift> during complicated
cursor movement.

� After marking a block, you can restrict a search/replace to just the block.

� It is easier to mark huge multi-megabyte blocks; you don’t lose the block
if you accidentally click the mouse or let go of the <Shift> key.

� You can make minor edit changes within the block after you have
highlighted it. (The block must contain at least 1000 characters; otherwise,
the new text will replace the block.)

Most block operations clear the markers after the operation is completed.

The downside of persistent blocks is that you sometimes have to explicitly
clear the markers. VEDIT lets you easily clear the markers in many ways, as
described in the previous section.

To enable or disable persistent blocks:

1. Select {BLOCK, Persistent blocks}.
Or, select {CONFIG, Emulation, Enable persistent blocks}.

2. To save the change for the next time you run VEDIT, you should also
select {CONFIG, Save config}.

Block Operations Chapter 4 Editing Guide 113

{BLOCK, Copy / Move to cursor}
{BLOCK, Copy to cursor} and {BLOCK, Move to cursor} save steps when
performing the common operations of copying or moving a block of text within
your file.

Instead of having to first copy or cut the block to the scratchpad/clipboard, you
can simply copy/move a highlighted block to the current cursor position. This
is possible because VEDIT’s blocks are persistent if {BLOCK, Persistent
blocks} is enabled (checked) — after highlighting a block, you can move the
cursor and the block remains highlighted.

{BLOCK, Copy / Move to cursor} can also be used to set block markers.
Their operation depends upon how many block markers are set; see the table
below. In this way, only a single key is needed to copy a block of text.

� To directly copy/move a block using a single key:
1. Move the cursor to the first character of the block. Press <Ctrl-F9> (the

hot-key for {BLOCK, Copy to cursor}).
2. Move the cursor past the last character of the block. Press <Ctrl-F9>

again. The block is now highlighted.

3. Move the cursor to the destination for the block. Press <Ctrl-F9> for the
third time. The text will be copied in front of the cursor.

Alternatively, use <Alt-F9> to move the block.

Block Function Key Behavior
Function Key No Marker Set 1st Marker Set 2nd Marker Set

Copy to cursor <Ctrl-F9> Set 1st Marker Set 2nd Marker Copy to cursor

Move to cursor <Alt-F9> Set 1st Marker Set 2nd Marker Move to cursor

Notes:

{BLOCK, Persistent blocks} must be enabled (checked) for these functions
to work.

The “Normal” VEDIT keyboard layout assigns <F9> to {BLOCK, Set stream
marker}. Alternatively you could assign <F9> to {BLOCK, Copy to cursor}.
<F9> would then perform a convenient combination of setting block markers
and copying a block of text. (Earlier versions of VEDIT did this.)

Copying a block of text to two or more places in your file or into another file
is best done with the use of a scratchpad (text registers).

114 Chapter 4 Editing Guide Block Operations

Text Registers and the “Scratchpad”
VEDIT has over 100 text-holding areas called “text registers”, each of which
is similar to the “scratchpad” or “clipboard” in other editors. The text registers
are numbered from “0” to “100”. (Some additional registers above 100 are only
accessible in the VEDIT macro language.) By convention, registers “0”
through “9” are reserved for “cut and paste” operations.

The text registers are accessed with {BLOCK, Copy to register}, {BLOCK,
Move to register} and {BLOCK, Insert register}. These functions prompt
for the register’s number. If you simply press <Enter> or double-tap the
function’s hot-key, it selects the default register “0”, which is also called the
“scratchpad”.

The “Scratchpad” Text Register
Text register “0” is also called the “scratchpad”. It is the default “cut and paste”
text register when no other is explicitly selected. The scratchpad can also be
accessed from the {EDIT, Scratchpad} menu. Therefore, {EDIT,
Scratchpad, Copy to scratchpad} is identical to {BLOCK, Copy to register}
and selecting the default register “0”.

The scratchpad is used for simple “cut and paste” operations, especially for
repeatedly inserting the same block of text into a file or for copying a block
from one file to another.

Remember, you can directly copy/move a block within a file without a text
register by using {BLOCK, Copy to cursor} and {BLOCK, Move to cursor}.

Scratchpad Functions
Function Key Operation

{EDIT, Scratchpad, Cut} <Ctrl-Shift-X> Move or “cut” to the scratchpad

{EDIT, Scratchpad, Copy} <Ctrl-Shift-C> Copy the block to the scratchpad

{EDIT, Scratchpad, Paste} <Ctrl-Shift-V> Insert or “paste” the scratchpad

HINTS: For “cut and paste” operations within VEDIT, it is better to use the
scratchpad instead of the Windows clipboard.

It is also easy to use the scratchpad by double-tapping the hot-keys
for the text register functions. These are normally <Ctrl-F11> or
<Numpad+> to copy, <Alt-F11> or <Numpad-> to move, and
<F11> or <Numpad*> to insert.

When no block is highlighted, you can copy the current line to the
scratchpad by double-tapping <Ctrl-F11> or <Numpad+>. Then
double-tap <F11> or <Numpad*> to insert the line somewhere
else. This is a quick way to copy a single line. Similarly, you can
move a line.

Block Operations Chapter 4 Editing Guide 115

NOTE: The availability of the <Numpad> keys depends upon the setting
of {CONFIG, Misc, Numpad function mode}.

When a block is copied to the scratchpad (or text registers), VEDIT remembers
what type of block (stream, column or line) it is. When the scratchpad is later
inserted, it is inserted in the manner appropriate for that type of block. For
example, a line block is inserted at the beginning of the current line. This is
one advantage of using the scratchpad instead of the Windows clipboard.

Accessing Other Text Registers
To copy a block of text into a text register, highlight the block of text and select
{BLOCK, Copy to register} (<Ctrl-F11> or <Numpad+> or toolbar). Al-
ternatively, to move (or “cut”) the block to a text register, select {BLOCK,
Move to register} (<Alt-F11> or <Numpad-> or toolbar).

VEDIT then prompts for the register’s number. Enter the desired number “0”
through “100”; “0” is the default.

HINTS: When prompted for a text register number, you can easily select
the default “scratchpad” register “0” by pressing any function/con-
trol key. For example, with the normal keyboard layout, to copy to
register “0”, simply press <Ctrl-F11> or <Numpad+> twice. We
often refer to this as “double-tapping” the function key.

There is an optional “terse” method of selecting register numbers.
To select from the first ten registers simply press “0” through “9”;
you don’t need to press <Ok>. To select other registers, first type
“.” (period), type the number and then press <Enter>. For example,
to select register 20, enter “.20”. “Terse” mode is convenient,
because in practice, you rarely use more than the first ten registers.

The text register selection dialog box gives you the option of appending the
block to the existing contents of a text register or inserting the block at the
beginning of the existing contents.

You can insert the contents of a text register anywhere in your file or in another
file. Place the cursor at the desired location and select {BLOCK, Insert
register} (<F11> or <Numpad*> or toolbar). The register contents can
optionally overwrite the existing text.

116 Chapter 4 Editing Guide Block Operations

Block options - Fill and Overstrike
When a block of text is moved (cut) to a text register with {BLOCK, Move
to register}, the original block is normally deleted. Optionally, the block can
be filled with spaces or a configurable character. In the “Move to register”
dialog box, select the “[] Fill buffer text” option.

Both character and columnar blocks can be filled. The fill character can be
changed with {CONFIG, Tab/Fill, Block fill character}.

NOTE: If {CONFIG, Tab/Fill, Retab after block fill} is enabled, filling a
block with spaces will actually fill with the optimal number of Tab
characters and spaces. (It is disabled by default.)

When a block of text is inserted (pasted) from a text register with {BLOCK,
Insert register}, you can optionally overwrite the existing text. In the “Insert
register” dialog box, select the “[] Overwrite buffer text” option.

Since block operations using the “Fill” and “Overwrite” options do not change
the size of the file, these options are automatically selected when editing in
overwrite-only mode. This mode is selected with {CONFIG, File handling,
Overwrite-only mode}. To prevent file corruption, binary and database file
editing should normally be done in overwrite-only mode.

In overwrite-only mode, {BLOCK, Copy / Move to cursor} also overwrite
the existing text at the cursor. {BLOCK, Move to cursor} also fills the original
block.

NOTE: A highlighted block can be filled (e.g., with spaces) by selecting
{BLOCK, Fill block}.

Emptying a Text Register
If you receive the error message “BLOCK TOO LARGE FOR TEXT REG-
ISTER, TRY CLIPBOARD” when attempting to copy/move a block, you may
be able to perform the operation successfully if you first empty any text
registers that are no longer needed.

Alternatively, you can copy/move the block with the clipboard. However, the
clipboard does not support binary files, especially “Null” characters.

Unless you receive this error message, it is usually not worth while to empty
text registers.

� To empty text registers that are no longer needed:
1. Use {HELP, Text registers} to see how much is stored in each register

and the first few bytes of their contents. Note which register(s) you want
to empty; only worry about registers that have 1000 or more bytes in them.

2. Select {BLOCK, Set marker} and then immediately {BLOCK, Copy to
register}. It does not matter where the cursor is. Select the register to
empty.

3. Repeat step 2. for any other registers to be emptied.

Block Operations Chapter 4 Editing Guide 117

Text Register Usage
The 100+ text registers serve three primary purposes:

� For “cut and paste” operations, they temporarily hold a block of text.

� To hold sequences of commands in the VEDIT macro language which
may be executed as “command macros”. Complex macros often consist
of a main macro and subroutine macros.

� As “string variables” used by command macros.

In all cases, the registers are holding textual material; only the manner in which
the text is used is different.

With over 100 text registers available, it is easy to forget what each register
contains. Several text registers are also reserved for special purposes. We
recommend the following organizational scheme for using registers:

NOTE: To protect users from unintentionally overwriting special text regis-
ters, the {BLOCK} menu functions can only access registers 0
through 100.

Usage

0 This is the default “scratchpad” register.

1 - 9 These are used as additional “cut and paste” registers.

10 - 99 These are used to hold command macros or as string variables in
command macros. However, they can also be used for “cut and
paste” operations.

100 This register is used by any auto-execution macro specified with
the “-x” invocation option. It is also the default register for
{MISC, Load/execute macro}. It should be reserved for the
“main” macro that is running.

101 - 127 These registers are reserved for use by the VEDIT macro language
and are described below. They cannot be accessed from Visual
Mode.

Usage (Technical)

101 Should be reserved for the “subroutine” macros used by the main
macro executing in register 100.

102 Should be reserved for the “locked-in” macro used by the main
macro executing in register 100.

103 - 106 Temporary registers used as needed by keystroke macros. This
prevents keystroke macros from interfering with command mac-
ros that may be running.

107 - 109 Reserved for use by the “File-open configuration event macro”,
the “File open/close event macros”, the “Buffer switch event
macro” and the “Template editing macro”. This prevents these
special macros from interfering with other macros that may be
running.

118 Chapter 4 Editing Guide Block Operations

110 The “File open event macro”. It is executed after each file is
opened, if CONFIG(F_E_F_MACRO) is enabled. It is executed
after the “File pre-open event macro” in register 112 and after the
“File-open configuration macro” in register 115.

111 The “File close event macro”. It is executed just before each file
is closed.

112 The “File pre-open event macro”. It is executed just before each
file is opened.

113 The “File post-close event macro”. It is executed immediately
after each file is closed.

114 The “Buffer switch event macro”. It is executed immediately after
each buffer switch in Visual Mode or due to the macro language
command Buf_Switch(r,EVENT).

115 The “File-open configuration macro”. It is executed after each file
opened if {CONFIG, File-open config, Enable file-open con-
figuration} is enabled. It is executed after the “File pre-open
event macro” in register 112 and before the “File open event
macro” in register 110.

116 Reserved for future use.

117 Internally used text register. It is used by and emptied by many
block commands.

118 Internally used by the Syntax_Load() and Template_Load()
commands to run the loadsyn.vdm and regprep.vdmmac-
ros.

119 Reserved for “subroutine” macros set up within a “.key” file.

120 Internally used text register. It is emptied with each keystroke and
by many block commands.

121 Internally used text register that holds the filename from the File
selection dialog boxes.

122 Internally used to load the print.vdm, sallbuff.vdm,
srchincr.vdm, loadsyn.vdm, keyedit.vdm,
startup.vdm and veditsav.vdm macros.

123 This special register holds the custom editing functions for the
{TOOLS} menu. Otherwise, it must be empty.

124 This special register holds the custom editing functions for the
{USER} menu. Otherwise, it must be empty.

125 Internally used to hold the keyboard layout in a binary format. It
must NOT be altered. (Registers 125 - 127 are accessible for use
by the veditsav.vdm macro which saves the entire VEDIT
environment.)

126 Internally used to hold the current window structure. It must NOT
be altered.

Block Operations Chapter 4 Editing Guide 119

127 Internally used to hold the last command line entered at the
“COMMAND:” prompt. (It has a constant size.) It must NOT be
altered.

Text Register Notes
The description for {BLOCK, Copy to register} in Chapter 6 (Menu Refer-
ence) gives step-by-step examples for using the text registers.

To protect users from unintentionally overwriting special text registers, the
{BLOCK} menu functions can only access registers 0 through 100.

All text register contents are lost when you exit VEDIT unless you are using
the “Edit Session Restore” feature. When an edit session is restored, all text
registers are restored.

(Technical) Command macros can use Reg_Prot() to “write-protect” text
registers used by the macro so that they are not inadvertently altered.

The VEDIT macro language also has 255 numeric registers that are used as
“numeric variables”. The first 100 (0 through 99) are general purpose registers
that can be used in any manner desired. To prevent conflicts between different
macros, we suggest reserving numeric registers 100 through 127 for the same
purpose as the corresponding text register.

Cut and Paste Huge Blocks
Many “cut and paste” operations with the text registers are currently limited
to a maximum block size of about 250,000 bytes for the Windows version and
60,000 bytes for other versions. However, by writing a block out to disk with
{FILE, Save block as} and then inserting it with {EDIT, Insert, Insert file}
you can “cut and paste” huge multi-megabyte blocks.

HINT: You can cut/copy and paste much larger blocks using the clipboard
with the Windows version of VEDIT. The maximum clipboard size
is approximately half of the physical memory, e.g. about 128
Megabytes on a machine with 256 Megabytes of memory.

However, VEDIT uses the clipboard in “text” mode; therefore, do
not “cut and paste” binary data, or it will be truncated at the first
“Null” character. Also, Windows operations on multi-megabyte
“objects” are so slow, that it is often faster to use the VEDIT method
described here. This limitation occurs because the text registers
are currently limited in how much they can hold. The “scratchpad”
is one text register. The functions {BLOCK, Copy/move to cursor}
use an internal text register. If you have other blocks or macros
stored in the text registers, the maximum “cut and paste” block size
may be much smaller than 250,000 bytes. If the block is too large
to fit into a text register, you will receive the error message “BLOCK
TOO LARGE FOR TEXT REGISTER”.

120 Chapter 4 Editing Guide Block Operations

� To “cut and paste” blocks of any size:
1. Highlight the block and select {FILE, Save block as}. Both non-columnar

(stream and line) and columnar blocks can be written to disk.

Choose a filename such as “temp”.

2. Move to the destination for the block. It can be in the same file or a
different file.

3. Select {EDIT, Insert, Insert file}. Enter the same filename, e.g. “temp”.

If you wrote a columnar block to disk in step 1., be sure to enable
“[] Columnar (block) insert”. This will insert the file as a columnar
block in the same way that {BLOCK, Insert register} does.

The Windows Clipboard
Blocks of text can also be copied/moved to the Windows clipboard and inserted
from the clipboard. It is similar to VEDIT’s scratchpad. Although the clipboard
is the only method for “cut and paste” with most other programs, we highly
suggest using VEDIT’s scratchpad and other text registers for all “cut and
paste” operations within VEDIT.

The clipboard should only be used for exchanging text with other Windows
programs. The clipboard does not handle columnar blocks as well as the text
registers, and does not support binary data.

You can cut or copy the currently-marked (highlighted) block to the clipboard,
or paste the clipboard into the file being edited. You can paste the clipboard as
either a “stream” or “columnar” block. Selecting “Paste clipboard” inserts the
entire clipboard at the cursor position. Selecting “Paste columnar clipboard”
inserts each line of the clipboard into successive lines of your file, each time
starting at the current column.

See Also:

The {EDIT, Clipboard} functions. See Chapter 6 (Menu Reference).

Block Operations Chapter 4 Editing Guide 121

Block Indenting
You can easily change the indentation of an entire block of text. This is
especially useful when editing structured programming languages such as C
and Pascal. VEDIT both follows the common Windows conventions for
indenting and undenting blocks, and has additional functions for indenting
blocks and lines.

By Windows conventions, when an entire line or more is highlighted, you can
indent all lines in the block by pressing <Tab>, and undent all lines by pressing
<Shift-Tab> or <Backspace>.

� To change the indentation of an entire block of text:
1. Highlight the lines that need re-indenting. Be sure the cursor is within the

highlighted block or immediately after it.

2. Press <Tab> to indent the block further. Press <Shift-Tab> or
<Backspace> to indent it less (to undent it).

-OR-
2. Press <F8> to indent the block further. Press <F7> to undent it.

<F8> is the “Normal” hot-key for {EDIT, Formatting, Indent}.
<F7> is the “Normal” hot-key for {EDIT, Formatting, Undent}.

3. Assuming “Persistent blocks” are enabled, you must explicitly clear the
block highlighting. There are many ways to do this:

Double-tap the <Ctrl> key, press [CANCEL] (<Ctrl-\>), right-click and
select “Clear markers”, or select {BLOCK, Clear markers}
(<Shift-F9>) to clear the block highlighting.

NOTE: Indenting/undenting with <Tab> and <Shift-Tab> assumes the
“Normal” keyboard layout and that {CONFIG, Emulation, [TAB
CHARACTER] emulation mode} is set to “2” or “3”. The default is
“3”.

The amount of each indent/undent is typically 4 columns. It can be changed
with {CONFIG, Programming, Indent increment}.
The indentation is created by inserting spaces and, optionally, Tab characters.
The optimum number of tabs and spaces will be used and depends upon the
currently set tab stops. To create the indentation with only spaces, disable
{CONFIG, Tab/Fill, Expand <Tab> key with spaces}.

122 Chapter 4 Editing Guide Block Operations

Indenting Lines
You can indent new text by setting a left margin with <F7> and <F8>, the
hot-keys for {EDIT, Formatting, Undent} and {EDIT, Formatting, Indent}.
<F8> increases the left margin, causing new text to be indented further.
Similarly, <F7> reduces the left margin.

When a left margin is set, each new line is indented to the left margin. E.g.
when you press <Enter>, VEDIT inserts a Carriage-Return and Line-Feed,
and the optimal number of Tabs characters and spaces to reach the left margin.

The hot-keys <F7> and <F8> perform these functions:

1. If an entire line or more is highlighted as a block, they indent or undent
all lines in the block.

2. Else, if only a partial line is highlighted, they only indent/undent the
current line.

Note that this is different from pressing <Tab>. As per Windows conven-
tions, <Tab> would replace the partial-line highlighted block with a Tab
character.

3. If no block is highlighted, they decrease or increase the left margin.

If the cursor is at the beginning of a line, the line will be indented to the
new left margin.

HINT: If you notice that new lines are being indented and you don’t want
them to be, simply hold down <F7> for a bit. This will reset the left
margin back to column 1.

VEDIT has another mode of indentation called “Auto-indent”. It is primarily
intended for editing structured programming languages such as “C”. In auto-
indent mode, each new line will be indented the same amount as the previous
text line. You can then change the indentation of the new line with <F7> and
<F8>. The main advantage of auto-indent mode is that you can jump around
in a program and newly entered instructions will automatically fit the inden-
tation of the current block of instructions.

Auto-indent is enabled with {CONFIG, Programming, Auto-indent mode}.
It is typically enabled for selected file types (filename extensions) by using the
“File-open configuration” feature.

See Also:

The topic “Indenting Text (Left margin)”. (Described later in this Chapter).

The topic “File-open Configuration” in Chapter 5.

The menu item {EDIT, Formatting, Indent}. See Chapter 6 (Menu Refer-
ence).

The file key-mac.lib contains several keystroke macros that can also
perform block indenting. One aligns the left edge of the current line with
the cursor and advances to the next line. Another aligns the current line
with the previous line and advances to the next line.

Block Operations Chapter 4 Editing Guide 123

Columnar Blocks
VEDIT can manipulate columns of text. A “columnar block” is a rectangle of
characters in your file. It can be anywhere from one character wide to the full
width of the text being edited. It can also extend from as little as one line to
many pages in length. All of VEDIT’s block operations work with columnar
blocks. You can also restrict a search/replace operation to the columnar block.

Columnar blocks are especially convenient for editing tabular data such as a
spreadsheet or a database. For example, you could copy a table of numbers,
say between lines 10 and 20 and between columns 30 and 40 to a text register.
This columnar block of numbers can then be inserted anywhere else.

To make columnar block operations as simple and useful as possible, VEDIT
performs some additional manipulations on your text.

� It ensures that the columnar block being copied has a flush right margin.
If any lines being copied are shorter than the block’s right margin, they
are padded with spaces to make them flush. This ensures that when the
columnar block is inserted, it does not destroy the alignment of the
following text.

� Similarly, when inserting a columnar block, spaces are added to pad short
text lines which do not reach the insertion column. This keeps the inserted
text aligned.

� Any Tab characters in the columnar block being copied are converted to
spaces. (This is necessary for columnar operations to work as expected.)
When the columnar block is inserted, you can select with {CONFIG,
Tab/Fill, Retab after columnar operation} whether these spaces (and
adjacent spaces in the existing text) are retabbed to the optimum number
of Tab characters and spaces.

In some cases, such as inserting a columnar block at the end of text lines, these
extra padded spaces become trailing spaces. These extra spaces are trimmed
by default, but this can be changed with {CONFIG, Tab/Fill, Trim spaces
after columnar operation}.

NOTE: This trimming and tab/space conversion applies only to the inserted
text and adjacent spaces. It does NOT affect the entire file and only
applies when working with columnar blocks.

Columnar Block Examples
To perform columnar block operations mark the desired block with {BLOCK,
Set column marker} (<Alt-I> or toolbar). After setting the first block marker,
the highlighting shows precisely which characters are included in the block.
You will immediately notice the difference in the way the text is highlighted
in Column Mode.

NOTE: When columnar markers are set, [CURSOR RIGHT] will move past
the end of short lines (similar to cursor positioning mode “4”). This
lets you set the right column past short lines.

124 Chapter 4 Editing Guide Block Operations

The following screen shows a columnar block highlighted. Note that the cursor
is in the lower right corner of the block.

After copying this block to a text register, the register will contain:

000000000
000000000
000000000
00000000.
000000...
0000.....

The “.” are padding spaces that were added to the register in order to give it a
flush right margin.

Now consider the following text before inserting this register.

Block Operations Chapter 4 Editing Guide 125

After inserting the register, the screen will display:

This shows the importance of the added extra spaces when the block was
initially copied to the text register.

Now consider the following text before inserting the same text register. Note
that text lines 6 and 7 do not reach the insertion column.

After inserting the same register, the screen will display:

By padding text lines 6 and 7 with spaces, the inserted block also remains
aligned.

126 Chapter 4 Editing Guide Block Operations

Notice that the extra spaces added to the text register are now trailing spaces
on lines 6 and 7 above and serve no alignment purpose. When {CONFIG,
Tab/Fill, Trim spaces after columnar operation} is enabled (the default),
these extra spaces are trimmed following the insertion.

To demonstrate this trimming, consider the following text register. Note that
it contains a blank line consisting of spaces.

000000000
000000000
.........
00000000.
000000...
0000.....

Consider the following text which contains three trailing spaces on lines 4, 6
and 8. (Remember that trailing spaces are invisible unless you change {VIEW,
Options, Show newlines (CR/LF)} to display the location of the “newline”
character(s) at the end of each line.)

With {CONFIG, Tab/Fill, Trim spaces after columnar operation} enabled,
inserting the text register will change the screen to:

Block Operations Chapter 4 Editing Guide 127

The trailing spaces, including the existing ones on lines 4, have been trimmed.
However, the trailing spaces on line 8, which was not involved in the insertion,
still remain.

As explained earlier, Tab characters in a columnar block operation are first
converted to spaces and can optionally be converted back to Tab characters.
However, a single space is never converted to a Tab character. Also, the first
two spaces following a “.” (period), “!” and “:” are not converted to a Tab
character. This makes columnar block operations more compatible with the
needs of word processing.

The above discussion also applies to columnar block copy/move performed
with {BLOCK, Copy to cursor} and {BLOCK, Move to cursor}. These are
implemented with an internal text register and therefore operate identically.

Notes:

Use {EDIT, Convert, Detab} to convert Tab characters in a file to spaces.

Use {USER, Remove trailing spaces} to remove all trailing spaces from a
file. (This assumes the default {USER} menu.)

128 Chapter 4 Editing Guide Block Operations

Printing in VEDIT
Printing is very flexible in VEDIT. You can print an entire file or just a
highlighted block. Since you have complete control over “print jobs”, you can
even print several blocks on the same page.

Configurable “printer margins” are typically used to prevent the text from
printing on the extreme edges of the paper. Text can be printed single, double
or triple spaced. Or you can print a file in “Raw” mode — exactly as-is, without
adding any margins.

Advanced options include setting any desired “Print” mode, which determines
how control and graphics characters are printed. A file can be printed in
hexadecimal; an EBCDIC file can be printed in ASCII.

Windows Version:

The font used for printing can be selected with {CONFIG, Printer, Printer
font} or in the print dialog box. All characters are printed in the same font and
size.

Unlike a word processor, the Printer and Display fonts can be different in
VEDIT. Therefore, you can have a favorite font for editing and use a different
font for printing. You can also print with any desired font size.

(Technical) Since the Windows printer driver converts all characters, including
control characters, into graphic images according to the printer font, it is not
possible to control a printer by embedding control characters in the file. If you
need this capability, you should print the file from the DOS version of VEDIT,
which gives you complete control over the printer.

(Technical) The optional “Print job start/finish strings” are of limited use since
Windows sends its own strings with each print job.

DOS Version:

VEDIT can print to a local or network printer on any parallel or serial port, to
the default DOS “PRN” port, or to a file. When printing to a file, you can always
print to the same filename or be prompted for the filename each time.

VEDIT can open a file that was created with “Print to file” in a Windows
program that supports fonts, such as Microsoft Word (tm). If this file is then
printed in “Raw” mode, it will print correctly since all of the font selection
information is embedded within the file.

An optional “Print job start string” (initialization string) can be sent to the
printer to select any desired font, pitch, font size and weight (e.g., bold). This
is very technical and requires knowledge of the control sequences needed by
your specific printer. After the text is printed, an optional “Print job finish
string” can be sent to reset the printer.

See Also:

On-line help for the {FILE, Print} dialog box.

Printing in VEDIT Chapter 4 Editing Guide 129

Basic Operation
� To print the entire file:

1. Select {FILE, Print} (normal: <Ctrl-P>). You will see:

2. Assuming a block of text is not highlighted, “All” is automatically
selected; otherwise, manually select “All”.

3. Select the [Ok] button or press <Enter>.

� To print a single block of text:
1. Highlight the desired text as a block.

2. Select {FILE, Print} (normal: <Ctrl-P>).

3. If the cursor is within the highlighted block, “Selection (Block)” is
automatically selected; otherwise, manually select it.

Leave “[x] Auto-close (Finish) print job” enabled.

4. Select the [Ok] button or press <Enter>.

� To print multiple blocks of text (e.g., on the same page):
1. Highlight the desired text as a block.

2. Select {FILE, Print} (normal: <Ctrl-P>).

3. If the cursor is within the highlighted block, “Selection (Block)” is
automatically selected; otherwise, manually select it.

4. Disable “Auto-close (Finish) print job”.

5. Select the [Ok] button or press <Enter>.

6. Repeat steps 1 and 2 to highlight and print the additional blocks of text.
They will be printed one after another. Since the print-job has not yet been
closed, a different dialog box is displayed.

130 Chapter 4 Editing Guide Printing in VEDIT

7. Select {FILE, Print} again; then select the [Finish/Eject] button to finish
(close) the print-job and release it to the printer.

Printer Margins
All printing margins are set in {CONFIG, Printer}.
A “Top margin” and “Bottom margin” are used to prevent the text from printing
at the very top and bottom of a page. Assuming a “Paper length” of 60 lines
with a 3-line margin at the top and bottom of each page, 54 lines of text are
printed on each page.

In the Windows version, {CONFIG, Printer, Paper length} should normally
be set to “0=Auto”. The number of lines printed per page is then automatically
adjusted according to the font size, the paper size and its orientation (portrait
or landscape).

In the DOS version, the “Paper length” must be set to agree with your particular
printer. Dot matrix printers typically use 66 lines per page (6 lines per inch and
11-inch paper results in 66 lines). Since most laser and ink-jet printer cannot
print on the top and bottom half-inch of the paper, they typically have a default
of 58 to 62 lines per page. However, most laser printers can be set to 66 lines
per page — they then print slightly more than 6 lines per inch.

A “Left margin” is used to prevent the text from printing at the very left edge
of the paper. The default value of 5 columns typically gives a one-inch margin
on a laser printer.

NOTE: Don’t indent all text in your file for printing purposes; instead, use
{CONFIG, Printer, Left margin} to position your text on the printed
paper.

An optional “Right margin” wraps very long text lines onto multiple printed
lines; otherwise, a printer typically truncates long lines. By default, the Right
margin is disabled so that each line in your file prints as one line, even though
it may be printed truncated.

Using the PRINT.VDM Macro
Selecting “PRINT.VDM macro” in the {FILE, Print} dialog box causes the
entire file, or just the highlighted block, to be printed with the filename, date
and page number at the top of each page. It is ideal for printing source code
modules and other text files.

The PRINT.VDM macro uses the configured “Paper length” and printer “Left
margin”, but always uses a top and bottom margin of two lines.

This print function automatically loads and executes the macro print.vdm.
The function displays a dialog box from which you can select from the
following options:

� Optionally print line numbers on the left side.

� Optionally print the file offset in decimal or hexadecimal.

Printing in VEDIT Chapter 4 Editing Guide 131

� Optionally print a ruler at the top and bottom of each page.

� Optionally print the full pathname instead of just the filename.

NOTE: The operation of print.vdm can modified by anyone familiar with
the VEDIT macro language. print.vdm is intended as a macro
example which is relatively easy to understand and enhance.

See Also:

The topic “PRINT - Print Macro”. See Chapter 5 (Advanced Topics).

Print Display Mode
Similar to the screen “display” mode, you can determine how control and
graphics characters are printed. You can also print in hexadecimal, octal or
print an EBCDIC file.

Since printers respond to “control sequences” to changes fonts, turn on
underlining and select other features, you have to be careful when printing files
that contain control characters. If these control characters are intended for
controlling the printer, they should be printed as-is. Otherwise, they should be
converted to the “^x” format.

NOTE: In general, Windows will not send control characters in a file directly
to the printer; instead it prints control characters with the corre-
sponding character in the printer font, typically a useless square
box. Therefore, you cannot control a printer with control sequences
in the file being printed. However, you can fully control a printer
when printing from the DOS version of VEDIT.

{CONFIG, Printer, Print mode} determines the printing mode. The most
common values are:

0 (Default) Print in the same mode as the current display mode, i.e.
“what you see is what you get”. Depending upon the display mode,
control characters may be sent as-is to the printer or can be expanded
to the “^x” format.

2 Only expand Tab characters with spaces. All other control characters
are sent as-is to the printer. This lets you embed printer control
sequences in your text to control fonts and other features.

274 “Safe” mode. All control characters are expanded to the “^x” format.

1024 Print all control characters, including Tab characters, as-is. This mode
is automatically used when “Raw” is selected in the Print dialog box.

The on-line help for {CONFIG, Printer, Print mode} lists all possible values.

132 Chapter 4 Editing Guide Printing in VEDIT

Printing the OEM Character Set
NOTE: This assumes you are familiar with the topic “ANSI and OEM

Character Sets”. This topic applies only to the Windows version.

As described in the topic “ANSI and OEM Character Sets”, the differences
between the OEM and ANSI character sets cause problems when you attempt
to edit (and especially print) older (legacy) DOS files with a Windows
program. This is especially true when the files contain non-English and “box
drawing” characters.

There are additional challenges in printing files with the OEM character set
because almost all printer fonts use the ANSI character set. Since the ANSI
character set does not have any equivalent to the “box drawing” characters,
these are especially hard to print from a Windows program.

The preferred method of editing files with OEM characters is to use the
“ANSI/OEM” display mode. It can be selected by pressing <Alt-D> (the
hot-key for {VIEW, Toggle display font}) five times, or by setting
{CONFIG, Characters/Cursors, Screen display mode} to “64”.

This mode handles most non-English characters. Assuming {CONFIG,
Printer, Printer mode} is set to “0”, most characters will also print correctly.
VEDIT will automatically translate the characters from the OEM to the ANSI
character set as they are printed. However, the IBM PC “box drawing”
characters will not display or print correctly.

If you select an OEM font, such as “VEDIT Oem” with {VIEW, Font}, the
IBM PC “box drawing” characters will display correctly, but will not print
correctly. Additionally, any non-English characters also will not print cor-
rectly.

HINT: The easiest way to print an OEM file that contains IBM PC “box
drawing” characters is to open the file in the DOS version of VEDIT
and simply print it.

� To print an OEM file containing IBM PC “box drawing” characters:
1. You will have to locate a Windows printer font which uses the OEM

character set. We know of only one. It is called the “Microsoft Linedraw-
ing” font. It will appear on a font list as “MS LineDraw”. It has a file name
of linedraw.ttf. It is effectively the “Courier” font using the OEM
character set, and can be used as both a display font and a printer font.
Since this font is the property of Microsoft, we cannot include it with
VEDIT. (Or we would!) However, it should not be too difficult to find.

2. Install the linedraw.ttf font file into Windows using Start ->
Settings -> Control Panel -> Fonts.

3. In VEDIT, select {VIEW, Font} and then select the “MS LineDraw” font.
The file should now display correctly.

4. Select {FILE, Print}. In the print dialog box, click [Font] and select the
“MS LineDraw” font. In the print dialog box, select [Ok] to print the file.
The file should now print correctly.

Printing in VEDIT Chapter 4 Editing Guide 133

EBCDIC and other Translate Tables
(This is an advanced topic.)

With a Print mode of “32768”, VEDIT translates each character that is sent to
the printer. The EBCDIC translate table is built into VEDIT and, therefore,
you can load an EBCDIC (IBM mainframe) file and print it on your ASCII
printer. (All printers connected to a PC are ASCII.)

Note that this does not modify or translate the file itself, only the characters
sent to the printer are translated.

VEDIT can load custom translation tables and this can be very useful for many
printing applications. Here are some examples:

� You might want to print a file with some or all control characters translated
to a period “.”.

� Print a file with the high (8th) bit stripped from all graphics characters.

� Only translate one or two characters that are causing trouble, for example
translate the letter “O” to the digit “0”.

Any of these tasks can be done with a custom translation table. Here is an
overview of the steps involved.

1. Create the desired custom translation table. The on-line help topic “Trans-
lating a Block or File - Creating Your Own Translation Table” describes
this in detail. It may take you about an hour the first time; 15 minutes when
you are familiar with the process.

2. Load the custom translation table with {EDIT, Translate, Load translate
table}.

3. Select {CONFIG, Printer, Print mode} and enter a value of “32768”.

4. Select {FILE, Print} to print the file.

Print “Jobs” and [Finish/Eject]
(This is a moderately technical topic.)

VEDIT gives complete control over “print jobs” so that you can print several
blocks of text on the same page. (Most other programs only let you print one
block per page.) You will typically only notice the details of print jobs when
printing blocks.

When VEDIT begins printing, it performs the following steps:

1. Opens a new “print job”, which is similar to opening a file. (If you are
printing to a file, it really does open a file.)

2. Optionally sends the configured “Print job start string” to the printer.

3. Sends the desired text to the printer. It will be formatted according to the
current margins unless “Raw” mode is selected.

134 Chapter 4 Editing Guide Printing in VEDIT

When printing with “All - entire file”, VEDIT automatically finishes and closes
the print-job. However, with “Block only” you must explicitly select
[Finish/Eject] after you have printed the last block.

When VEDIT finishes printing, it performs the following steps:

1. Sends a “page eject” to the printer, assuming that {CONFIG, Printer,
Page eject on Finish/Eject} is set. It is set by default, but can be disabled
in case your network printing also adds a page eject to each print-job.

Depending upon {CONFIG, Printer, Enable Form-Feed}, either a
single Form-Feed character or multiple Line-Feeds are sent to perform the
page eject. The default is to send a Form-Feed, which performs a page
eject on (nearly) all printers.

2. Optionally sends the configured “Print job finish string” to the printer.

3. Closes the print-job. This releases the print-job and it should begin
printing. (When printing to a file, it closes the file.)

Nothing will print until VEDIT closes the print-job. Similarly, when printing
to a file, the file will be empty until you close the print-job. (When you exit
VEDIT, any open print-job is automatically closed).

Print Job Start/Finish Strings
(This is a technical topic primarily applicable to the DOS version.)

Windows: Since Windows sends its own print-job start/finish strings for most
printers, attempting to set them within VEDIT will have no effect.

The only exception is the “Generic text” printer. If you select this
printer, Windows does not send its own print-job start/finish strings
and you can send the strings from VEDIT.

You can easily add the “Generic text” printer from within the Win-
dows Printer Control Panel.

An optional “Print job start string” can be sent at the beginning of each
print-job to initialize the printer. This is typically used to select a font, pitch,
size or weight. This is particularly useful on network printers where different
users might have different printing preferences.

Similarly, an optional “Print job finish string” can be sent at the end of each
print-job. This typically resets the printer to its default state so that the next
program used is not affected by VEDIT’s printing. The finish-string is not as
useful in the Windows version, because Windows sends it own finish-string
at the end of each print-job.

See Also:

The on-line help topic “Printing - Print Job Start/Finish Strings” describes this
in detail.

Printing in VEDIT Chapter 4 Editing Guide 135

Search and Replace
VEDIT has very flexible search and replace capabilities. Besides searching for
a literal sequence of characters, you can also search using VEDIT’s powerful
“pattern matching” or “regular expressions”.

Searches normally use pattern matching. This is a powerful searching syntax,
unique to VEDIT, that has “wildcard” characters for matching letters, digits
and much more. It is easy to use; only the character “|” has a special meaning.
Note: “|”, the “pipe” character, is <Shift>-\ on the keyboard.

Searches can alternatively use regular expressions. This is a powerful search
(and replace) syntax from UNIX. It is much more complex and most punctua-
tion characters have a special meaning. It is also slower than pattern matching.

You can also search in “Simple” mode without any pattern matching or regular
expressions. It is only recommended for very novice users because no “wild-
card” searching is possible. (It is not faster than pattern matching.)

Pattern matching and Regular expressions are described in detail later in this
topic.

Search Basics
� To search within the current file:

1. Select {SEARCH, Search} (<F2> or <Ctrl-F> or Toolbar). This displays
the following dialog box:

2. Enter the search string, the sequence of characters to be located.

3. Unless you are explicitly using “regular expressions”, the default search
mode of “Pattern matching” generally works best. Search modes are
described in detail below.

Select any desired search options. Search options are described in detail
below.

136 Chapter 4 Editing Guide Search and Replace

4. Press <Enter> or the [Next] button to search in the forwards direction
from the cursor position to the end of the file.

Or select [Previous] to search backwards towards the beginning of the
file.

If the string is found, the cursor is positioned on its first character and the
entire string is highlighted. If the search string is not found, VEDIT
displays an error message.

5. To search for the next occurrence of the same string, select {SEARCH,
Next} (<F3>).

To search for the previous occurrence of the same string, select
{SEARCH, Previous} (<Shft-F3>).

HINTS: Previous search strings can be recalled. In the Windows version,
click the recall arrow or press <Cursor Down>. You can also edit
the search string being entered or that you recalled.

The on-line help accessed by pressing [Help] or <F1> is extensive.
It explains how to search for special characters such as “newline”,
“null”, control and graphics characters.

Search Modes:

The desired search mode can be selected in the Search dialog box. The initial
mode is set by {CONFIG, Search options, Default search mode}. The
default mode is “Pattern matching”.

Simple A simple search without pattern matching or regular ex-
pressions is performed. There are no special characters;
there is no “wildcard” type searching.

Pattern VEDIT’s “pattern matching” can be used to search for
many types of characters, e.g. “wildcards”. In this mode,
only the “|” (pipe or vertical bar) character is special. For
example use “|013” to search for a Carriage-Return, “|000”
to search for a null. Use “||” to search for a single “|”
character in the file.

Reg-Exp UNIX-style “regular expressions” can be used to search
for complex patterns of characters; portions of the
matched text can also be used in the replacement side.
Regular expressions are much more technical than pattern
matching. It is generally not suitable for simple searches
because many characters have a special meaning. To
search for a special character, precede it with “\”.

Reg-Exp (Max) Both “minimal” and “maximized” type regular expres-
sions are supported. See “Maximize Regular Expres-
sions”, described later, for a description of this technical
topic.

Search and Replace Chapter 4 Editing Guide 137

Search Options

Case The search is case sensitive, e.g. a search for “the” will not
match “The”. Otherwise, the search is not case sensitive.
The dialog box’s initial value is set by {CONFIG, Search
options, Default Case-sensitive option}.

Word Restricts the search to entire “words”, e.g. a search for
“the” will not find “there”, “other” and similar words. It is
equivalent to entering, e.g. “|Sthe|S” using pattern match-
ing.

Begin Start searching from the beginning of the file; otherwise,
the search starts from the current cursor position. In a
block search, it starts searching at the beginning of the
block.

Local Restricts the search to the portion of the file currently in
memory. It also causes the “Begin” option to start search-
ing from the beginning of the text currently in memory. It
can be useful when searching in huge (100+ Megabyte)
files to prevent an unsuccessful search from wasting time
examining the entire file when you only want to search
nearby.

Block Restricts the search to the highlighted block. This option
is selected automatically if the cursor is within, or imme-
diately past the block.

Search Notes

To search for a “newline”, use “|N” in pattern matching mode, or “\N” in
regular expression mode.

To search for control (or other) characters, use “|ddd” in pattern matching
mode, or “\dddd” in regular expression mode, where ‘ddd’ is the decimal value
of the character. In the DOS version, you can alternatively press
[ENTER CTRL] (<Ctrl-Q>) followed by the control character.

Character values can also be entered in hexadecimal using “|Hhh” in pattern
matching mode, or “\hhh” in regular expression mode.

To search for a null character (decimal value 000), use “|000” in pattern
matching mode, or “\d000” or “\0” in regular expression mode.

The search and replacement strings are limited to 260 characters.

The contents of a text register can be used as the entire search/replace string
or as a portion of it. In pattern matching mode, use “|@(r)” to include text
register ‘r’ in the search/replace string. In regular expression mode, use
“\@(r)”. This permits “variable” search/replace strings.

HUGE FILES: If the string is not found, VEDIT restores the cursor position.
When editing huge (100+ Megabyte) files, this restore is
time-consuming. If you set {CONFIG, Search options,
Restore edit position on error} to “2”, the cursor is simply
left at the end of the file.

138 Chapter 4 Editing Guide Search and Replace

VEDIT’s searching is exceptionally fast. If it takes your
computer, e.g. 30 seconds to copy a 100 Megabyte file,
VEDIT can search it in about 45 seconds. Forward search-
ing is about four times faster than backward searching.

DOS Version:

The “terse” dialog box only displays some options. Immediately press
<Enter> to switch to the full dialog box.

In the terse dialog box, the button [Again] re-uses the previously entered search
string. It is often used in conjunction with the [] Begin option to restart the
search from the beginning of the file, or with the [] Prev option to search again
in the backwards direction.

Search and Replace Basics
� To perform a search and replace within the current file:

1. Select {SEARCH, Replace} (<Alt-F2> or <Ctrl-H> or Toolbar). This
displays the following dialog box:

2. Enter the “search string” in the same way as described above under
“Search Basics”.

3. Enter the “replacement string” exactly as you want it in the file. Lower
case letters are not converted to upper case, nor do they match the case of
the original text. (If you need this capability, you will have to use “Regular
Expressions”).

If found, the cursor will be positioned just past the first occurrence of the
located and highlighted text, and you are prompted with:

Search and Replace Chapter 4 Editing Guide 139

Select the desired option:

[Yes] Replace the text for this occurrence and immediately search
for the next occurrence.

[No] Don’t replace the text for this occurrence; immediately search
for the next occurrence.

[All] Replace the text for this and all remaining occurrences without
prompting. (Note: “all” occurrences are replaced only if the
operation was started at the beginning of the file.)

[One] Replace the text for this occurrence and return to normal
editing.

[Cancel] Don’t replace the text for this occurrence and cancel the
replace operation; return to normal editing.

Notes:

The description and notes for the earlier heading “Search Basics” apply here
too.

With VEDIT’s “pattern matching”, located text cannot be part of the replace-
ment text. However, the “regular expression” search mode has this capability.
For example, the regular expression search string “{[Hh]}ello}” will locate
“Hello” or “hello”. The replacement string “\1i” will replace “Hello” with
“Hi”, and “hello” with “hi”. Regular expressions are fully described later in
this topic.

Searching Within a Block.
You can restrict the search (or replace) to a highlighted block, even a columnar
block. This is useful for search & replace operations that you only want to
make in a portion of the file. For example, you might highlight the “Zipcode”
field in a data file to restrict your search to only zipcode numbers.

VEDIT both follows the common Windows conventions for searching within
a block, and has additional options that are useful when working with huge
multi-megabyte blocks. When “Persistent blocks” are enabled (the default),
you can search for multiple occurrences within the block, move within the
block, search for something else, etc.

� To search within a block of text:
1. Highlight the desired text as a stream, line or columnar block. The search

will only match characters which are entirely within the highlighted area.

For example, if you highlight a columnar block and search for “12345”,
it will not match an occurrence where “123” is within the columnar block,
but “45” is outside the columnar block.

2. Select {SEARCH, Search} (<F2> or <Ctrl-F>).

If the cursor is within the block, the [] Block option will already be
enabled; otherwise, enable this option.

140 Chapter 4 Editing Guide Search and Replace

If the cursor is within the block, the [] Begin option will also be selected
to start the new search at the beginning of the block. If you only want to
search the partial block beginning at the cursor position, disable this
option.

Enter the search string and select any other options as usual. Press the
button corresponding to the desired search direction.

Note that if you search in reverse with the [Previous] button, the search
starts at the end of the block.

3. To search for additional occurrences, simply press <F3>, the normal
hot-key for {SEARCH, Next}.

Many other editors always force a new search to start at the beginning of the
block after you highlight the text. However, VEDIT has additional flexibility
so that you can:

� Begin highlighting a block and then search for the desired end of the block.

� Highlight a block and then search outside the block, e.g. search for the
location to which you want to copy the block.

� Search only that portion of the block after the cursor. For example, you
could search within a huge block for the third occurrence of “xyz”
following the first occurrence of “abc”.

The following rules determine VEDIT’s behavior when a block has been
highlighted and you then select {SEARCH, Search} or {SEARCH, Replace}.
1. If the beginning of the block has been set, but the current block size is zero

(e.g., you just pressed <F9>), it is assumed that you want to search for the
end of the block, and nothing special is done.

2. If the cursor is within a small highlighted “stream” block of 40 characters
or less, the block is used as the search string. The search is not within this
small block.

3. If the cursor is within, or immediately past, the highlighted block, the []
Begin and [] Block search options are automatically selected.

Disable the [] Begin option if you want to search only from the cursor
position instead of from the beginning of the block.

Disable the [] Block option if you want to search the entire file instead of
just within the block.

4. If the cursor is not within the block and you select the [] Block option, a
forward search automatically starts at the beginning of the block. Simi-
larly, a backwards search starts at the end of the block.

5. The entire search string must be found within the highlighted text; this is
especially important when searching within columnar blocks. (In other
words, VEDIT will not locate a word where half of it is highlighted and
the other half is not highlighted.)

Search and Replace Chapter 4 Editing Guide 141

Pattern Matching
“Pattern matching” makes it possible to search not only for particular charac-
ters, but also for types of characters such as “any digit”, or for characters that
meet special conditions such as “occurring at the beginning of a line”.

These generalized searches are performed by using “pattern matching codes”
within the search string. Each pattern matching code consists of the special
character “|” followed by another character, typically a mnemonic letter.

NOTES: “|” is the “pipe” character, which is <Shift>-\ on the keyboard. All
pattern matching codes begin with this character.

Although the mnemonic letter can be in upper or lower case, for
purposes of clarity, all examples show these letters in upper case.

Most of the pattern matching codes only have a special meaning
in the search string; they have no meaning in the replacement
string. If you need “variable” characters in the replacement string,
you must use regular expressions.

Here are a few examples of search strings using pattern matching:

|D|D Search for two consecutive digits.

|!|D|D|D|!|D Search for next two digit number. (It will not match
a three digit number.)

|<note Search for a line beginning with the word “note”.

|W|> Search for “whitespace” (any number of spaces
and tabs) at the end of a line.

t|A|A|An Search for any five letter word beginning in “t” and
ending in “n”.

|000 Search for the “Null” character (value 000).

The pattern matching codes are:

|A Match any alphabetic letter, upper or lower case. It supports
non-English letters, such as “umlauts”, if {CONFIG, Search
options, Support non-English characters} has been enabled.

|B Match a blank - a single Space or Tab. See also “|W” and “|X”.

|C Match any Control Character - a character with an ASCII decimal
value of 0 to 31.

|D Match any numeric digit - “0” through “9”. This code does not
match “.” or “,”.

|F Match any alphanumeric character - a letter or a digit.

|G Match any graphics character - characters with decimal value
greater than 128. It is useful for finding stray graphics (8-bit)
characters in a file.

142 Chapter 4 Editing Guide Search and Replace

|Hhh Match the character with hexadecimal value ‘hh’. Both digits
MUST be present. This code can also be used in the replacement
string.

|I Match any word separator - Space, Tab, any control character, or
one of the additional configurable word separators defined by
Config_String(WORD_SEP).

|K Match any (non-standard) control character other than Tab, Car-
riage-Return and Line-Feed. It is useful for finding stray control
characters in a file. See also |C and |G.

|L Match the “newline” character(s) Carriage-Return and/or Line-
Feed depending upon the file type. With Windows/DOS files, the
Carriage-Return is optional. Similar to “|N”.

|M Match multiple characters - zero, one or more characters until the
string following the “|M” is satisfied. Since the match may cover
many lines, it may match a huge number of characters. Use “|*”
instead, to match multiple characters on one line. This code is not
generally not useful as the first item in a search string. See also
“|Y” and the following sub-topic “Matching Multiple Charac-
ters”.

|N Match the “newline” Carriage-Return and/or Line-Feed
depending upon the file type. With Windows/DOS files, the
Carriage-Return is mandatory. This code can also be used in the
replacement string. See also “|L”.

|Oooo Match the character with octal value ‘ooo’. Three digits MUST
be present. This code can also be used in the replacement string.

|P Match any parenthesis - { }, [], < > and (). (Internally used by
{GOTO, Matching ()}.)

|S Match any separator - a character which is not a letter, a digit or
underscore “_”. Space, Tab and all control characters are separa-
tors. Graphics characters (value 128-255) are not separators.

|T Match the ASCII Tab character (hex 09). This code can also be
used in the replacement string.

|U Match any upper case letter. This pattern supports non-English
letters, such as “umlauts”, if {CONFIG, Search options,
Support non-English characters} has been enabled.

|V Match any lower case letter. See description for “|U”.

|W Match “whitespace” - one or more Spaces and/or Tabs. See also
“|B” and “|X”.

|X Match extended whitespace - one or more Spaces, Tabs, Carriage-
Returns and/or Line-Feeds. See also “|B” and “|W”.

|Y Match zero, one or more characters until the immediately follow-
ing character or pattern matching code is satisfied. This code is
not generally not useful as the first item in a search string. See

Search and Replace Chapter 4 Editing Guide 143

also “|M” and “|*”, and the following sub-topic “Matching Mul-
tiple Characters”.

|ddd Match the character with decimal value ‘ddd’. This code can also
be used in the replacement string.

|000 Match the “Null” character (ASCII 0).

|< Match the beginning of a line - the following matched characters
must occur at the beginning of a line. (See below.)

Note: A search for just “|<” does not match the End-Of-File.

|> Match the end of a line - the preceding matched characters must
occur at the end of a line. With {CONFIG, File Handling, File
type} set to Record mode, it matches the end of a record.

Notes: Unlike “|L” and “|N”, “|<” and “|>” do not include the
“newline” character(s) in the matched text. This is an
important distinction when performing a replacement -
with “|L” and “|N” the newline character(s) will be
replaced, with “|<” and “|>” they are not replaced.

“|>” will match the End-Of-File.

|* Match multiple characters on the same line - zero, one or more
characters until the string following the “|*” is satisfied. However,
unlike “|M”, all matched characters must be on the same line. This
code is not generally not useful as the first item in a search string.
See also “|Y” and the following sub-topic “Matching Multiple
Characters”.

|? Match any single character; this is the simple “wildcard” similar
to “?” in filenames.

|! Match any character except the following character or pattern
code. Use this code to exclude a certain character or type of
character. For example, to search for “exam ” or “examiner” but
not “exams”, use “exam|!s”. Think of “|!x” as “not x”.

|@(r) Use the contents of text register ‘r’ in this position in the search
string. This code can also be used in the replacement string.

|{set} Match any one item in the “pattern set”.

|[set] Match one optional occurrence of any item in the “pattern set”.
This code is not meaningful as the first item in a search string.

|| Match the “|” character. You need a double “||” to search for a
single “|” in your text. A double “||” is also needed on the
replacement side.

144 Chapter 4 Editing Guide Search and Replace

Matching the “Newline” - Carriage-Return and/or
Line-Feed - with “|L” and “|N”

The pattern matching codes “|L” and “|N” match the “newline” character(s)
Carriage-Return and/or Line-Feed depending upon the current file type.

When {CONFIG, File handling, File type} is set to “0” (Windows/DOS text
file), they match a Carriage-Return and Line-Feed as the “newline” characters.
When set to “2” (Mac text file) they match a single Carriage- Return character.
Otherwise, they match a single “Line-Feed” character.

“|L” and “|N” are similar, but not identical. For file type “0” (Windows/DOS
text), “|L” treats a Carriage-Return as optional, while “|N” requires both a
Carriage-Return and Line-Feed. Therefore, “|L” is preferred in search strings
because it handles Windows/DOS text files that might be missing some
Carriage-Returns. For other file types, “|L” and “|N” are identical.

“|N” is equivalent to “|013|010”, “|010” or “|013”, depending upon the file
type. “|N” works slightly faster than “|L” and “|N” can be used in the
replacement string. Using “|N” is a convenient way to enter a multiple-line
replacement string. In summary:

� “|L” is preferred in search strings.

� “|N” can be used in replacement strings.

Matching the Beginning/End of a Line with
“|<” and “|>”

The code “|<” occurring at the beginning of a search string ensures that the
entire search string only matches text occurring at the beginning of a line.

Similarly, the code “|>” occurring at the end of a search string ensures that the
entire search string only matches text occurring at the end of a line.

Unlike “|L” and “|N”, “|<” and “|>” do not include the “newline” character(s)
in the matched text. This is an important distinction when performing a
replacement - with “|L” and “|N” the “newline” character(s) will be replaced;
with “|<” and “|>” they are not replaced. With {CONFIG, File Handling, File
type} set to Record mode, these codes match the beginning/end of a record.

Matching Multiple Characters with
“|M”, “|Y” and “|*”

The code “|M” is useful for finding text where the beginning and end are
defined, but the middle does not matter. For example, let’s say you want to
check that all quote marks are properly paired. Select {SEARCH, Search} and
enter the following search string:

"|M" (That’s four characters)
The search will move the cursor to the beginning of the first quotation and
highlight the entire quoted string. Each time you press {SEARCH, Next}, the
cursor will move to the next quotation. If it does not, a quote mark is not
properly paired.

Search and Replace Chapter 4 Editing Guide 145

Besides being useful in searches, the “|M” code can be used to delete large
blocks of text. For example, the following search and replace string would
delete this paragraph:

Search: Besides|Mparagraph:
Replace: (None, just press <Enter>)

The “|M” code often matches too much text. For example, the incorrect search
string “|Sa|Mtion|S” would match words beginning in “a” and ending in
“tion”. However, it will also match the next word beginning in “a” followed
by any amount of text until it finds a word ending in “tion”.

The code “|*” also matches multiple characters, but they must all occur on the
same line (or record). Therefore, the correct search string for finding all words
beginning in “a” and ending in “tion” would be:

|Sa|*tion|S

(Our examples show pattern matching codes in upper case for clarity, but they
can be entered in lower case.)

In other words, the characters matched by “|*” will not include the “newline”
characters (or characters that cross a record boundary).

The code “|Y” also matches multiple characters, but is more restrictive than
“|M”. “|M” matches ever more characters until the rest of the search string is
satisfied, or the end of the file is reached. Once that portion of the search string
in front of the “|M” is matched, it is never searched for again; there is no need.

On the other hand, “|Y” matches ever more characters only until the very next
character (or pattern) matches. If the rest of the search string then fails, the
entire search string is re-searched.

For example, in assembly language programming, any text following a “;”
character is a comment. Instructions are often followed by a few tabs (to align
the comments), the “;” and the comment. The following search and replace-
ment strings will delete the tabs (and/or spaces) and the comment which follow
any instruction. However, lines which are entirely comments (i.e. that have a
“;” in the first column) are not deleted.

Search: |W;|Y|>
Replace: (None, just press <Enter>)

As another example, we want to search for the following two lines:
MOV BL,DL ;An arbitrary comment
MOV BH,DH

We want to be certain that the second line immediately follows the first line.
As indicated, the critical part of the first line could be followed by unknown
text. The search string to find these two lines is:

mov bl,dl|Y|Lmov bh,dh

Notice that substituting “|M” for “|Y” would not perform the same function
— we could no longer be sure that the second line immediately followed the
first line. (The example shows “|Y” and “|L” in upper case for clarity, but
pattern matching codes can be entered in lower case.)

146 Chapter 4 Editing Guide Search and Replace

Pattern Sets
The pattern matching codes “|{set}” and “|[set]” contain a user-definable
“pattern set”. This is analogous to an “OR” operator — the match is successful
if the text matches the first item OR the second item OR the third item, etc.
Each item in the pattern set can itself be a search string. The items are separated
from each other by commas “,”. Commas themselves are represented by “|,”.

For example, the search string to find any of the animal names “CAT”, “DOG”,
“LION” or “MOUSE” is:

|{CAT,DOG,LION,MOUSE}

Pattern sets are very useful when searching for alternative words. Unfortu-
nately, pattern sets execute more slowly than other searches — in this example,
the pattern set has to be checked for each character in the text.

As another example, we want to search for occurrences of the words “auto-
mation” and “automobile”. We could, of course, place the entire words into a
pattern set. As an alternative, we will just place the word endings into a pattern
set in the following search string:

auto|{mation,mobile}

Since the pattern set is only checked when “auto” has already been found, this
search will run very quickly.

The following search strings will find a vowel or a consonant:

|{a,e,i,o,u} (vowels)
|{b,c,d,f,g,h,j,k,l,m,n,p,q,r,s,t,v,w,x,y,z} (consonants)
|!|{a,e,i,o,u,_,|d,|s} (consonants)

The pattern matching code “|[set]” matches one optional occurrence (i.e. zero
or one occurrence) of any item in the pattern set. For example, the following
search string:

the |[tall,short,fat,thin] man

matches “the man”, “the tall man”, “the short man”, “the fat man” and “the
thin man”. However, the string:

the |{tall,short,fat,thin} man

would not match just “the man”.

Pattern sets may be embedded within each other for even more sophisticated
searching. For example, the revised search string:

the |{tall|[ish],short|[ish],fat,thin} man

also matches “the tallish man”, “the shortish man”, but not “the man”.

The search string:

|{|{foot,basket,base}ball,soccer,golf,hockey}

matches “football”, “basketball”, “baseball”, “soccer”, “golf” and “hockey”.

Search and Replace Chapter 4 Editing Guide 147

The following search strings find numbers between one and four digits in
length. They illustrate that there often are several equivalent ways to use pattern
sets:

|{|d|d|d|d,|d|d|d,|d|d,|d}
|{|d|[|d]|[|d]|[|d]}
|{|d|[|d|[|d|[|d]]]}

(Note: Items that are substrings of another item must be placed after the larger
item inside a pattern set.)

Using Text Registers in Search Strings
The contents of a text register can be used as part of a search string. The register
contents are accessed with the pattern matching code “|@(r)” where ‘r’ is the
name of the register to use. This makes it possible to have “variable” search
strings.

For example, assume the following text register contents:

Register 1 contains: “Nice”

Register 2 contains: “a walk”

Then the following three search strings are all equivalent:

Nice night for a walk
|@(1) night for a walk
|@(1) night for |@(2)

148 Chapter 4 Editing Guide Search and Replace

Regular Expressions
“Regular expressions” are a type of text pattern matching originally developed
in the UNIX environment. They can be used as an alternative to VEDIT’s
normal pattern matching. The UNIX specifications are followed very closely.
To use regular expressions they must be enabled either by setting {CONFIG,
Search options, Default search mode} to “2” or “3” or by selecting the option
“() Reg-Exp” in the Search or Replace dialog box.

The choice between normal pattern matching and regular expressions is partly
a matter of personal preference and a consideration of the advantages and
disadvantages of each.

Advantages of Regular Expressions:
� For the most part, regular expressions are more flexible and powerful than

normal pattern matching. Particularly powerful are the constructs “+”
meaning “one or more occurrences of” and “*” meaning “zero or more
occurrences of”.

� During a search and replace, groups of characters matched during the
search can be used as part of the replacement text in very flexible ways.
This is probably the biggest advantage of regular expressions.

� If you already know regular expressions from the UNIX environment, you
don’t have to learn another searching language.

Disadvantages of Regular Expressions:
� Regular expressions can be lengthy and verbose. For example, the pattern

matching code “|A” is equivalent to the regular expression “[a-zA-Z]”.

� Regular expressions are less flexible for searching multi-line patterns.

� Many characters have a special meaning in regular expressions. A special
syntax must be used when searching for these characters.

� For the most part, regular expression searching is slower than normal
pattern matching searching.

� Pattern matching has some capabilities not available in regular expres-
sions. For example, “Pattern sets” can match optional items and any one
of a set of items.

Regular Expression Basics
NOTE: To use regular expressions, be sure that the option “() Reg-Exp”

is selected in the Search/Replace dialog box.

Many characters have special meaning in the search string of regular expres-
sions:

^ (caret) Matches the beginning of a line (when it is the first
character in a regular expression).

$ Matches the end of a line (when it is the last character in
a regular expression).

Search and Replace Chapter 4 Editing Guide 149

. (period) Simple wildcard that matches any character.

* Matches zero or more occurrences of the preceding char-
acter (or list).

+ Matches one or more occurrences of the preceding char-
acter (or list).

? Matches zero or one occurrences of the preceding charac-
ter (or list). In other words, the preceding character is
optional.

Examples:

o.e Matches any text containing “o”, followed by any char-
acter, followed by “e”. Will match the word “one” and the
“ome” in the word “some”.

^o.e Matches the same strings, but only if they appear at the
beginning of a line. Will match the word “one” at the
beginning of a line. Does NOT match “some”.

o.e$ Matches the same strings, but only if they appear at the
end of a line. Will match the word “one” and the “ome” in
the word “some” if they occur at the end of a line. Does
NOT match the word “something”.

^$ Matches only a completely blank line.

^\s*$ Matches a blank line that might contain just spaces.

an*d Matches any text containing “a”, followed by zero or more
occurrences of “n”, followed by a “d”. Will match the “ad”
in the word “add” and the word “and”.

an+e Matches any text containing “a”, followed by one or more
occurrences of “n”, followed by an “e”. Will match the
“ane” in the word “cane” and the “anne” in the word
“banned”.

an?e Matches any text containing “a”, followed by zero or one
occurrences of “n”, followed by an “e”. Will match the
“ae” in the word “Caesar”, the “ane” in the word “cane”,
but NOT the word “banned”.

Think of “*” as indicating that one or more occurrences of the previous
character are “optional”. Notice that “ann*e” is identical to “an+e”.

A list of characters within square brackets “[” and “]” matches any one
character in that list. A range of characters can be abbreviated using a hyphen
“-”. However, when the first character in the list is a “^” (caret) or “~” (tilda),
the list matches any character, except those in the list.

[abc]d Matches any text containing “a”, “b” or “c”, followed
by “d”.

[a-z] Matches all lower case letters.

[z-a] A range may also be specified in reverse order.

150 Chapter 4 Editing Guide Search and Replace

[A-Za-z] Matches all letters, upper or lower case.

[A-Z][a-z]* Matches all words beginning with one capital letter. (It
matches an upper case letter followed by zero or more
lower case letters.) E.g., it matches “Hello” and “I”,
but not “ABC”.

[A-Z]+ Matches all capitalized words. E.g., it matches “I” and
“ABC”, but not “Hello”.

[^a] Matches any character, except for “a”.

[^a-z] Matches any character, except for a lower case letter.

[~a-z] Same. “[~” is equivalent to “[^”.

[^0-9] Matches any character, except for a digit.

\[Matches the “[” character.

\\ Matches the “\” character.

The “[] Case” search option is applicable to regular expressions, but not
within bracketed lists. Therefore, “hi” will match “HI”, “Hi”, etc., and the
expression “[a-z]i” will match “hi” and “hI”, but not “Hi”. There is little reason
to ever select the “[] Case” option — you could use the expression “[h][i]” to
search for the lower case word “hi”.

A “\”, followed by any character (except a digit or letter), simply matches that
character. This allows searching for those characters which are used as special
symbols in regular expressions.

Although we recommend using the “\” in front of any special symbols you
need to search in the text, the “\” is not needed when there is no possibility of
confusion. For example, the characters “{”, “}”, “|”, “*” and “+” are not special
within the square brackets. The “$” is only special at the very end of the
expression. Even the hyphen “-” is not special immediately following “[” or
preceding “]” or outside of square brackets.

IMPORTANT NOTES:
These characters are special symbols in regular expressions, and therefore must
be preceded by “\” in order to search for them in the text:

^ $. * + ? - ~ \ | [] { }

The syntax allows exceptions where the “\” is not needed, but in those cases
the “\” does not hurt either, and we recommend using it in front of all
non-alphanumeric characters within search strings.

In the replacement string, only the two characters “\” and “&” are special
symbols.

Special Matching Characters
The following special matching characters are defined. They can be used in
both the search string and replacement string of a regular expression.

\b Matches the ASCII backspace character (hex 08).

Search and Replace Chapter 4 Editing Guide 151

\dDDD Matches the character with decimal value ‘DDD’. All three
digits MUST be present. “\d010” does not work in the search
string; use “\N” instead.

\e Matches the ASCII <Esc> character (hex 1B).

\f Matches the ASCII Form-feed character (hex 0C).

\hHH Matches the character with hexadecimal value ‘HH’. Both
digits MUST be present. “\h0A” does not work in the search
string; use “\N” instead.

\n Matches the Line-Feed character (hex 0A). This is the
“newline” character for UNIX type text files. To search for
multiple-line patterns, use “\N” instead.

\N Matches the “newline” character(s) and allows searching for
multiple line patterns. The “newline” depends upon the cur-
rent file type and can be <CR><LF>, <LF> or <CR>. (Cur-
rently, “\N+” and “\N*” are not supported.)

\oOOO Matches the character with octal value ‘OOO’. All three digits
MUST be present. “\o012” does not work in the search string;
use “\N” instead.

\r Matches the ASCII Carriage-Return character (hex 0D).

\s Matches the ASCII space character (hex 20).

\t Matches the ASCII Tab character (hex 09).

\0 Matches the ASCII Null character (hex 00).

\@(r) Use the contents of text register ‘r’ in this position in the search
(or replace) string.

The “OR” Operator
The special character “|” is the “OR” operator which may occur between two
sub-expressions. The entire expression then matches any text that is matched
by the preceding sub-expression OR the following sub-expression. Note: “|”
cannot occur within “{ }”; each sub-expression must by itself be a valid
expression.

NOTE: “|” is the “pipe” character, which is <Shift>-\ on the keyboard.

man|woman Matches the word “man” OR the word “woman”.

a+|b+ Matches one or more occurrences of “a” OR of “b”.

152 Chapter 4 Editing Guide Search and Replace

Groups and Replacement Strings
The special symbols “{” and “}” group regular expressions for reference
purposes. They permit the text matched by the expression within “{ }” to be
referenced again in the search string or to be included as part of the replacement
text.

An expression may contain up to 9 groups which are referenced by number —
“\1” through “\9”. The groups are numbered in the order of their opening “{”.
Groups may also be nested. Groups may be referenced in either a latter part of
the regular expression or in the replacement string. This allows portions of the
matched text to be used as parts of the replacement text.

The character “&” has a special meaning only in a replacement string and
references the entire text matched by the search.

Consider the expression “the {man}|the {woman}”. If the matched text is “the
man”, “\1” is “man” and “\2” is empty (null). Now consider the expression
“{the {[a-z]+}} has”. If the matched text is “the woman has”, “\1” is “the
woman” and “\2” is “woman”.

{[a-z][a-z][a-z]}\1 Matches two contiguous occurrences of the same
three letters. Will match “nownow”, “powpow”,
etc.

{.*}\1 Matches any repeating text. Will match “nn”, “nownow”,
“12341234”, etc.

^{.*}\1$ Matches a line consisting of two repeated occurrences of
the same text (identical right and left halves).

^{.*}\N\1$ Matches two identical lines which occur together. (Can be
used to find duplicate lines after sorting.)

Precedence
The order of precedence of the regular expressions operators is:

\\ Highest

[]

* + ?

{ }

Concatenation

| Lowest

Complete Examples
These examples show search and replacement strings using regular expres-
sions. They illustrate how groups of matched text can be used as part of the
replacement string. Be sure that the option “() Reg-Exp” is selected in the
Search/Replace dialog box.

Search and Replace Chapter 4 Editing Guide 153

Search: [A-Z][a-z]*

Search for the next capitalized word. Note that it will also
match the single letter word “A”.

Search: 0x[0-9a-fA-F]+

Search for the next hexadecimal number in a “C” program.
It searches for “0x”, followed by one or more hexadecimal
digits.

Search: ^{.+}$\N\1$

Search for a line that is duplicated on the next line.
Search: .*,
Replace: (None, just press <Enter>)

Delete all text up to a comma on the next line which
contains a comma. (Remember that the entire matching
text must occur on one line.)

Search: {[Hh]}ello
Replace: \1i

Searches for “Hello” or “hello”, and replaces it with “Hi”
or “hi” respectively.

Search: [Hh]ello
Replace: &~world

Searches for “Hello” or “hello”, and replaces it with
“Hello~world” or “hello~world” respectively. The “&”
references the entire text matched by the search. Note that
the grouping characters “{ }” are NOT needed in order
to use “&”.

Matching the “Newline”
Regular expressions CANNOT match “newline” sequences at the end of a line.
Therefore, the expression “[^a]” matches any character, except for “a” and a
“newline” (single Line-Feed or Carriage-Return and Line-Feed). Similarly,
the “*”, “+” and “?” operators stop matching when they reach the “newline”
characters.

[\h00-\h1f] Matches any control characters, except “newline”.

a.* Matches the letter “a” and all following characters up to,
but not including, the “newline” characters.

The only exception to this is “\N” which explicitly matches the “newline”
character(s).

end\Nbegin Match “end” at the end of a line, followed by “begin” at
the beginning of the next line.

154 Chapter 4 Editing Guide Search and Replace

Maximize Regular Expression Matching
Regular expressions originally came from the UNIX environment and we have
made every attempt to follow the UNIX definitions as closely as possible.

Another important rule about UNIX regular expressions is that the “*” and
“+” operators always match the longest possible string that still allows the rest
of the expression to match. Consider the rather subtle expression (already used
in an example above):

{.*}\1

and the text line:

a00a abc12231223cba

On the first search, it will match the “00” in “a00a” since it matches any
repeating text. However, on the second search it does not match the “22”, but
rather the entire “12231223” because this is the longer repeating text string
that includes “22”.

Although this is a useful and powerful characteristic of regular expressions, it
is not always desirable. (It is also not intuitive.) VEDIT lets you select either
minimized or maximized regular expression matching in the Search dialog
box. The default can be set with {CONFIG, Search options, Default search
mode}.
When minimized, it would have matched “22” instead of “12231223” in the
previous example. As another example, consider the search string:

a.+b

and the text:

12a3456b7890b

When minimized, it will match “a3456b”; when maximized, it will match
“a3456b7890b”.

Using maximized regular expressions slows down searches significantly —
the search cannot stop on the first match, but must rather keep looking for ever
longer matches. It is probably because of this characteristic that the original
UNIX designers decided to restrict searches to a single text line — a multi-line
search for “{.*}\1” in even a tiny 1-Kbyte file would involve over a million
comparisons.

Search and Replace Chapter 4 Editing Guide 155

Incremental Searching
{SEARCH, Incremental search} prompts for a search string and searches the
current file, starting from the cursor position, for the accumulated search string
after each keystroke. Press <Esc> when done. This is a convenient way to
search without having to enter more of the search string than is necessary.

Following each keystroke, if matching text is found, it is highlighted. Other-
wise, the previously marked text remains highlighted. If desired, you can then
press <Backspace> and change the search string.

The following function/control keys can be used:

<Esc> Finishes the incremental search.

<Backspace> Erases the last entered character, and backs up to the
previous cursor position.

<Ctrl-N> Enters the current “newline” character(s) into the search
string.

[ENTER CTRL] (Normal hot-key: <Ctrl-Q>) Enters the following con-
trol character into the search string.

<Enter> Searches for the next occurrence.

You can select {SEARCH, Next} or {SEARCH, Previous} to find the
next/previous occurrence of the string.

Notes:

The prompt for the search string is on the status line; this is a bit difficult to
see in the Windows version. (We hope to improve this soon.)

The search mode (simple, pattern matching, regular expressions) and case
sensitivity are set from the current {CONFIG, Search options} settings.

This function is implemented by the srchincr.vdm macro.

Since incremental searching that fails in huge files can be time consuming, this
macro can be set up to initially perform a “local” search. See the comments
within srchincr.vdm for details.

See also:

The topic “Search and Replace”. (Described earlier in this chapter).

156 Chapter 4 Editing Guide Search and Replace

Word Processing Functions
VEDIT has many features specifically designed to assist with word processing.
These include:

Fast Cursor Movement
The default keys <Ctrl-Cursor-Right> and <Ctrl-Cursor-Left> move
the cursor to the next and previous word, respectively.

The default keys <Ctrl-Cursor-Up> and <Ctrl-Cursor-Down> move
the cursor to the next and previous paragraph.

The default keys <Ctrl-Del> and <Ctrl-Backspace> delete the next and
previous word, respectively.

Word Wrap (Display)
Some text (word processing) files consist of paragraphs where each
paragraph ends in a “hard” Carriage-Return and/or Line-Feed. Although
VEDIT will initially display such paragraphs as one long line, you can set
{VIEW, Word wrap (display)} to wrap the paragraph on the screen,
similar to what you would see in Window’s Notepad or Wordpad.

VEDIT will dynamically reformat the text on the screen as you edit, or if
you change the right margin.

Word Wrap (Hard CR/LF)
Alternatively, other text files consist of paragraphs where each line ends
in a Carriage-Return / Line-Feed (CR/LF). The paragraphs are then
separated from each other with a blank line.

When “hard” word wrap is enabled, any new words typed at the end of a
line are, when necessary, wrapped to the next line. VEDIT performs
“hard” word wrap by inserting a normal CR/LF before the wrapped word
- just as if you had pressed <Enter>.

Right Margin
The right margin determines where the word wrap takes place. By default,
the right margin is the width of the current window (less one column).

You can set an explicit right margin, e.g. “70”, by selecting {CONFIG,
Word processing, Right margin}. You can even set a right margin
greater than the window width.

Left Margin for Indented Text
When a left margin is set, VEDIT indents new lines of text by automat-
ically adding tabs and spaces (or just spaces) to reach the left margin.
Existing paragraphs and arbitrary blocks of text can also be indented.

Currently, “Word wrap (display)” does not support the left margin.

Paragraph Formatting
When working with paragraphs which have a (hard) CR/LF at the end of
each line, VEDIT does not automatically reformat the paragraphs if you

Word Processing Functions Chapter 4 Editing Guide 157

change the margins or make edit changes. (It only word wraps new text
entered at the end of a line.)

You can format (or reformat) a paragraph to force all text to be word
wrapped at the right margins by selecting {EDIT, Format paragraph},
the normal hot-key is <Ctrl-B>. This will add a “hard” CR/LF at the end
of each line. It will also advance to the next paragraph so that you can
easily format many paragraphs.

When you reformat a paragraph, VEDIT normally maintains its indenta-
tion, if any, i.e. if a paragraph is indented by five columns, then after you
reformat it, it will still be indented by five columns. However, if you
enable {CONFIG, Word processing, Format from left margin}, then
the paragraph will be reformatted between the current left and right
margins. This lets you quickly change the left margin (indentation) for
many paragraphs.

Justification
When paragraphs are formatted, they can optionally also be justified.
Justification produces a straight right edge to the text by adding spaces
between words on each line.

Center Line
Lines of text can quickly be centered between the current left and right
margins with the {EDIT, Center line} function.

Unlike dedicated word processors, VEDIT’s word processing functions never
insert special “control codes”. Paragraphs are formatted by inserting only
“newline” characters (Carriage-Return and/or Line-Feed depending upon the
file type). Text is indented by using only Tab characters and spaces; if desired
only spaces can be used.

This makes it possible to use text files formatted with VEDIT with almost any
other program.

Definition of “Word” and “Paragraph”
VEDIT considers a “word” to be any sequence of characters separated from
each other by certain characters:

� A space always separates words from each other.

� Any control character including Carriage-Return, Line-Feed and Tab
separates words from each other.

� The characters configured with Config_String(WORD_SEP) separate
words from each other. By default, only the following characters are
configured as separators:

, ; : ()

� The characters “(< [{” are treated as the beginning of a word. Similarly,
“) >] }” are treated as the end of a word.

158 Chapter 4 Editing Guide Word Processing Functions

With the default Config_String(WORD_SEP), the “< [{” and “>] }”
characters are treated as part of the word. However, since “(” and “)” are
word separators, they are not treated as part of the word. This makes it
easy to delete the words inside parentheses without deleting the parenthe-
ses themselves.

� As a special case, numbers with embedded commas, such as “10,000” are
always treated as one word.

By default, words are allowed to have embedded periods in them, as in “i.e.”.
The topic “Configuration - Modifying the VEDIT.CFG file” (Chapter 8)
describes how to change the configuration parameter
Config_String(WORD_SEP) in the vedit.cfg file.

To VEDIT, a “paragraph” is one or more lines of text separated from other
paragraphs by these rules:

� A blank line always separates paragraphs from each other. The blank line
is allowed to have “invisible” spaces and Tab characters.

� Lines beginning with the characters configured with
Config_String(PARA_SEP) separate paragraphs from each other. By
default, the following characters are configured as separators:

. @ ! \

Lines starting with these configurable characters are assumed to be “print
formatting commands” for programs like WordStar, Ventura Publisher and our
V-PRINT. Print formatter command lines are not considered part of any
paragraph and are therefore never reformatted.

Note that just an indented line is not enough to separate one paragraph from
another.

Indenting Text (Left Margin)
There are several ways to indent text so that it does not begin in the first column.
You can, of course, type spaces at the beginning of each line to be indented.
This is the normal way of indenting the first line of a new paragraph. However,
VEDIT can automatically indent each new line of text for you. This is useful
in word processing for indenting entire paragraphs, and for editing programs
written in structured languages such as C, Pascal and Java.

The left margin determines how much newly-entered lines will be indented.
Normally the left margin is set to column 1.

You can change the left margin with {CONFIG, Word processing, Left
margin}. However, it is usually easier to change the left margin on-the-fly by
pressing {EDIT, Formatting, Indent} (<F8> or toolbar), which increases the
left margin, and {EDIT, Formatting, Undent} (<F7> or toolbar), which
reduces the left margin. These functions change the left margin by the “indent
increment”, typically “4”. The increment is set with {CONFIG, Program-
ming, Indent increment}.
VEDIT indents text by padding the beginning of lines with Tab characters and
spaces. The optimum number of tabs and spaces will be used and depends upon

Word Processing Functions Chapter 4 Editing Guide 159

the currently set tab stops. If you prefer text to be indented using only spaces,
enable {CONFIG, Tab/Fill, Expand <Tab> key with spaces}.
VEDIT has another mode of indentation called “Auto-indent”. It is primarily
intended for editing structured programming languages such as “C”. In auto-
indent mode, each new line will be indented the same amount as the previous
text line. You can then change the indentation of the new line by with <F7>
and <F8>, the “Normal” hot-keys for {EDIT, Formatting, Indent} and
{EDIT, Formatting, Undent}. The main advantage of auto-indent mode is
that you can jump around in a program and newly entered instructions will
automatically fit the indentation of the current block of instructions.

Auto-indent and the “indent increment” are configurable with {CONFIG,
Programming, Auto-indent mode} and {CONFIG, Programming, Indent
increment}.

HINTS: Do not indent your text to keep it from printing on the left edge of
the paper. {CONFIG, Printer, Left margin} lets you set a separate
printer left margin for this purpose.

{EDIT, Formatting, Indent} is not designed for indenting the first
line of a paragraph. Spaces should be used for that purpose.

See Also:

The topic “Block Indenting”. (Described earlier in this chapter).

Word Wrap (Right Margin)
VEDIT has two kinds of “word wrap”:

� “Display-only” word wrap which simply wraps long lines on the screen.
It does not alter the file, even if you change the right margin. It is useful
when each paragraph is stored in the file as one long line of text. This is
similar to the way the Windows programs Notepad and Wordpad work.

It is enabled with {VIEW, Word wrap (display)} or {CONFIG, Word
processing, Display lines with word wrap} or the toolbar.

� “Hard” word wrap which inserts Carriage-Return and Line-Feed (CR/LF)
characters into the file to format the text between the right and left margins.
This is similar to you pressing <Enter> at the end of each line. If you
change the margins, you must explicitly reformat the paragraphs.

It is enabled with {EDIT, Formatting, Enable word wrap}, {CONFIG,
Word processing, Enable word wrap & formatting} or the toolbar, or
when you first select {EDIT, Formatting, Format paragraph}.

Although both kinds of word wrap appear very similar on the screen, the
resulting text is saved very differently. Each kind has its advantages and
disadvantages.

With “Display-only” word wrap, each paragraph is stored as one long line of
text, with just a single CR/LF at the end of the paragraph. Since the file does
not contain any information about the length of individual lines, the paragraphs
may wrap differently the next time you open the file in VEDIT or in another

160 Chapter 4 Editing Guide Word Processing Functions

program. With simple paragraphs, this is usually not a problem; this “dynamic”
reformatting is often even an advantage.

“Display-only” word wrap is good for editing text (.txt) files exported from
Microsoft Word (tm) or that will be imported into other word processors. It is
not good for HTML (web page) editing.

With “hard” word wrap, each line ends in a CR/LF, and is stored that way.
Therefore, the layout of the lines is “fixed” and does not change when you later
open the file in VEDIT or in another program. Changing the margins does not
automatically reformat the file, you must explicitly reformat the relevant
paragraphs with {EDIT, Formatting, Format paragraph}. Different para-
graphs can have different margins, and if desired, some lines can be longer
(even much longer) than the right margin of other paragraphs.

When “hard” word wrap is enabled, VEDIT will automatically wrap lines
when the text you are entering reaches the right margin. A “newline” CR/LF
is inserted before the wrapped word and the new line starts at the current left
margin.

The desired right margin is set with {CONFIG, Word processing, Right
margin}. The default value of “0” sets the right margin to the current window
width, but any desired value can be set, even values wider than the window.

The right margin is the last column in which a displayable character can occur.
However, spaces, especially the typical one or two spaces following a sentence,
are allowed to exceed this margin.

The right margin can be greater than the window width, in which case VEDIT
will either scroll the window horizontally or display a continuation line before
the word wrap takes place.

As you edit a paragraph, existing text will sometimes extend past the right
margin. This is normal, because “hard” word wrap only occurs when new text
is entered past the right margin. You can get all the text back between the
margins by reformatting the paragraph with {EDIT, Formatting, Format
paragraph} (<Ctrl-B> or toolbar). (An option to dynamically reformat the
paragraph, as necessary, is planned for a future version.)

IMPORTANT NOTES:
Word wrap should be disabled when editing programs; otherwise,
accidentally selecting {EDIT, Formatting, Format paragraph}
will generally scramble your program. VEDIT’s “undo” usually
cannot recover the text in this case.

Do not confuse the word processing right margin with the “Horizontal
scroll margin” — the latter only controls how long lines are displayed
on the screen.

Word Processing Functions Chapter 4 Editing Guide 161

Formatting and Justifying Paragraphs
{EDIT, Formatting, Format paragraph} formats (or reformats) a paragraph
to fit it entirely within the right margin. You can optionally justify the right
edge, and change the paragraph's indentation.

After formatting, the cursor advances to the next paragraph. Therefore, you
can repeatedly press the normal hot-key <Ctrl-B> to format one paragraph
after another.

A paragraph is formatted by placing as many words on each line as possible
without exceeding the right margin. In the process, the number of lines in the
paragraph may change. VEDIT can optionally add extra spaces between words
to “justify” (straighten) the right edge of the paragraph.

� To format (or re-format) a paragraph:
1. Make sure that {CONFIG, Word processing, Right margin} is set

correctly; if it is not explicitly set, it will default to the width of the
window.

2. If you want to also change the paragraph's indentation, enable {CONFIG,
Word processing, Format from left margin} and set the desired left
margin with {CONFIG, Word processing, Left margin}, or with <F7>
and <F8>, the normal hot-keys for {EDIT, Formatting, Indent} and
{EDIT, Formatting, Undent}.
To optionally justify the paragraph, enable {CONFIG, Word processing,
Justify paragraphs}.

3. Place the cursor on the first line of the paragraph and select {EDIT,
Formatting, Format paragraph} (<Ctrl-B> or toolbar). If {EDIT,
Formatting, Enable word wrap} is not already enabled, you will receive
a prompt to enable it.

If {CONFIG, Word processing, Format from beginning of para-
graph} is enabled, you can start with the cursor anywhere within the
paragraph.

4. Since the cursor advances to the beginning of the next paragraph, you can
easily format several consecutive paragraphs by just holding down
<Ctrl-B>.

{CONFIG, Word Processing, Format paragraph options} controls how
paragraph formatting deals with extra space characters at the ends of lines.

NOTES: An indented line is not enough to separate one paragraph from
another; blank lines MUST be used to separate paragraphs. Oth-
erwise, reformatting paragraphs will combine several paragraphs
into one!

The supplied file key-mac.lib contains a key-stroke macro for
formatting a columnar block of text. This lets you format just the
words in a range of columns instead of all words on the line.

162 Chapter 4 Editing Guide Word Processing Functions

Offset Paragraphs
An “offset paragraph” is a special type of paragraph whose first line is not
indented the same distance as the rest of the paragraph. VEDIT maintains this
difference in indentation when formatting a paragraph as in the following
examples.

This is an offset paragraph. Notice how
the first line is indented 4 character spaces
further than the rest of the paragraph.

When this paragraph is reformatted with different margins, the second line will
be aligned with the left margin and the first line will be indented the same four
spaces.

An offset paragraph can also have the first line outdented from the remainder
of the paragraph.

1. This is an offset paragraph. Notice how the
first line is at the left margin while the
remaining lines are indented 4 characters.

When this paragraph is reformatted with different margins, the first line will
be aligned with the left margin.

Justification
When “justification” is enabled with {CONFIG, Word processing, Justify
paragraphs}, VEDIT will adjust the spacing between words to create a
straight right edge to the paragraph.

This is a justified paragraph. Notice how the
spacing is randomly adjusted between words
to maintain a justified right margin. This is
preferable in some, but not all applications.

If you need to edit text after it has been justified, it is easier if you first
“unjustify” the text. This removes the additional spaces between words, leaving
the right margin jagged. To unjustify a paragraph, disable {CONFIG, Word
processing, Justify paragraphs}, set {CONFIG, Word processing, Format
options for extra spaces} to “0” (or “4”), and reformat the paragraph.

SUGGESTION: Documents justified by another word processor should first
be unjustified for easier editing with VEDIT.

Format With Left Margin
Most paragraphs have a left margin in column 1 and are therefore not indented.
However, if you reformat an indented paragraph, VEDIT normally maintains
the same amount of indentation, i.e. if a paragraph is indented by five columns,
then after you reformat it, it will still be indented by five columns.

Optionally, you can enable {CONFIG, Word processing, Format from left
margin}. VEDIT then reformats paragraphs between the current left and right
margins. This option can be used to quickly change the indentation of many

Word Processing Functions Chapter 4 Editing Guide 163

paragraphs. Remember, you can simply hold down the hot-key <Ctrl-B> to
reformat one paragraph after another.

Format From Beginning of Paragraph
When you reformat a paragraph, VEDIT normally starts with the current line,
reformats the following lines in the paragraph, and then advances to the
beginning of the next paragraph. This flexibility lets you reformat a paragraph
such as:

Topic
This is a description of the topic. We want the
Topic to be on its own line, immediately followed
by the description.

To reformat such a paragraph, you can place the cursor anywhere on the second
line and press <Ctrl-B> (or toolbar). The “Topic” on the first line will not be
merged with the rest of the paragraph.

However, it is sometimes tedious to have to move the cursor up to the first line
of the paragraph before reformatting it. For this reason, you can optionally
enable {CONFIG, Word processing, Format from beginning of para-
graph}. This can speed up many tasks, although it would not correctly reformat
the “Topic” example above.

Format Options for Extra Spaces
The default value of “0” for {CONFIG, Word processing, Format options
for extra spaces} removes all extra spaces from a paragraph when it is
formatted. It trims trailing spaces, removes extra spaces from between words
and leaves only a single space following “.”, “!” and “?”. If this is not desirable
for your application, you can select other options.

{CONFIG, Word processing, Format options for extra spaces} combines
three options into one by having you add “mask” values (setting bits) for each
desired sub-option.

Mask 1 Add a trailing space after each paragraph line except the last. This is
needed for applications that ignore single “newlines” and would
otherwise concatenate the words from two lines together. This extra
space is allowed to exceed the right margin.

Mask 2 Allow any number of extra spaces between words.

Mask 4 Allow two spaces after “.”, “!” and “?”. Use this if you like two spaces
between sentences.

For example, if you want trailing spaces after each line and two spaces between
sentences, configure this parameter to “5”.

164 Chapter 4 Editing Guide Word Processing Functions

Sorting Lines in a File / Block
VEDIT has both a sort function {EDIT, Sort, Sort lines} for sorting lines
(single line records), and the SORTMAIL macro for sorting records consisting
of multiple lines. Both support variable-length and fixed-length records.

The {EDIT, Sort, Sort lines} function is described here.

Basic sorting with {EDIT, Sort, Sort lines}
The {EDIT, Sort, Sort lines} function sorts all lines in the entire file or just
in the highlighted block. It first displays a dialog box with sort options and an
input box for entering the columns for the primary “sort key”, and optionally,
for up to nine secondary key fields (column ranges).

If no block is highlighted, the default is to sort the entire file with a sort key
beginning in column one. If a columnar block is highlighted, the default is to
sort only the lines within the block, using the highlighted columns as the sort
key.

Options include ascending/descending, case-sensitive, and disabling the cur-
rent “collate table”. A collate table is normally used to set the sort order of
special characters. For example, the default table equates spaces and Tab
characters, and sorts European characters, such as “u umlaut” immediately
after “u”. Collate tables are described in detail below.

VEDIT’s sorting speed is among the fastest in the industry. A 100-megabyte
file can be sorted in about three minutes on a typical 1-GHz computer.
However, when sorting a huge file, we highly recommend that the file reside
on the local hard disk and not on a network server.

Sorting Lines in a File / Block Chapter 4 Editing Guide 165

� To sort all lines in the entire file:
1. If you have made changes to the file, you should select {FILE, Save} to

make sure your changes are saved. You cannot “undo” sorting, except by
reloading the original file.

2. Select {EDIT, Sort, Sort lines}.
3. The sort dialog box is displayed. The primary sort key will simply default

to columns 1 - 160.

Change any desired options. The default is an ascending sort which
equates upper and lower case, and uses the current collate table.

Select [OK] to begin the sort. If it is a huge file, VEDIT will display its
progress.

You can easily sort an entire file or all lines in a block according to a “key”
field such as the “Last-name” or “Zipcode” in a database.

� To sort all lines in a block by a “key” field:
1. Position the cursor on the first line to be sorted and in the left-most column

of the field to be used as the “sort key”.

Select {BLOCK, Set column marker} (<Alt-I> or toolbar) to begin a
columnar block.

2. Position the cursor on the last line to be sorted and in the right-most column
of the field to be used as the “sort key”. To sort an entire file, this must be
the last line of the file.

Select {BLOCK, Set column marker} (<Alt-I> or toolbar) again.

3. Select {EDIT, Sort, Sort lines}.
4. The sort dialog box is displayed. The primary sort key will be preset to

the highlighted columns.

Change any desired options. The default is an ascending sort which
equates upper and lower case, and uses the current collate table.

Select [OK] to begin the sort. If it is a huge file, VEDIT will display its
progress.

Sorting by multiple fields (primary and secondary
keys)

Sorting must sometimes be based on multiple fields. For example, you might
want to sort by “Zipcode” and within the same “Zipcode”, sort by “Last-name”,
and within the same “Last-name”, sort by “First-name”. VEDIT easily per-
forms such sorts in one operation.

� To sort a file based on multiple fields:
1. Determine the beginning and ending column numbers for the desired

primary and secondary key fields.

2. Select {EDIT, Sort, Sort lines}.

166 Chapter 4 Editing Guide Sorting Lines in a File / Block

3. The sort dialog box is displayed. Enter the column numbers for the key
fields, primary field first. The dialog box gives an example of how to enter
the column numbers.

Change any desired options.

Select [OK] to begin the sort. If it is a huge file, VEDIT will display its
progress.

Collate Tables
VEDIT uses a “collate table” to control the order in which characters are
sorted. This is much more flexible than the typical sort utility that simply orders
all characters by their hex value.

For example, by modifying the collate table, you could have VEDIT:

� Sort digits before or after letters.

� Sort punctuation before or after letters.

� Fully control how European characters are sorted; correctly sort any
character set (code page).

VEDIT is currently supplied with these collate tables:

COLLANSI.TBL This collate table equates Tabs, Spaces and Nulls; the sort
order is punctuation, digits, letters, followed by graphics
(8th-bit) characters. It sorts European characters, e.g. “um-
laut-u” after “u” according to the ANSI character set.

COLLOEM.TBL This collate table is identical to collansi.tbl, except
that it sorts European characters according to the OEM
character set.

COLLEBC.TBL This collate table is designed for EBCDIC (mainframe)
files.

COLLDEF.TBL This is the default collate table which is automatically
loaded if no other table is explicitly loaded. By default it
is a copy of collansi.tbl since most Windows pro-
grams use the ANSI character set. However, if you usually
work with the OEM character set, you can copy
colloem.tbl to colldef.tbl.

If you need to load a different collate table, you can manually load it from
within VEDIT or have VEDIT automatically load it at startup.

� To manually load a collate table:
1. Select {EDIT, Sort, Sort lines}.
2. In the sort dialog box, press the [Load TBL] button. In the file dialog box,

select the desired collate table.

3. Upon returning to the sort dialog box, you should see the name of the new
collate table in the title.

Sorting Lines in a File / Block Chapter 4 Editing Guide 167

Press [Cancel] to return to normal editing. Or press [OK] to immediately
sort using the new collate table.

VEDIT can automatically load a collate table at startup. The on-line help topic
“STARTUP.VDM and USTARTUP.VDM Files” describes the startup process
in detail.

� To automatically load a collate table at startup:
1. Open the file ustartup.vdm in the User Config Directory for editing.

2. Locate the line: // Sort_Load("COLLDEF.TBL") ...

3. Delete the leftmost “//” to enable the command.

Change the “COLLDEF.TBL” to the desired filename.

4. Enable {CONFIG, Misc, Enable USTARTUP.VDM file}.
Select {CONFIG, Save config} to ensure this setting is saved into the
vedit.cfg file.

5. Save the file and exit VEDIT.

6. Restart VEDIT and select {EDIT, Sort, Sort lines}.
You should see the name of the new collate table in the title. Press
[Cancel].

Creating Your Own Collate Tables
Custom collate tables can be created from “source” text files. The source to
the supplied collate tables is included in the files collansi.txt,
colloem.txt and collebc.txt. The file closest to your needs should
be used as a model. The supplied collate.vdm macro is then used to
convert (compile) the source collate table .TXT file into the binary .TBL file.

� To Create a Custom Collate Table:
1. Select the closest “source” collate table COLLxxxx.TXT file and open it

in VEDIT.

2. Select {FILE, Save as} and enter a suitable name for the new source table,
e.g. “collnew.txt”.

3. Edit the source collate table to create the desired sort order. Refer to the
file collate.vdm for detailed information about the syntax and com-
mands in these source files.

4. Select {FILE, Save} to save your changes.

5. Select {MISC, Load/execute macro} and select the collate.vdm
macro.

If necessary, correct any mistakes that this macro reports.

When the source collate table is error free, the macro will create a binary
.TBL file, e.g. it will create collnew.tbl.

As described above, you can then manually or automatically load the new
collate table.

168 Chapter 4 Editing Guide Sorting Lines in a File / Block

Technical Description of Sorting
Algorithm

Selecting {EDIT, Sort, Sort lines} simply runs the sortmerg.vdm macro.
This macro displays the sort dialog box which allows the user to enter all
options and the column ranges for the primary and any secondary sort keys.

This user information is then used to build the appropriate Sort_Merge()
command which performs the actual sorting.

In order to quickly sort large files, VEDIT breaks files into small “chunks”
which are sorted and then merged together. Assuming a large multi-megabyte
file, VEDIT copies the first ten 100-Kbyte chunks into ten (“extra”) buffers.
Each chunk is then sorted; these ten chunks are then merged into a sorted
temporary file with a size of about one megabyte. (This is called a “Level 0”
merge.) The next ten 100-Kbyte chunks are then sorted and merged, and so on.
When ten temporary files are written, they are merged into a 10-megabyte
temporary file. (This is called a “Level 1” merge.) If there are ever ten
10-Megabyte temporary files, they are merged into a 100-megabyte temporary
file. (This is called a “Level 2” merge.) Finally, if there are ever ten 100-mega-
byte temporary files, they are merged into a 1000-megabyte temporary file.
(This is called a “Level 3” merge.)

The process continues until the entire file (or block) has been sorted and
merged into one temporary file. The status line gives a progress report and
indicates the current merge level. (Why not.) The sorted temporary file is then
read back into the original file’s buffer. This is indicated on the status line by
the “Waiting for disk” message; this can take up to a minute per 100-megabytes
on a typical 1-GHz computer.

The sorting is actually done using indexes and pointers into the ten sort/merge
buffers. These indexes and pointers are also sorted and merged into temporary
files. In all, 22 “extra” edit buffers are used in the sorting process.

SUGGESTION: Due to the extensive disk I/O and numerous temporary files
created while sorting a huge file, we highly suggest that the
file reside on the local hard disk and not on a network server.

Sorting Lines in a File / Block Chapter 4 Editing Guide 169

Editing Multiple Files
You can simultaneously edit up to 99 files at a time in VEDIT. It is exception-
ally flexible in how the files are displayed. Although each file typically has a
corresponding window, a file can also be displayed in two or more windows.
This is useful for editing two regions of the file at the same time, or for editing
the file in two modes at the same time, e.g. in ASCII and Hexadecimal.

In Windows, you can start up VEDIT without any initial files, or you can “drag
and drop” one or more files to the VEDIT icon to start up VEDIT with the files
already loaded. Of course, you can also open and close files from inside the
editor.

It is easiest to edit additional files using these “hot-keys” in the “Normal”
keyboard layout.

<Ctrl-O> Opens a new file for (simultaneous) editing in a new buffer.
As a convenience, if the specified file does not exist, it is
created. It also opens a corresponding window. This is the
most common way of editing additional files and creating new
files. Hot-key for {FILE, Open}.

<Alt-O> Opens a new file for editing in the current (same) buffer. You
are prompted whether the current file is to be saved or aban-
doned. Use this when you are done editing the current file and
want to edit another file. Hot-key for {FILE, Open (more),
Same buffer}.

<Alt-Y> Similar to <Ctrl-O> except that it opens the new window by
splitting the current window horizontally into two windows.
Hot-key for {FILE, Open (more), Horizontal window}.

<F5> <F6> These keys toggle, “round-robin fashion”, to the pre-
vious/next open buffer (file). This is the most common way
of switching between files. Hot-keys for {FILE, Previous
buffer} and {FILE, Next buffer}; they are also available on
the toolbar.

<Ctrl-F4> Closes the current window. If it is the last window attached to
the file (buffer), it also closes the file, prompting whether the
file is to be saved or abandoned. However, it does not close
the last window and buffer; it then only closes the file. Hot-key
for {WINDOW, Close}. It is the same as clicking the win-
dow’s “close” button.

HINT: You can open two or more files at once by entering their names in
the “Filename:” prompt in the File-Open dialog box. You can also
specify a “Save as” name or begin editing on any desired line
number. See the on-line help for this dialog box or {FILE, Open} in
Chapter 6 (Menu Reference) for more information.

170 Chapter 4 Editing Guide Editing Multiple Files

{FILE, Open (More)} Sub-menu
VEDIT has several variations of {FILE, Open} to save you steps when editing
multiple files.

Many times you will edit one file after another without needing to switch back
and forth between them. You can do this in three ways:

� You can simply open each additional file. However, you will soon have
so many files and windows open that things get confusing.

� As you finish with each file, you can close it and then open the next file.
This keeps things simpler.

� Use {FILE, Open (more), Same buffer} (<Alt-O>). It is a shortcut way
of closing the current file and opening the next file. It saves keystrokes
and mouse clicks.

Sometimes you want to see two files side-by-side or one above the other,
perhaps to compare them, or for reference. You can do this in two ways:

� Open both files with {FILE, Open}. Then resize the windows so that they
are side-by-side or above each other.

� Open the first file with {FILE, Open (more), Same buffer}. By default,
VEDIT displays it in a full-sized window. Open the second file with
{FILE, Open (more), Vertical window} or {FILE, Open (more),
Horizontal window}. The screen will be nicely split into two windows,
saving you the time of manually resizing windows.

Once a file has been opened in a window, the window can be moved or resized
in the usual manner with the mouse or by selecting “Move” or “Size” from the
window’s option menu (click on the window’s icon, press <Alt- -> or press
<Alt-Space> and <Cursor Right>).

Select {WINDOW, Cascade} to display all windows at once with overlap-
ping, or {WINDOW, Tile} to display all windows without overlapping.

Selecting {VIEW, Zoom} is the same as clicking on the window’s “Maximize”
button. It zooms the current window to its maximum size for easier editing.
Other windows you switch to will also be zoomed. Select it again, or click on
the window’s “Restore” button, to restore the windows to their normal size.

Alternatively, select {VIEW, Full size} to expand the current window to
full-size without zooming all windows. Or select {VIEW, Full size - All} to
expand all windows to full-sized. This is convenient if you want to view most,
but not all, windows at full size.

{VIEW, Reset} restores all windows their normal color and display mode.
Each open buffer (file) is displayed in just one window; additional windows
are removed. The windows are displayed as cascaded or full-sized, depending
upon the setting of {CONFIG, Display options, Auto-create window style}.

SUGGESTION: To clean up a cluttered window display, try {WINDOW,
Cascade} or {VIEW, Full size - All}. If the windows are also
in unwanted colors and/or display modes, first select
{VIEW, Reset}.

Editing Multiple Files Chapter 4 Editing Guide 171

Optional Configuration
{CONFIG, Display options, Auto-create window style} determines if newly
created window are initially “full sized” and completely overlapping, or are
smaller and cascaded. The default is “cascaded” because this is typical for other
windows programs.

However, most users prefer full-sized windows; this lets you edit each file in
a large window; it has some advantages to zooming the window.

See the heading “Full-sized Windows” below.

Switching Between Files (Edit Buffers)
You can switch between the files currently being edited by toggling between
them, by switching directly to a particular buffer, or by using “point and shoot”
selection.

� To switch to another file:
1. Select {FILE, Previous buffer} or {FILE, Next buffer} (<F5>, <F6>).

This toggles, “round-robin fashion”, to the next/previous open edit buffer
and the file (if any) being edited in it.

These functions are also available on the toolbar.

-OR-
1. Select {FILE, Buffer switch} (<F4>). You are prompted for the buffer

number.

Closing Files and Windows
The easiest way to close a file, without exiting VEDIT, is to double click the
window’s icon; this is the same as selecting {WINDOW, Close} (<Ctrl-F4>).
If this is the only window displaying the file, which is the typical case, it closes
the file and the corresponding buffer.

If a file is displayed in two or more windows, {WINDOW, Close} does not
close the file until you close its last window.

Alternatively, you can select {FILE, Close} (<Ctrl-W>) to close the current
buffer, saving or abandoning any file in it. It also closes all windows attached
to the buffer. In the typical case where each file is displayed in only one
window, {FILE, Close} and {WINDOW, Close} are identical.

NOTE: VEDIT always keeps one buffer and window open. If you attempt
to close the last window, it only closes the file. The last buffer and
corresponding window will remain open, but will be empty.

Use {FILE, Exit} when you are ready to exit VEDIT. It will let you selectively
save or abandon each modified file, or save/abandon all files.

172 Chapter 4 Editing Guide Editing Multiple Files

� To close the current file (buffer):
1. Select {WINDOW, Close} (<Ctrl-F4>) or double-click the window’s

icon. Alternatively, select {FILE, Close} (<Ctrl-W>).

If the current file has been modified and not yet saved to disk you are
prompted with:
Save current file? [Yes] [No-Abandon]

2. If you select [Yes], VEDIT will save the current file with all modifications.
If you select [No], VEDIT will abandon changes that have been made
since the last time the file was saved. In either case, it also closes the
current window and buffer. (However, VEDIT always keeps one buffer
and window open; they may be empty.)

3. If you select [Yes] to save the text, but no file is open, you will be prompted
for the name under which to save the file:
No filename specified! Enter “Save As” filename:

Enter the desired name for the file.

MOUSE: You can also close a file by double-clicking the mouse on the
window’s left-side icon. This is equivalent to {WINDOW, Close}.

{WINDOW, Remove} lets you close any window without first switching to
it. Its primary purpose is to close (remove) special “Command mode” windows
that were created in the VEDIT macro language or with {WINDOW, Split}.

Copying Text From One File to Another
A common reason for editing two files is to copy portions from one file to
another. This requires the use of a text register.

� To copy text from one file to another:
1. Highlight the block in the normal fashion. Either a stream, line or colum-

nar block can be copied. You may want to use {BLOCK, Set stream
marker} (<F9> or the toolbar) to highlight a very large block.

2. Select {BLOCK, Copy to register} (normal hot-key: <Ctrl-F11> or
<Numpad+>). Enter the desired text register number; we suggest “0”
through “9”. You can immediately press <Enter>, <Ctrl-F11> or
<Numpad+> again to select register “0”, also called the scratchpad.

3. Switch to the second file and move the cursor to the desired position.

4. Select {BLOCK, Insert register} (normal hot-key: <F11> or
<Numpad*>). Select the same text register as in step 2.

If the block is too large to fit in a text register, you will receive an error message.
See the topic “Cut and Paste Huge Blocks” earlier in this chapter for a
work-around; one way is to use the Windows clipboard.

Editing Multiple Files Chapter 4 Editing Guide 173

Edit Buffer Details
(This is a moderately technical topic.)

VEDIT has 99 available edit buffers, each of which can have one file open for
editing. The edit buffers are always in one of three possible states:

� Closed. We also say that a closed edit buffer is “available” or “unused”.

� Open without a file. The edit buffer may or may not contain text. If the
buffer contains no text, we say that it is “empty”.

� Open with a file open. The edit buffer is being used to edit a file.

Edit buffers are normally used to edit files, but can also be used as editable
“scratchpads” that have no file open. You can open an empty edit buffer
without a file by selecting {FILE, Buffer switch} (<F4>) and entering the
number of an unused buffer. Or you can select {FILE, New} to open the next
available buffer. You can then perform any normal editing operations in this
buffer.

Once an edit buffer is opened, it remains open until you explicitly close it with
{FILE, Close} or {WINDOW, Close}. However, VEDIT always keeps one
buffer and window open. If you attempt to close the last buffer, it only closes
the file. The last buffer and corresponding window will remain open, but will
be empty.

The contents of an edit buffer can be inserted into another buffer (file) just like
a text register. However, a block of text cannot be copied to another buffer —
you cannot change the contents of an edit buffer except when it is the “active”
buffer. This limitation prevents you from accidentally altering any file open
in the buffer.

� To insert another edit buffer into the current buffer (file):
1. Position the cursor at the desired location in your file. The buffer contents

will be inserted just before the cursor.

2. Select {BLOCK, Insert register} (normal hot-key: <F11> or
<Numpad*>). You will be prompted with:
Register number:

3. Enter the buffer number, followed by “+buffer”. For example, to select
buffer 5, enter “5+buffer”.

NOTES: You should only insert an edit buffer that either has no file open or
is reasonably small. In particular, if the open file is large, only the
portion currently in memory will be inserted.

Use {EDIT, Insert, Insert file} to insert another file into the current
file.

174 Chapter 4 Editing Guide Editing Multiple Files

Windows
While windows and buffers may appear to be equivalent during routine editing,
VEDIT’s windows and buffers are actually completely independent of each
other. It is possible to have buffers without windows and windows without
buffers; this is especially true in the VEDIT macro language.

This advanced topic describes how buffers and windows interact.

Introduction
VEDIT can have up to 99 edit buffers open at once; they are numbered “1”
through “99”. Each buffer can have a file open in it for editing, although it is
not necessary for a buffer to have an open file. In other words, multiple “<<No
name>>” buffers can be open at once. At least one buffer is always open;
although the file in the last buffer can be closed, the last buffer itself cannot be
closed.

When you open additional files with {FILE, Open}, additional buffers are
automatically opened, as needed, to hold the files.

VEDIT can also have up to 99 windows open at once; they have an “ID
number” between “1” and “99”. These are sometimes referred to as Editing or
Visual mode windows to distinguish them from special Command mode
windows. Command mode windows have a non-numeric name such as “$” or
“H”. They are often used by the VEDIT macro language (e.g., the Compiler
support macro).

Windows are Attached to Buffers
To display buffers in windows, VEDIT automatically “attaches” a window to
a buffer. When you display one buffer (file) in two or more windows, multiple
windows are attached to one buffer.

Each time a new buffer is opened in Visual Mode (e.g., when you open a file),
a new window is also created and attached to the buffer. The window is initially
full screen in size and overlaps any other windows.

You might assume that Buffer 1 is always displayed in Window 1, Buffer 2 in
Window 2, and so on. This is not true! For example, if you initially have one
file open and then select {WINDOW, Split}, Buffer 1 will be attached to
Windows 1 and 2. When you then open a second file, Buffer 2 will be attached
to the auto-created Window 3.

Fortunately, it is rarely important to know the window’s ID number.

How Window Names are Displayed
There are two ways of identifying windows:

� Each editing window has a unique ID number such as “1” or “2”. Special
Command Mode windows have a non-numeric name such as “$” or “H”.
This ID/name can be displayed in angle-brackets, e.g. <2> or <$>.

Windows Chapter 4 Editing Guide 175

� Each editing window is attached to an edit buffer. The displayed name is
the associated buffer number, e.g. [2]. Multiple windows per buffer are
displayed as e.g. [2:1] and [2:2].

By default, VEDIT displays both the ID number and the buffer number;
however, if they are the same, it only displays the ID number. Therefore:

<3> [2] Indicates this is “Window 3” which is attached to “Buffer 2”.

[1] Indicates this is “Window 1” which is attached to “Buffer 1”. It
does not display “<1>”, because it is redundant.

<$> Indicates this is the special “Command Mode” window. It is never
attached to a buffer.

To handle special applications and personal preferences, {CONFIG, Display
options, Window name display style} can be changed to always display the
window ID, the buffer number, or both.

The point and shoot for {WINDOW, Switch} displays each window’s ID
number, the buffer number and the filename.

Switching Between Windows
When each buffer (file) is displayed in its own window, select either {FILE,
Next buffer} (<F6> or toolbar) or {FILE, Previous buffer} (<F5> or toolbar)
to toggle “round-robin” between the files being edited.

Or you can select {FILE, Buffer switch} (<F4>) or {WINDOW, Switch}
(<Alt-F5>) to switch directly to a desired buffer or window.

When a buffer is displayed in two or more windows, you must use
{WINDOW, Next window} (<Ctrl-F6>), {WINDOW, Previous window}
(<Ctrl-F5>) or {WINDOW, Switch} (<Alt-F5>) to switch to the additional
windows.

You can also switch to any visible window by clicking the mouse anywhere
within the window; however, the desired window will often be covered by
other windows.

Zooming A Window
After you have created several windows, it is often helpful to “zoom” (maxi-
mize) the current window to fill the entire screen for easier editing.

� To zoom the current window to full screen:
1. Select {VIEW, Zoom} or click on the window’s “maximize” button..

The zooming remains in effect until you select {VIEW, Zoom} again to
“de-zoom” the screen to redisplay all windows.

If you prefer to always work with zoomed (maximized) windows, you can have
VEDIT startup with zoomed windows by enabling {CONFIG, Display
options, Windows zoomed on startup}.

176 Chapter 4 Editing Guide Windows

“Full-Sized” Windows
(Windows version)

VEDIT has the useful concept of “Full-sized” windows. This is similar to you
manually stretching a window’s borders to the maximum possible size. How-
ever, a full-sized window will remain full-sized if you change VEDIT’s overall
window size, toggle the toolbar on/off or toggle the command mode window
on/off.

A window remains full-sized until you explicitly resize, tile or cascade it.

A full-sized window is not the same as a “zoomed” (or “maximized”) window,
even though they look similar and serve similar purposes. When you zoom a
window, each window you switch to will also be zoomed, until you “dezoom”.
In contrast, some of your editing windows can be full-sized, while others are
custom-sized or tiled.

{CONFIG, Display options, Auto-create window style} determines if newly
created window are initially full-sized or are smaller and cascaded. The default
is “cascaded” because this is typical for other windows programs.

SUGGESTION: We suggest setting {CONFIG, Display options, Auto-
create window style} to “1” to create new windows as
full-sized windows. This lets you edit in the largest possible
window without having to zoom all windows.

Once you are familiar with VEDIT, we are confident that you will use and
appreciate the “Full-sized” window concept.

Editing One File in Two Windows
VEDIT can display a file in more than one window at a time. You can thereby
view different sections of a file at the same time. For example, you could refer
to definitions listed at the beginning of a file while editing in the middle of the
file.

There are several ways to get a file displayed in two windows at once:

� {WINDOW, Split} splits the current window into two windows. The
current file will initially be displayed in both the current and new window.

� {VIEW, Toggle hex mode split} splits the current window vertically; the
left windows displays in hexadecimal; the right window displays in
ASCII. Unlike the other splits, the cursors in both windows move together.

All windows displaying a common file update together when the text in their
displayed region changes. Each window also displays its own cursor and can
be scrolled independently of the other window(s). Notice that only the cursor
in the active window moves. The cursor(s) in the inactive window(s) indicate
your editing position when you switch to those windows.

Windows Chapter 4 Editing Guide 177

File Types - Text and
Binary/Data

VEDIT can edit both text files and binary/data files. A program source code
file or the chapter of a book are typical text files, while executable files (.EXE)
and database files (.DBF) are typical binary/data files.

With VEDIT, the file type is mostly a matter of the “newline” character(s) used
in the file. For Windows/DOS and UNIX text files, VEDIT expects Line-Feed
characters to end each text line; for Mac text files, Carriage-Return characters
end each text line. If the Line-Feed characters in a text file are preceded with
Carriage-Return characters, VEDIT considers the file to be a Windows/DOS
text file; otherwise, it’s a UNIX text file. If only Carriage-Return characters
are found, it’s a Mac text file.

If no or very few “newlines” are found, e.g. the lines are more than 4096
characters long, VEDIT considers the file to be a binary/data file.

The difference between Windows/DOS, UNIX and Mac text files is important
in the way that “newline” characters are displayed, deleted and inserted.

When opening a file for editing, VEDIT examines the file to automatically
determine the file type. Sometimes VEDIT will choose the wrong file type.
For example, since a typical executable file (.EXE) contains random Line-Feed
characters, VEDIT will usually open it as a (strange looking) text file.

If you disable {CONFIG, File handling, Enable auto-file type}, VEDIT will
not automatically determine the file type when it opens a file.

Binary/Data files are displayed with a uniform number of characters per line.
This also handles “fixed-length record” data files. For these files, {CONFIG,
File handling, File type} sets the number of characters displayed per line, i.e.
the “record length”. “64” is the default for binary files; you may want to change
it to “16” when editing in hexadecimal.

{CONFIG, File handling, File type} lets you see and/or change the current
file’s type. Each file opened can have its own setting.

0 = CR-LF Each text line ends in a CR (Carriage-Return) and LF
(Line-Feed). The LF is the true “Newline”; the CR is
optional. Typical for Windows/DOS.

1 = LF Each text line ends in just a LF. Typical for UNIX.

2 = CR Each text line ends in just a CR. Typical for Macintosh.

3 = CR+LF Each text line ends in both a CR (Carriage-Return) and LF
(Line-Feed). Unlike type “0”, both the CR and LF must be
present. This special mode can be manually selected when
editing binary data files where each record ends in both a
CR and LF. (Unlike type “0”, a binary field with a LF will
not split the displayed line.)

178 Chapter 4 Editing Guide File Types - Text and Binary/Data

4 = 25 Hex Each EBCDIC text line ends in an EBCDIC “Line-Feed”
which has a hex value of 25. This special mode can be
manually selected.

n=Record mode Values of “8” through “65535” set the record length for
fixed-length-record data files. Instead of assuming that
lines end in a “newline” character, VEDIT treats each line
(record) as simply ‘n’ characters. Word processing opera-
tions are not available in Record mode.

NOTE: {EDIT, Convert, Convert macro} can convert a file with fixed-
length records into a normal text file with “newline” characters.

Windows/DOS and UNIX Text Files
Each line in a Windows/DOS text file normally ends in both a Carriage-Return
and Line-Feed character; this <CR><LF> pair is considered the normal
“newline” character even though it really is two characters. Pressing
[DELETE] once at the end of a line deletes the <CR><LF> pair. Similarly,
pressing <Enter> (in Insert mode) inserts a <CR><LF> pair.

If a text line ends in just a Line-Feed when the file type is set to “0=DOS text”,
“<LF>” is displayed at the end of the line. Such a line may be corrected by
deleting the lone <LF> with [DELETE] and then inserting the <CR><LF>
pair with <Enter>.

UNIX text files normally have lines ending in just a Line-Feed character, which
is therefore the “newline” character. Pressing <Enter> inserts only the Line-
Feed character. Carriage-Return characters have no special meaning, and are
displayed as “<CR>”.

VEDIT does not automatically convert a Windows/DOS file to UNIX or vice
versa. However, you can easily convert an entire file or just a highlighted block.

� To convert a Windows/DOS file into a UNIX file:
1. To convert the entire file, select {BLOCK, Select all} (<Ctrl-A>) to block

highlight the file.

2. Select {EDIT, Convert, Win/DOS to UNIX}. The block/file is now
converted.

� To convert a UNIX file into a Windows/DOS file:
1. To convert the entire file, select {BLOCK, Select all} (<Ctrl-A>) to block

highlight the file.

2. Select {EDIT, Convert, UNIX to Win/DOS}. The block/file is now
converted.

File Types - Text and Binary/Data Chapter 4 Editing Guide 179

Macintosh Text Files
Mac text files use a single “Carriage-Return” as the “newline” character at the
end of each line. Therefore, pressing <Enter> (in Insert Mode) inserts a <CR>.
Line-Feed characters have no special meaning and are displayed as “<LF>”.

You must use additional care when editing Mac files. In particular you must
be very careful with “cut and paste” operations between Mac and Win-
dows/DOS files. For example, a multiple line block cut from a Mac file will
become a single long line when pasted into a Windows/DOS file.

NOTE: Because “regular expressions” were originally designed for UNIX
text files with Line-Feed “newline” characters, you may have some
trouble searching Mac files using some regular expressions.

VEDIT does not automatically convert from one file format into another.
Therefore, before performing “cut and paste” between Mac and Win-
dows/DOS files, you may want to convert the Mac file into a Windows/DOS
file.

� To convert a Mac file into a Windows/DOS file:
1. To convert the entire file, select {BLOCK, Select all} (<Ctrl-A>) to block

highlight the file.

2. Select {EDIT, Convert, Convert macro}. The macro will display a menu
of conversion choices.

3. Select the “Mac to Win/DOS” conversion by typing the number for this
choice. The block/file is now converted.

Binary/Data Files (Record Mode)
VEDIT treats files that do not have any “newline” characters in them as
binary/data files. Files with text lines longer than about 4000 characters are
also treated as binary/data files.

Binary/data files are usually edited in “Record” mode in which a uniform
number of characters are displayed per line or “record”. This defaults to 64,
but can be changed with {CONFIG, File handling, File type}. Selecting a
value of “8” through “65535” selects Record mode and selects the number of
characters displayed per line. The number of characters per line is referred to
as the “record length” or sometimes “record size”.

Setting the desired record length also handles files with “fixed-length records”.
For example, files downloaded from IBM mainframes often have fixed-length
records with record lengths of 80, 256 and other values. Most database files
also have fixed-length records.

The record length is often greater than the width of the current window. The
record can be viewed using horizontal scrolling or by wrapping the record onto
multiple screen lines. {CONFIG, Display options, Horizontal scroll
margin} controls how long lines are displayed.

180 Chapter 4 Editing Guide File Types - Text and Binary/Data

In Record mode, any Line-Feed and Carriage-Return characters are no longer
treated as “newline” characters. However, they may display as “<LF>” and
“<CR>”. Similarly, control and graphics characters are displayed according to
the current display mode. Repeatedly pressing <Alt-D> (the normal hot-key
for {VIEW, Toggle display mode}) will let you find the desired display mode.
(This function is also on the toolbar.)

NOTES: When editing a binary/data file, you may want to use {VIEW,
Toggle display mode} (<Alt-D> or toolbar) to select “ASCII-4”
which displays any Line-Feed, Carriage-Return, Tab and other
control characters as a single character instead of as <LF>, etc.

Binary/data files are often most easy to edit with a split window
displaying hexadecimal and ASCII. This can be selected with
{VIEW, Toggle hex mode split} (<Alt-\>).

By default, in “Record mode” you can only overstrike characters,
you cannot insert or delete characters. This reduces your chance
of corrupting the file. However, full editing can be enabled by setting
{CONFIG, File handling, Overwrite-only mode} to “0”.

Database Files With Headers
Some data files, particularly database files, consist of fixed-length records that
follow a variable length header. As described above, to edit these files
{CONFIG, File handling, File type} should be set to the length of the records.
However, since the header is usually not the same length as the records, the
beginning of each record will not be displayed at the beginning of a screen line
and the fields in the records will not be lined up.

You can make these files easier to edit by setting {CONFIG, File handling,
Record header size} to the size of the header in bytes. Each following record
will then start on a new screen line and the fields in the records will be aligned
on the screen.

The status line displays a line number of “0” when the cursor is in the header.
This makes the line number correspond to the record number.

xBASE Files: VEDIT can configure itself to dBase and xBase database
files by selecting {MISC, More macros, dBasekey}. This
macro reads the header size and record size from the
current “.DBF” file and configures VEDIT accordingly.

A more elaborate DBASE.VDM macro is described in Chap-
ter 5.

File Types - Text and Binary/Data Chapter 4 Editing Guide 181

Converting Files
This (moderately advanced) topic describes how to convert between different
file types and perform other useful conversions. In particular:

� Converting between Windows/DOS, UNIX and Macintosh text files.

� Converting from fixed-length records into normal text files.

� Converting a text file into fixed-length records.

� Padding a text file to make all lines the same length.

� Stripping trailing spaces from a text file.

Converting between File Types
VEDIT supports Windows/DOS, UNIX and Macintosh text files. The main
difference between them are the “newline” characters used at the end of each
line. VEDIT also supports data files with fixed-length records.

When opening a file, VEDIT automatically determines the most likely file
type. It can usually determine the correct file type for text files (Windows/DOS,
UNIX or Mac). However, before converting a file, you should confirm the
current file type.

� Confirming the current file type:
1. Move the cursor to the end of a line.

2. Press <Alt-D> (the normal hot-key for {VIEW, Toggle display mode})
six times to toggle into “Hex mode”.

You can now see the hex codes for the “newline” characters, if any. “0D”
is the hex code for Carriage-Return. “0A” is the hex code for Line-Feed.

If each line ends in “0D 0A”, you have a Windows/DOS text file. If each
line ends in just “0A”, you have a UNIX text file. If each line ends in just
“0D”, you have a Mac text file.

If you don't see “0D” or “0A”, then you must have already explicitly set
a record-length with {CONFIG, File handling, File type}.

3. Double-check that {CONFIG, File handling, File type} is set to the
correct file type.

It should be set to “0” for Windows/DOS, “1” for UNIX and “2” for Mac.
Otherwise, it is set to the data file's record length.

Since converting between Windows/DOS and UNIX text files is very com-
mon, VEDIT provides the easy-to-use {EDIT, Convert, Win/DOS to UNIX}
and {EDIT, Convert, UNIX to Win/DOS} functions. They are described in
the earlier topic “File type - Windows/DOS and UNIX Text Files”.

You can convert between all file types with {EDIT, Convert, CONVERT
macro}.

182 Chapter 4 Editing Guide Converting Files

� Converting between file types:
1. To convert the entire file, select {BLOCK, Select all} (<Ctrl-A>) to block

highlight the file.

2. Select {EDIT, Convert, Convert macro}. The macro will display a menu
of conversion choices:

3. Select the desired conversion by entering the corresponding number “1”
through “8”.

Note -- before selecting “Fixed-length to Newlines”, you must set the
correct record-length. This is described in detail below.

Notes:

Sometimes you don't want to convert the entire file, but only a block. For
example, if you “cut and paste” a block from a UNIX file into a Windows/DOS
text file, you will have to convert that block.

If you accidentally perform a “UNIX to Win/DOS” conversion on a file which
is already a Win/DOS text file, each line will then incorrectly end with two
Carriage-Returns and one Line-Feed. This can be fixed with the following hint.

HINT: To fix a Windows/DOS text file which has extra Carriage-Returns,
select {EDIT, Convert, Win/DOS to UNIX} several times to remove
all Carriage-Returns. Then select {EDIT, Convert, UNIX to
Win/DOS} exactly once.

Converting Files Chapter 4 Editing Guide 183

Files with Fixed-Length Records
NOTE: The earlier topic “Opening Files with Fixed-Length Records” intro-

duces “Fixed-length Records” and explains how to open such files.

Files with “Fixed-length records” fall into two categories:

� Data/binary files that are organized into records of the same length. There
is no “Newline” (e.g., Carriage-Return and Line-Feed) at the end of each
record. Therefore, you must explicitly set the correct record length with
{CONFIG, File handling, File type}. When properly set, the records will
align nicely within VEDIT. You must “know” the record length from the
file specifications, or you must deduce it; it is impossible to automatically
determine it. Such files are edited in “Record” mode.

� Text files in which all lines have the same length. Each line (record) ends
with a “Newline” (e.g., Carriage-Return and Line-Feed). Such files are
already normal text files.

A file “exported” from a database will often be a text file in which all lines
(records) have the same length. However, the raw database file will often be a
binary file with fixed-length records.

It should be obvious which type of file you have when you open it:

� If the records are aligned when you first open it, it is probably a text file.
{CONFIG, File handling, File type} will be set to “0”, “1” or “2”.

� If nothing is aligned when you first open it, it is probably a data/binary
file. VEDIT typically opens binary files with a record length of 64; you
must set {CONFIG, File handling, File type} to the correct record length
and possibly {CONFIG, File handling, Record header size} to the
correct header size. The records should then be aligned on the screen.

Text files, in which all lines have the same length, generally do not need to be
converted into anything else.

You are very limited in how you can edit a file with fixed-length records. For
example, you can not insert or delete characters since this would change the
length of the current record and thereby corrupt the entire file. Similarly, you
cannot delete a field by highlighting it as a columnar block.

NOTE: This limitation on editing files with fixed-length records is controlled
with {CONFIG, File handling, Overwrite-only mode}. You can
turn it off, but you must then be extra careful not to corrupt the file.
See the following topic “Overwrite only mode”.

Therefore, when possible, you should convert the data file into a standard text
file with Carriage-Return and Line-Feed after each record. This is easily done
in VEDIT.

184 Chapter 4 Editing Guide Converting Files

Converting from Fixed-Length to Normal Text
Data files with fixed-length records can be converted into normal text files
which have a “Newline” (e.g., Carriage-Return and Line-Feed) at the end of
each record. In other words, each record is converted into a text line. Such text
files are much easier to edit and can be imported into databases and other
programs.

� Convert from fixed-length records into normal text file:
1. Be sure the file’s record length is set correctly; the records should be nicely

aligned on the screen. If necessary, use {CONFIG, File handling, File
type} to set the correct record length.

2. Be sure that the records don’t already end in Carriage-Return and Line-
Feed. To check this, place the cursor at the end of one record. Then press
<Alt-D> (the normal hot-key for {VIEW, Toggle display mode}) six
times to toggle into “Hex mode”. If you see the hex codes “0D” and/or
“0A” then the records already end in Carriage-Return and/or Line-Feed
and you must not perform step 3.

Press <Alt-D> four more times to toggle back into the normal “ASCII-0”
display mode.

3. Select {EDIT, Convert, CONVERT macro}. Select [Yes] to convert the
entire file.

4. In the convert menu, enter “7” to convert from fixed-length records to
“newlines”. Then select [Win/DOS] assuming you want Carriage-Return
and Line-Feed at the end of each record.

Although the file will not look any differently on the screen now, it will have
been converted. You can confirm this by checking {CONFIG, File handling,
File type}; it should now be set to “0”.

After saving the converted file, you should be able to open/import it in most
other programs.

See also:

The topic “Opening Files with Fixed-Length Records”.

Converting Files Chapter 4 Editing Guide 185

Converting Normal Text into Fixed-length Records
Although rarely needed, text files with “Newline” characters can be converted
into data files with fixed-length records and without “Newline” characters.

This procedure generally only makes sense if all text lines have the same
length. In particular, the longest text line should not be longer than the desired
record length. However, the conversion will pad shorter lines and can option-
ally truncate longer lines.

� Convert from text lines into fixed-length records:
1. Select {USER, Find longest line}. If the longest line is longer than the

desired record length, you should probably stop and correct this inconsis-
tency. Alternatively, you can have lines longer than the record length
truncated in the following steps.

2. Select {EDIT, Convert, CONVERT macro}. Select [Yes] to convert the
entire file.

3. In the convert menu, enter “8” to convert to a data file with fixed-length
records. Then enter the desired record length.

4. You may be prompted for confirmation to convert any tab characters into
spaces, based on the currently configured tab stops.

5. If any lines are longer than the record length, you are prompted with:
[Split] [Split all] [Truncate] [Truncate all] [Edit]
[Abort]

[Split] splits the long line into two lines, thereby creating two records. The
second record is padded with spaces to reach the record length.

[Truncate] simply truncates the end of the long line.

Any lines shorter than the record length are padded with spaces to the
record length.

6. If any lines are split or truncated, the file convert.err displays a
summary of the conversion, including the line numbers of the too-long
lines.

Although the file will not look any differently on the screen now, it will have
been converted. You can confirm this by checking {CONFIG, File handling,
File type}; it should now be set to the selected record length.

186 Chapter 4 Editing Guide Converting Files

Make All Lines the Same Length
It is sometimes desirable to ensure that all lines in a text file have the same
length. For example, if each text line is one data record and the file will be
imported into a database, all lines may need to be the same length.

The function {EDIT, Convert, All lines same length} forces all text lines to
have the same length; it prompts for the desired length. Lines shorter than the
desired length are padded at their end with spaces; lines longer than the desired
length are optionally truncated.

� To force all lines to the same length:
1. Select {EDIT, Convert, All lines same length}.
2. Enter the desired length for all lines.

-OR-
Or, press [Scan] to determine the length of the longest line in the current
file. This length is then used as the desired length.

3. Press [Pad]. Every line in the file, which is shorter than the desired length,
will have spaces added at the end of the line, to pad it to the desired length.

4. If any lines are already longer than the desired length, you are prompted
with:
[Ignore] [Truncate] [Stop]

You should probably stop and correct this inconsistency. Alternatively,
you can truncate the too-long lines. If you ignore the long lines, not all
lines will have the same length.

See also:

Use {USER, Find longest line} to find the longest line in a file.

Use {USER, Check lines same length} at any time to check if all lines in the
file have the same length.

Use {BLOCK, Insert empty columns} to insert a field of empty columns in
the middle of a group of lines.

Converting Files Chapter 4 Editing Guide 187

Strip Trailing Spaces
A common operation when converting files, or just cleaning up files, is to
remove trailing spaces. (Trailing spaces are “extra” spaces past the ends of
lines.) Trailing spaces can come from several sources:

� Users often inadvertently add extra spaces to the ends of lines while
editing.

� Some programs, e.g. word processors, add an extra space to each line
within a paragraph.

� The function {EDIT, Convert, All lines same length} adds trailing spaces
to make all lines the same length.

� Files exported from databases often have trailing spaces, perhaps corre-
sponding to unused fields.

While trailing spaces generally don't cause problems, sometimes they do,
especially if some lines have many trailing spaces. For example, a line with
many trailing spaces may print as two lines, with a blank second line. This can
be very confusing.

There are several ways to see if a file has trailing spaces.

� Go to the beginning of the file and select {USER, Find trailing spaces}.
It moves the cursor to the first trailing spaces (or tab characters), if any.

� Set {CONFIG, Display options, Highlight cursor line} to “2”. This
setting highlights only actual characters on the current line, including
trailing spaces. Any trailing spaces on the current line will therefore stand
out.

� Set {CONFIG, Editing colors, Window erase} to a non-zero value
which is different from “Edited text”. This gives an unusual (and a bit
strange) effect in which the actual text characters are in one color and and
the space past the end of each line is in a different color. Its only purpose
is to make trailing spaces stand out.

� Enable {VIEW, Options, Show newlines (CR/LF)}. This lets you see
where each line ends; it helps show any trailing spaces.

Assuming you have the default {USER} menu loaded, it is easy to remove
trailing spaces.

� Remove trailing spaces from the current file:
1. Select {USER, Remove trailing spaces}.

This removes all trailing “whitespace” (spaces and tabs) from the entire
file and restores the cursor position.

The status line briefly indicates how many lines had trailing whitespace
removed.

188 Chapter 4 Editing Guide Converting Files

Translating Files
An entire file, or just a highlighted block, can be translated using the built-in
ANSI/OEM or EBCDIC/ASCII tables or with a user-created table. When a
block/file is translated, each byte is simply converted to another byte according
to the current table; the size of the file does not change.

Translating between ANSI and OEM-PC
VEDIT has a built-in table for translating between the OEM (original IBM PC
or DOS) graphics characters and the ANSI (Windows) character sets. This is
particularly useful for translating non-English characters from their OEM
value to the value needed for most Windows programs. For example, the “ü”
(umlaut u) has an OEM value of “129”, but an ANSI value of “252”. The
built-in ANSI/OEM table does not change any normal characters with values
of less than 128. As with most translations, some characters cause problems
because there is no equivalent. For example, there is no ANSI equivalent to
the OEM (IBM PC) box-drawing characters.

For example, you can translate a file with non-English characters from the
OEM-PC character set to the ANSI character set.

� To translate a file from OEM-PC to ANSI:
1. Open the file in the normal manner, e.g. with {FILE, Open}.
2. Select {BLOCK, Select all} (<Ctrl-A>) to mark the entire file as a block.

3. Select {EDIT, Translate, OEM-ASCII to ANSI} to translate the file to
the ANSI character set.

IMPORTANT: Since the OEM and ANSI character sets define different
characters, not all characters will translate correctly. In
particular, there is no ANSI equivalent for most OEM-PC
graphics characters, e.g. the “box drawing” characters.

Translating between ASCII and Unicode
In all variations of ASCII, each character is represented by one byte, which
allows up to 256 different characters.

In “Unicode”, each character is represented by two bytes, which allows up to
65,536 different characters, which is enough to represent characters in Chinese
and Japanese.

Unicode is recently being used for some English, French, German, Italian, etc.
text files which really only need 256 different characters. In this case the upper
byte of each Unicode character is zero (00 hex).

While VEDIT (currently) cannot directly edit Unicode files, you can translate
some Unicode files (e.g., for English, French, German, Italian, etc.) into
ASCII, or from ASCII into Unicode.

Translating Files Chapter 4 Editing Guide 189

NOTE: VEDIT can only translate Unicode files in which the upper byte of
each Unicode character is zero (00 hex). Therefore, VEDIT cannot
translate Chinese, Japanese, Korean, etc. Unicode files that need
both bytes.

� To translate a file from Unicode to ASCII:
1. Open the Unicode file in the normal manner, e.g. with {FILE, Open}.

You will notice that every other character is readable text. In between you
will see either “nul” or spaces, depending upon your display font.

3. Select {EDIT, Translate, Unicode to ASCII}.
At the confirmation, select [Yes] to translate the file.

The file should then appear as normal text.

Similarly, you can translate a file from ASCII to Unicode with {EDIT,
Translate, ASCII to Unicode}.

Notes:

The Unicode / ASCII translation is performed by the supplied macros
unic-asc.vdm and asc-unic.vdm.

Translating between EBCDIC and ASCII
You can translate an EBCDIC text file downloaded from an IBM mainframe
into ASCII for use on a PC.

� To translate a text file from EBCDIC to ASCII:
1. Open the EBCDIC file in the normal manner, e.g. with {FILE, Open}.
2. Select {BLOCK, Select all} (<Ctrl-A>) to mark the entire file as a block.

3. Select {EDIT, Translate, Translate from EBCDIC} to translate the file
to ASCII.

If the original EBCDIC file consisted of fixed-length records without end-of-
record characters, you may want to add an ASCII “newline” (Carriage-Return
and Line-Feed) to the end of each record so that Windows/DOS programs can
more easily read it.

4. Select {CONFIG, File handling, File type} and set the correct record
length. Records should now be nicely aligned on the screen.

5. Select {EDIT, Convert, Convert macro}. In the macro’s menu, select
“Fixed length records to Newlines”.

The macro will automatically change {CONFIG, File handling, File
type} to “0” or “1” to recognize the selected ASCII newline and make the
file more readable on the screen. Therefore, you won’t see any change on
the screen even though the file was converted.

6. Select {FILE, Close buffer} or {FILE, Exit} to save the translated file.

190 Chapter 4 Editing Guide Translating Files

Instead of translating an EBCDIC file, you can also display the file in ASCII
(instead of gibberish) by pressing <Alt-D> (the normal hot-key for {VIEW,
Toggle display mode}) eight times to toggle to the “EBCDIC” display mode,
as indicated on the status line. In this EBCDIC mode, the same translation table
is used, but only for display purposes; the EBCDIC file itself is not changed.

Similarly, an ASCII file can be translated to EBCDIC with {EDIT, Translate,
Translate to EBCDIC}.

IMPORTANT: Since IBM PC ASCII and EBCDIC have somewhat different
character sets, not all characters will translate correctly. In
particular, there is no equivalent of most IBM PC graphics
characters. Therefore, if you translate a file to EBCDIC and
then back again to ASCII, you may not have the same file
again. Some punctuation, e.g. “[”, “]”, “|”, and many control
and graphics characters will have changed.

The EBCDIC translate table ebcdic.tbl is built into VEDIT and does not
need to be loaded. However, for custom needs you can modify the
ebcdic.tbl file and then load the revised EBCDIC table into VEDIT.

NOTE: Greenview Data, Inc. specializes in EBCDIC conversion software
and services for converting EBCDIC files containing packed fields
and complex record layouts. Please contact us for details.

Loading other Translate Tables
The built-in EBCDIC/ASCII translate table can be replaced with a custom
table. For example, you can load the supplied file mac.tbl which translates
between the OEM (IBM PC) and Macintosh character sets.

� To load the MAC.TBL translation table:
1. Select {EDIT, Translate, Load translate table}.
2. At the filename prompt enter “mac.tbl”.

After mac.tbl is loaded, note that the {EDIT, Translate} menu now
displays “Translate from MAC” and “Translate to MAC” to reflect the new
translation table’s name. Similarly, in display mode “128”, the status line will
read “MAC” instead of “EBCDIC”.

The built-in ANSI/OEM and EBCDIC/ASCII translation tables are supplied
in the files ansi.tbl and ebcdic.tbl. As described in the next section,
you can edit these tables in case you need to fine-tune the translation. You can
then load the modified table.

Translating Files Chapter 4 Editing Guide 191

Creating Your Own Translation Table
You can easily create a translation table for your own needs. A 521-byte
translation file consists of two 256-byte translation tables (a “to” table and a
“from” table), followed by an 8-character name and a null (00) byte.

Each character (byte) in your file has 256 possible values. Therefore, each
translation table is 256 bytes long. An existing value of “00” is translated to
the first byte in the translation table; a value of “01” is translated to the second
byte in the table, and so on.

The easiest way to create your own translation table is by modifying the
supplied file user.tbl. As supplied, user.tbl translates every byte to
the same value, i.e. it does nothing useful. Therefore, each translation table in
user.tbl consists of the bytes (in hex):

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 ...

For example, let’s assume that you want to translate any “00” to “2E” (hex)
and any “1B” to “2B”.

� To edit the custom USER.TBL:
1. Select {FILE, Open} (<Ctrl-O>) to open the fileuser.tbl for editing.

2. Change {CONFIG, File handling, File type} to “256”.

3. Select {VIEW, Toggle hex mode split} to display the file in both hex and
ASCII.

This is the easiest way to edit a translation file. The first line is the “to”
translation table; the second line is the “from” table; the third line is the
name. The “BYTE:” indicator on the status line indicates which byte in
the table the cursor is at. It is usually easier to edit in hexadecimal.

4. You can edit either the “to” translation table (first line) or the “from” table
(second line). This determines which item you need to select in the {EDIT,
Translate} menu. If you edit the “from” table, this will also affect the
screen display when the display mode is set to “32”.

5. For this example change byte # 01 from “00” to “2E”. Change byte # 28
from “1B” to “2B”.

6. If desired, change the name of the table on the third line. It can be up to
eight characters long and is followed with at least one “00” (hex) byte.

7. Select {FILE, Close buffer} (<Ctrl-W>) to save the file.

You can now load your custom table with {EDIT, Translate, Load translate
table} and try it out.

192 Chapter 4 Editing Guide Translating Files

Chapter 5

Advanced Topics

This chapter covers these topics:

� Covers the startup.vdm and ustartup.vdm files in detail.

� Describes how you can add your own custom editing functions to the
{USER} and {TOOL} menus.

� Covers the File-open configuration, Color syntax highlighting, Template
editing and HTML editing features in detail.

� Introduces “Command Macros”.

� Gives step-by-step directions on how to use the supplied macros PRINT,
WILDFILE, COMPARE, COMPDIR, SORT, DBASE and CFUNC.

� Explains how to set up and use the “Ctags” symbol lookup feature.

� Introduces VEDIT’s compiler support. The on-line help describes it in
complete detail.

STARTUP.VDM File
Introduction

The startup.vdm file is a special macro which VEDIT automatically
executes upon startup. It controls many of VEDIT’s features. By default, the
supplied startup.vdm file performs these functions:

� Loads the vedit.cfg and vedit.key files which configure VEDIT
to the last saved configuration and keyboard layout.

� Optionally loads the ustartup.vdmwhich can be edited by the user to
force any desired configurations settings; these will override the
vedit.cfg file. ustartup.vdm can also add custom hot-keys (key-
stroke macros) to the keyboard layout; these will augment (or override)
the vedit.key file.

� Loads the {USER} menu from theuser.mnu file which can contain user
defined functions.

STARTUP.VDM File Chapter 5 Advanced Topics 193

� Loads the {TOOLS} menu. Depending upon the setting of {CONFIG,
Misc, TOOLS menu}, it loads the compiler support menu (default), the
Java support menu, a user created tools.mnu file, or no menu at all. (If
VEDIT is running as a trial version, it loads the {TUTORIAL} menu
instead.)

� Sets up the “File-open configuration” feature which can auto-configure
VEDIT according to a filename extension or even a specific filename. This
can enable color syntax highlighting, template editing, word processing,
etc. You must enable these features via the {CONFIG} menu.

� The edit-session-restore feature is run when appropriate.

� Any desired startup commands can be added to this file.

Custom hot-keys (keystroke macros) and custom configuration settings can be
added to the optional ustartup.vdm file. This is useful if you want to force
important configuration settings when VEDIT starts up.

(Technical) Upon startup, VEDIT searches for the startup.vdm file, and
if found, executes it as a command macro. It is written in the VEDIT macro
language. If you are familiar with the macro language, you can modify it to
change the way VEDIT starts up. However, VEDIT is designed so that most
users would rarely need or want to modify startup.vdm. Having a
startup.vdm file is highly recommended but optional, and no error is given
if the file is not found. If no startup.vdm file is found, VEDIT searches
for and loads the vedit.cfg and vedit.key files.

See also:

The topic “Configuration” in Chapter 8.

The topic “{USER} and {TOOLS} Menus” in Chapter 5.

The topic “File-open Configuration” in Chapter 5.

NOTE: The best way to understand this topic is to open the supplied
startup.vdm and ustartup.vdm files with VEDIT and examine
them.

If you do not havestartup.vdm andustartup.vdm in your User
Config Directory, simply copy startup.org to startup.vdm
and ustartup.org to ustartup.vdm. We supply
startup.org and ustartup.org so that you can easily restore
our default startup files.

STARTUP.VDM File
The startup.vdm file contains extensive documentation so that you can
understand it and, if you are so inclined, make changes.

STARTUP.VDM first restores the last edit session when appropriate. This is
done if {FILE, Enable edit restore} was enabled when you last exited VEDIT,
if you started VEDIT without any filenames, and if you did not use the “-e”,
“-x” or “-q” invocation options. If an edit-session-restore is done,
startup.vdm skips all other configuration steps.

194 Chapter 5 Advanced Topics STARTUP.VDM File

Next, assuming edit-session-restore was not performed, it loads the
vedit.cfg and vedit.key files which set up the last saved configuration
and keyboard layout.

Next, it loads the optional ustartup.vdm file if {CONFIG, Misc, Enable
USTARTUP.VDM file} is enabled. This is described in more detail below
and within the ustartup.vdm file.

Next, it loads the {USER} menu; by default it loads user.mnu, but you can
easily change that to load another file. The on-line help topic “{USER} and
{TOOLS} Menus” describes creating your own menus in detail. Notice that
you can even change the name of the menu from “User” to something else.

Next, it loads a {TOOLS} menu depending upon the setting of {CONFIG,
Misc, TOOLS menu on startup}.

0 Does not load any {TOOLS} menu.

1 (Default) Loads the Compiler support menu from compile.mnu.
However, if VEDIT is running as a trial version, it instead loads the
file tutor.mnu and renames the menu to {TUTORIAL}.

2 Loads the Compiler support menu from compile.mnu.

3 Loads the Java support menu from java.mnu.

4 Loads a user defined {TOOLS} menu from tools.mnu.

Next comes the macro language code to implement the “File-open configura-
tion” feature. You can turn this feature on/off with {CONFIG, File-open
config, Enable file-open configuration}.
Near the end comes an area where experienced users can place additional
startup commands. The “Reg_Empty(Macro_Num,EXTRA) ” command
must come last.

Changing Configuration with USTARTUP.VDM
You can set any desired configuration parameters with Config() commands
in the optional ustartup.vdm file. It is typically used to force a few
important configuration parameters. Since the ustartup.vdm file is exe-
cuted after vedit.cfg is loaded, they will override the configuration saved
with {CONFIG, Save config}.
Although this can get confusing, it has some advantages. For example, you
may have configured {CONFIG, File handling, Auto-save interval} to “15”
to auto-save modified files every 15 minutes. However, one day, you tempo-
rarily turn off this feature. With {CONFIG, Auto-save config} normally
enabled, this change is saved. You then forget to turn this feature back on; most
likely you won’t notice your mistake until you lose some work.

This is an example of why you might want to set important configuration
settings in ustartup.vdm. It protects you from accidental configuration
changes that you, or other users of your computer, might make.

Similarly, some users like to add hot-keys (keystroke macros) or make minor
changes to the keyboard layout with the ustartup.vdm file. These will

STARTUP.VDM File Chapter 5 Advanced Topics 195

augment (or override) any settings in the vedit.key file. This can be done
with Key_Add() and Key_Delete() commands in the ustartup.vdm file.

Some common configuration overrides and additional keystroke macros are
included in ustartup.vdm, but are disabled by preceding them with “//”.
To enable them, simply delete the preceding “//”.

NOTES: As supplied, everything in ustartup.vdm is disabled. You must
explicitly edit it to enable any desired configuration settings.

For example,ustartup.vdm contains the following line which, if the initial
“//” are removed, assigns <F12> to execute the “ctags” lookup macro by
selecting {MISC, More macros, UTAGS}.

// Key_Add("F12",'[MENU]MMU',OK)

It also contains the following line which, if the “//” are removed, enables
VEDIT to auto-save all modified files every 15 minutes:

// Config(F_AUTO_SAVE,15)

To use the ustartup.vdm file, you must edit and enable it.

� To use the ustartup.vdm file:
1. If you do not already have a ustartup.vdm file, copy the supplied

ustartup.org to ustartup.vdm in the User Config Directory,
typically c:\vedit or c:\program files\vedit.

2. Modify the ustartup.vdm file as desired. Refer to the documentation
within the file for details.

3. Enable {CONFIG, Misc, Enable USTARTUP.VDM file}.
Select {CONFIG, Save config} to ensure this setting is saved into
vedit.cfg.

Example for USTARTUP.VDM
These step-by-step instructions force the “Auto-save interval” to 15 minutes
every time you start VEDIT.

� Configure “auto-file save” feature in ustartup.vdm:
1. Open the file ustartup.vdm in the User Config Directory for editing.

2. Locate the line “// Config(F_AUTO_SAVE,15)”.

3. Delete the leftmost “//” to enable the command.

4. Enable {CONFIG, Misc, Enable USTARTUP.VDM file}.
Select {CONFIG, Save config} to ensure this setting is saved into
vedit.cfg.

5. Save the file and exit VEDIT.

6. Restart VEDIT and notice that {CONFIG, File handling, Auto-save
interval} is set to “15” minutes.

196 Chapter 5 Advanced Topics STARTUP.VDM File

No matter how you change the “Auto-save interval”, each time you start
VEDIT, it will be set back to “15”.

Exception: If VEDIT is started without any filenames and “Edit session
restore” is enabled, all configuration settings will be restored
to the same state as when you last ran VEDIT, ignoring any
vedit.cfg, vedit.key and ustartup.vdm files.

Trouble
shooting:

If it ever appears that a configuration change cannot be
saved, check to see if the ustartup.vdm file is enabled
and is overriding it.

See also:

The topic “Edit Session Restore” in Chapter 4.

The topic “Configuration” in Chapter 8, which includes detailed troubleshoot-
ing.

Using a Different Startup File
You can specify a startup file other than startup.vdm with the “-i”
invocation option. You can start up VEDIT without startup.vdm or any
other startup file with the invocation option “-i xxx”, where ‘xxx’ is a non-ex-
istent file. No error message will be given.

vpw -i execfile ‘execfile’ is executed as the startup file in place of
startup.vdm.

vpw -i xxx Invoke VEDIT without any startup file. However,
VEDIT will search for and load the vedit.cfg
and vedit.key files.

vpw -g -i xxx Invoke VEDIT without any startup file and without
loading the vedit.cfg and vedit.key file.

HINT: The “-i xxx” and “-g -i xxx” invocation options are useful for
debugging startup configuration problems.

Invocation options can be specified in Windows by changing the icon’s
properties, by using the “Run” command, or by invoking VEDIT from the
DOS/NT command prompt. See the topic “Starting VEDIT for Windows” in
Chapter 4.

VEDIT looks for startup.vdm first in the “current” directory, then in the
User Config Directory, and finally in the VEDIT Home Directory, e.g.
c:\vedit.

Since VEDIT first looks in the “current” directory, you can set up custom
configurations for different projects by having different STARTUP.VDM files
in each project’s directory. However, this is only practical if you invoke
VEDIT (Windows or DOS version) from the DOS/NT command prompt.

You can create different VEDIT icons for different projects or tasks by using
the “-i” invocation option to specify the desired startup file. Or you might create

STARTUP.VDM File Chapter 5 Advanced Topics 197

different icons for different users that share one computer. Here are some
examples that could be used as the “Target” in the VEDIT icon’s properties:

c:\vedit\vpw.exe -i startup2.vdm
c:\vedit\vpw.exe -i c:\project\startup.vdm
c:\vedit\vpw.exe -i toms.vdm

Name of STARTUP.VDM and VEDIT.INI
(This is a technical topic for advanced users.)

We always refer to the name of the default startup file as startup.vdm, but
you can change the name by editing thevedit.iniWindows parameter file.

Furthermore, you can specify a Windows parameter file other than
vedit.ini with the “-k” invocation option:

vpw -kinifile ‘inifile’ is used as the Windows parameter file in
place of vedit.ini. (There must be no space
between “-k” and the filename.)

This lets you completely customize VEDIT for different tasks. For each task,
create a VEDIT icon which uses the “-k” invocation option to specify a
different Windows parameter file. Each Windows parameter file can then
specify a different startup macro file. One advantage of using this scheme over
the “-i” option described above, is that each task can have a different set of
recently used files in the {FILE} menu and can have different display and
printer fonts.

198 Chapter 5 Advanced Topics STARTUP.VDM File

{USER} and {TOOLS} Menus

Custom Editing Functions
Two sets of custom editing functions can be added to the main menu as the
{USER} and {TOOLS} menus. As with all menu functions, the custom
functions can have hot-keys assigned to them.

The suppliedstartup.vdm loads the fileuser.mnu as the {USER} menu.
It also loads a {TOOLS} menu depending upon the setting of {CONFIG,
Misc, TOOLS menu on startup}.

0 Does not load any {TOOLS} menu.

1 (Default) Loads the Compiler support menu from compile.mnu.
However, if VEDIT is running as a trial version, it instead loads the
file tutor.mnu and renames the menu to {TUTORIAL}.

2 Loads the Compiler support menu from compile.mnu.

3 Loads the Java support menu from java.mnu.

4 Loads a user defined {TOOLS} menu from tools.mnu.

Both the {USER} and {TOOLS} menus can have any desired name appear on
the menu bar. In particular the {TOOLS} menu is often renamed to reflect its
purpose. The commands Config_String(USER_MENU,"&User") and
Config_String(TOOL_MENU,"&Tools") in the startup.vdm file set
the menu names, which can be up to 16 characters long. The “&” indicates
which character is underlined in the Windows version.

The default {USER} menu, loaded from user.mnu, includes some of the
macros listed in Appendix C (Application Notes). You can delete and add items
to user.mnu as desired to create a custom {USER} menu.

The default {TOOLS} menu, loaded from compile.mnu, consists of the
compiler support functions. Alternatively, you can load a custom menu by
creating the file tools.mnu and setting {CONFIG, Misc, TOOLS menu
on startup} to “4”.

Different {USER} and {TOOLS} menus can also be loaded with {MISC,
Load {USER} menu} and {MISC, Load {TOOLS} menu}. Although the
default filename extension is “*.mnu”, it can have any desired name.

The editing functions in the {USER} and {TOOLS} menus are implemented
as command macros. Although knowledge of the VEDIT macro language is
needed to fully realize its potential, new users can modify the existing functions
or add new ones by copying macros from key-mac.lib into user.mnu.

Examine the user.mnu file and note that each editing function consists of
three parts:

{USER} and {TOOLS} Menus Chapter 5 Advanced Topics 199

Highlight Number Determines which letter in the “Item name” is
highlighted. This is usually the first letter un-
less several Item Names begin with the same
letter.

Follow the number with “+128” to display a
divider in the menu above this item.

Item Name The function’s name as it will appear in the
menu.

Command Sequence The macro language command(s) to be exe-
cuted when this item is selected. The com-
mands must be listed on one line, but can be
as long as needed.

The {USER} menu is loaded from the file user.mnu with the command
Reg_Load(124,"user.mnu") which loads special text register 124. Similarly,
the {TOOLS} menu is loaded from the filecompile.mnuwith the command
Reg_Load(123,"compile.mnu"). These commands are typically included in
the startup.vdm file.

For example, the following addition lets you run our V-SPELL spelling
corrector from inside VEDIT: (Enter the macro language commands, starting
on line three, as one long line!)

5
Run V-SPELL
Reg_Set(102,PATHONLY) Reg_Set(102,"\",APPEND)

Out_Reg(102,APPEND) Dir(pathname,NOMSG+SHORT)
Out_Reg(CLEAR) File_Close(NOMSG)
Sys("vs |@(102)",DOS+MAX+DELETE+NOMSG)
File_Open(@102)

Notes:

If you change user.mnu, you may want to save it in the vedit/user-mac
directory instead of the default “vedit” (Home) directory. This way, future
VEDIT updates will not overwrite your changes. When VEDIT starts, it looks
for user.mnu first in the User Macro directory, then in the VEDIT Home
directory.

If the contents of text registers 123 and 124 are not set up properly, the error
“INVALID MENU” is displayed when you attempt to access the main menu.
This also empties register 123 or 124 so that the main menu continues to work.

The command Reg_Empty(124) empties the {USER} menu. Similarly,
Reg_Empty(123) empties the {TOOLS} menu.

200 Chapter 5 Advanced Topics {USER} and {TOOLS} Menus

File-open Configuration
Introduction

VEDIT can automatically configure itself according to the filename extension
of each file opened. For example, when you open a .C, .CPP or .H file, color
syntax highlighting can be enabled for the C programming language. When
you open an .HTM file, color syntax highlighting for HTML can be enabled.
When you open a .TXT file, word processing functions can be enabled.

Besides configuring itself according to filename extensions, VEDIT can also
configure itself according to specific filenames. For example, you can have
.TXT files normally configured with a right margin of 70, but also have a
specific file, e.g. dec-report.txt, configured with a right margin of 132.

Therefore, VEDIT has two types of File-open configuration:

� Filename extension configuration — VEDIT automatically configures
itself according to the values saved for a filename extension such as .c,
.txt, etc. This can enable color syntax highlighting, template editing,
auto-indenting, tab-stops, word processing and much more.

� Filename specific configuration — VEDIT automatically configures itself
to the values saved for a specific filename.

By default, this feature is disabled in order not to confuse new users.

As described below, it is exceptionally easy to set up and use the “File-open
configuration” feature. However, you should be aware of the following notes:

NOTES: This feature depends upon the startup.vdm file. If you use a
non-default (custom) startup.vdm file or use the “-g” or “-i”
invocation options, file-open configuration may not work.

The original startup.vdm file is also supplied as startup.org.
If you have no startup.vdm file, simply copy startup.org to
startup.vdm.

Enabling File-Open Configuration
To help new users get started, VEDIT is supplied with file-open configuration
files for several filename extensions, including the following:

.C, .CPP, .H Enables C programming color syntax highlighting,
template editing, auto-indent, sets tab-stops at every 8.

.JAV, .JAVA Enables Java programming color syntax highlighting,
template editing, auto-indent, sets tab-stops at every 4.

.HTM, .HTML Enables HTML programming color syntax highlighting,
template editing, auto-indent, sets tab-stops at every 8.

File-open Configuration Chapter 5 Advanced Topics 201

.ASM Enables ASM programming color syntax highlighting,
sets {CONFIG, Programming, Lower/upper case key
conversion} to “2”, sets indent-increment at every 8,
tab-stops at every 8.

.TXT Enables word wrap with a right margin of 70, sets tab-
stops at every 8.

After you enable file-open configuration, VEDIT will auto-configure itself
when you open files with the above filename extensions. As described below,
it is easy to change the config settings for these filename extensions and support
additional filename extensions.

� To enable file-open configuration:
1. Enable {CONFIG, File-open config, Enable file-open configuration}.
2. Select {CONFIG, Save config} to ensure that the configuration change

is permanent for the next time you run VEDIT. (This step is not needed if
{CONFIG, Auto-save config} is enabled.)

3. Test the feature by opening a file with a .c extension. Check that
{CONFIG, Programming, Enable syntax highlighting} is on and that
{CONFIG, Word processing, Enable word wrap} is off. You should
also notice the color syntax highlighting.

Open a file with a .txt extension. Check that {CONFIG, Programming,
Enable syntax highlighting} is off and that {CONFIG, Word
processing, Enable word wrap} is on.

Notes:

You can override the setting of {CONFIG, File-open config, Enable
file-open configuration} when opening individual files from the File-open
dialog box with the [] Enable file-open config option

Setting Up File-Open Configuration
You can easily set up file-open configuration for any desired filename exten-
sion (also called “file-type”), by simply editing any file with that extension,
setting all desired {CONFIG} parameters and then selecting {CONFIG,
File-open config, Save filename extension config}. In detail:

� To set up auto-configuration for a filename extension:
1. Open any file with the desired filename extension. For example, if you

want to add file-open configuration for .PAS (PASCAL programming),
open any file with a .pas filename extension with VEDIT.

2. Set all desired {CONFIG} parameters, in particular the “Word process-
ing” and “Programming” parameters. You only need to be concerned with
the parameters marked as “Buffer dependent”; they have a “*” (asterisk)
after their name.

3. If you want color syntax highlighting, select {MISC, Load syntax file}
and load the the desired .SYN syntax highlighting file. VEDIT includes
.SYN files for most programming languages, SQL, XLM, some statistics

202 Chapter 5 Advanced Topics File-open Configuration

packages, etc. Some languages, e.g. Java, include alternative color syntax
files, e.g. java.syn and java2.syn.

4. If you want template editing, select {MISC, Load template file} and load
the desired .VTM template editing file. VEDIT currently only includes
.VTM files for C, Java and HTML.

5. At this point you should have VEDIT configured exactly as you want for
this particular filename extension (file-type).

6. Select {CONFIG, File-open config, Save filename extension config}.
This will display a file-save dialog box. The default filename should be
correct. For example, if you are setting up file-open configuration for
.PAS, the dialog box should be ready to save the configuration into the
file pas.cft.

(We refer to the saved .CFT extension as “Config File Type”.)

The file-open configuration settings are saved as small files in the vedit\file-cfg
directory, e.g. inc:\vedit\file-cfg. For example, the configuration for
.C files is saved in c.cft; the configuration for .HTM files is saved in
htm.cft, etc.

NOTE: The “.cft” extension may not show in the dialog box due to Windows
(dangerous) default of hiding many filename extensions. You can
enable all filename extensions by opening Explorer and selecting
Tools --> Folder options. In the “View” tab, uncheck “Hide file
extensions for known file types”. (This will also help you recognize
viruses in e-mail attachments.)

Assuming you have {CONFIG, File-open config, Enable file-open configu-
ration} enabled, the new file-open configuration settings will immediately
take affect for files that you open with VEDIT.

Filename Specific Configuration
If you ever make configuration changes for editing a particular file, you can
have VEDIT restore the configuration settings the next time you edit that file.
It is as simple as selecting {CONFIG, File-open config, Save filename
specific config}.
As described above, VEDIT can also configure itself according to specific
filenames. For example, you can have .TXT files normally configured with a
right margin of 70, but also have a specific file, e.g. dec-rep.txt, config-
ured with a right margin of 132.

� To set up auto-configuration for a specific filename:
1. We assume that you have the specific file open in VEDIT.

2. Set all desired {CONFIG} parameters, in particular the “Word process-
ing”and “Programming” parameters. You only need to be concerned with
the parameters marked as “Buffer dependent”; they have a “*” (asterisk)
after their name.

3. Select {CONFIG, File-open config, Save filename specific config}. This
will display a file-save dialog box. The default filename should be correct.

File-open Configuration Chapter 5 Advanced Topics 203

For example, if you are setting up file-open configuration for the file
“dec-rep.txt”, the dialog box should be ready to save the configuration
into the file dec-rep.txt.cfn.

(We refer to the saved .CFN extension as “Config FileName”.)

The file-open configuration settings are saved as small files in the vedit\file-cfg
directory. The filename specific configuration files are saved by appending
“.cfn” to the original filename.

Detailed Description
This is a more technical description of the file-open configuration feature.

The file-open configuration settings are saved as small (1 Kbyte) files in
VEDIT’s .\FILE-CFG subdirectory, e.g. in c:\vedit\file-cfg or
c:\program files\vedit\file-cfg. Two types of files are saved:

.CFN The filename specific configuration files.

.CFT The filename extension (file-type) configuration files.

Similar to the vedit.cfg file, these files consist of Config() commands
that configure VEDIT. For example, the last six lines of the supplied c.cft
file are:

Config(W_WORD_WRAP, 0,LOCAL)
Config(W_LF_MARG, 0,LOCAL)
Config(W_RT_MARG, 0,LOCAL)
Config_String(SYN_NAME, "C.SYN",LOCAL)
Config_String(VTM_NAME, "C.VTM",LOCAL)
Config_Tab(8;LOCAL)

These commands turn off word wrap, specify the desired color syntax high-
lighting and template editing files, and set the tab-stops to every 8 columns.

Unlike the vedit.cfg file, these configuration files do not contain all
Config() commands, but only those for the “buffer dependent” parameters.
While VEDIT has over 200 configuration parameters in vedit.cfg, only
about 25 are “buffer dependent”, meaning that each open file can have its own
values. For example, {CONFIG, Printer, Paper length} is not buffer depend-
ent; there is little reason to have different printer values for different files.
However, {CONFIG, Word processing, Enable word wrap} is buffer
dependent; you typically want word wrap enabled for some files and disabled
for other files. The buffer dependent values are indicated in the {CONFIG}
menu with a “*” (asterisk) after their name.

See also: {CONFIG, Config all buffers} for more information.

Therefore, the file-open configuration files can only set the buffer dependent
configuration parameters.

The process of loading the file-open configuration file is controlled by rela-
tively simple macro code in the startup.vdm file. This code sets up the
“File-open configuration macro” which runs each time a file is opened. (If you
are familiar with the VEDIT macro language, you may want to examine this
macro code by examining the startup.vdm file.)

204 Chapter 5 Advanced Topics File-open Configuration

For example, if you open the filedec-rep.txt, the File-open configuration
macro performs the following operations:

1. If a filename specific .CFN file exists, it is loaded and the macro is done.
For our example, this would be dec-rep.txt.cfn.

2. Else, if a filename extension .CFT file exists, it is loaded and the macro
is done. For our example, this would be txt.cft.

Else, nothing is done and no special configuration is performed.

You can examine the vedit\file-cfg directory at any time to determine which
filename extensions and specific filenames are set up for file-open configura-
tion. You can even edit the files directly.

The following four lines from the supplied c.cft file enable color syntax
highlighting and template editing:

Config(PG_E_SYNTAX, 1,LOCAL)
Config(PG_E_TEMPLAT, 1,LOCAL)
Config_String(SYN_NAME, "C.SYN",LOCAL)
Config_String(VTM_NAME, "C.VTM",LOCAL)

The first two lines enable the features, the other two lines specify which .SYN
color syntax file and .VTM template editing file to use. Notice that these
commands do not actually load the .SYN and .VTM files; instead VEDIT
automatically loads them as necessary. For example, if you open twenty .C
files, VEDIT only loads the c.syn file once, instead of twenty times.

VEDIT supports multiple .SYN color syntax and .VTM template editing files
at the same time. As you switch to another file, VEDIT uses the (buffer
dependent) Config_String(SYN_NAME) command to determine which
.SYN file to use for color syntax highlighting for that file.

Therefore, you can edit .c, .html, .java and .pas files at the same time, each
with the correct color syntax highlighting.

See also:

The topic “Startup.vdm File” in Chapter 5.

The topic “Template Editing” in Chapter 5.

The topic “Color Syntax Highlighting” in Chapter 5.

The topic “HTML Editing Features” in Chapter 5.

File-open Configuration Chapter 5 Advanced Topics 205

Color Syntax Highlighting
Primarily intended for program and HTML editing, syntax highlighting dis-
plays different logical parts of a program in different colors. For example,
reserved words, comments, string and numeric arguments and special symbols
can each be in a color different from the rest of the text.

The supplied syntax definition files include:

C.SYN For C and C++

CLIPPER.SYN For Clipper

CLIPPER2.SYN For Clipper; includes Clipper Tools

COBOL.SYN For COBOL

COBOL-MF.SYN For COBOL with Micro Focus extensions

DATAFLEX.SYN For DataFlex

FOLIO4.SYN For Folio View Flat File

FORTRAN.SYN For Fortran

HTML.SYN For HTML

JAVA.SYN For Java

JAVA2.SYN For Java, alternate color scheme

MASM.SYN For Microsoft MASM Assembler

MBASIC.SYN For Microsoft BASIC

MODULA2.SYN For generic Modula 2. M2-LT34.SYN, M2-
SB22.SYN and M2-SB30 support specific Modula-2
compilers.

MYSQL.SYN For MySQL database

PASCAL.SYN For Pascal and Object Pascal

PERL.SYN For Perl (preliminary)

REXX.SYN For Rexx

SAS.SYN For SAS statistics package

SQL-PL.SYN For SQL and PL/SQL

SQL-XQL.SYN For Persuasive SQL, Netware XQL

STATA.SYN For Stata statistics package

SYSTAT.SYN For Systat product

TASM.SYN For Borland TASM Assembler

TCLTK.SYN For TCL/TK language

TEALINFO.SYN For TealInfo Database (Used on Palm pilots)

TEX.SYN For TeX, Latex

206 Chapter 5 Advanced Topics Color Syntax Highlighting

VB-BAS.SYN For Visual Basic

VEDIT.SYN For VEDIT macro language

VHDL.SYN For VHDL

4680BAS.SYN For IBM 4680 BASIC

6809.SYN For 6809 Assembler

68000.SYN For 68000 Assembler

Custom files for other languages and even non-programming applications are
easily created. Most of these files were created by VEDIT users.

� To manually load a syntax highlighting definition file:
1. Select {MISC, Load syntax file}.
2. Enter the desired filename or select the desired file. The file selection

dialog box defaults to all “.syn” files in the VEDIT Home Directory.

3. If desired, change the colors in {CONFIG, Syntax colors}. Each of
VEDIT’s color schemes has some reasonable colors already set up.

Multiple syntax highlighting .SYN files can be loaded. Therefore, you can have
syntax highlighting for C in one window and syntax highlighting for HTML
in another window.

When using syntax highlighting, you may want to disable {CONFIG, Config
all buffers}. Syntax highlighting can then be enabled or disabled inde-
pendently for each file with {CONFIG, Programming, Enable syntax
highlighting}.

NOTE: To determine which color syntax file, if any, is loaded for the current
buffer, select {HELP, Status display}.

Automatic Color Syntax Highlighting
It is easy to set up VEDIT to automatically enable color syntax highlighting
for different file types based on the filename extension. Whenever you then
open a file with that filename extension, the corresponding syntax highlighting
is also enabled.

� To enable automatic syntax highlighting:
1. Open a file with the desired filename extension; e.g. open any .c, .h, .htm

or .html file.

2. Select {MISC, Load syntax file} and select the corresponding .SYN file,
e.g. “c.syn” or “html.syn”.

Color syntax highlighting should now be visible.

3. Select {CONFIG, File-open config, Save filename extension config}.
The default filename in the file-save dialog box should be correct, e.g.
“c.cft” or “html.cft”.

4. Make sure that {CONFIG, File-open config, Enable file-open
configuration} is enabled.

Color Syntax Highlighting Chapter 5 Advanced Topics 207

If it was not enabled and you just enabled it, you should also select
{CONFIG, Save config} to save this new config setting. (This step is not
needed if {CONFIG, Auto-save config} is enabled.)

5. Test the feature by opening a file with a .c extension. Check that
{CONFIG, Programming, Enable syntax highlighting} is on.

Open a file with a .txt extension. Check that {CONFIG, Programming,
Enable syntax highlighting} is off.

Repeat these steps for each desired filename extension.

Notes:

Screen updating is slower with syntax highlighting enabled, but on recent
computers, it is barely noticeable.

Syntax highlighting is closely related to the topic “Template Editing”.

See also:

The topic “Startup.vdm File” in Chapter 5.

The topic “File-open Configuration” in Chapter 5.

The topic “Template Editing” in Chapter 5.

The topic “HTML Editing Features” in Chapter 5.

Creating your own “.SYN” syntax definition file
Custom syntax highlighting definition files are fairly easy to create for other
languages and even non-programming applications. Most of the supplied .SYN
files were created by customers and then shared with us.

The on-line help topic “Color syntax highlighting” (DOS: “SYNHI”) describes
in detail how to create your own .SYN files.

208 Chapter 5 Advanced Topics Color Syntax Highlighting

Template Editing
With each normal text character entered in Visual Mode, a “template editing”
macro can be executed. The template editing macro typically performs some
type of shorthand expansion by recognizing a key-word and expanding it to
the full string of characters.

For example, if the template macro file c.vtm is loaded and {CONFIG,
Programming, Enable template editing} is enabled, as soon as you type
“if (”, it immediately expands to:

if () {
...

}

The cursor is placed inside the “()”.

The expansions performed by c.vtm currently are:
"ife (" if {...} else {...}
"if (" if () {...}
"do {" do {...} while ();
"for (" for (;;) {...}
"while (" while () {...}
"switch (" switch () {case ... default:}

If you accidentally type a key-word and get an undesired expansion, immedi-
ately select {EDIT, Undo, Edit} (<Ctrl-Z> or <Alt-Bksp>) to undo the
expansion and your last typed character.

To insert the characters of a key-word without getting an expansion, precede
the last character with [ENTER CTRL] (<Ctrl-Q>).

Manual Setup
You can initially try out template editing by loading a template editing macro
from within VEDIT. However, if you regularly want to use template editing,
you should automatically enable it with file-open configuration.

� To manually set up template editing:
1. Select {MISC, Load template file}.
2. Select the desired .vtm file. Currently only c.vtm, html.vtm and

java.vtm are supplied.

3. Check that {CONFIG, Programming, Enable template editing} is
enabled. {MISC, Load template file} automatically enables template
editing in the current file.

4. If you loaded c.vtm, try typing “if (” to see the expansion. If you loaded
html.vtm, try typing “.he” which should expand to
“<HEAD><HEAD>” with the cursor in the middle.

Multiple template editing .VTM files can be loaded. Therefore, you can have
template editing for C in one buffer and template editing for HTML in another
buffer.

Template Editing Chapter 5 Advanced Topics 209

NOTE: To determine which template editing file, if any, is loaded for the
current buffer, select {HELP, Status display}.

Automatic Template Editing
Similar to color syntax highlighting, you can set up VEDIT to automatically
enable template editing for different file types based on the filename extension.
Whenever you then open a file with that filename extension, the corresponding
.VTM template editing file is automatically loaded.

� To enable automatic template editing:
1. Open a file with the desired filename extension; e.g. open any .c, .h, .htm

or .html file.

2. Select {MISC, Load template file} and select the corresponding .VTM
file, e.g. “c.vtm” or “html.vtm”.

You should be able to confirm that template editing is enabled.

3. Select {CONFIG, File-open config, Save filename extension config}.
The default filename in the file-save dialog box should be correct, e.g.
“c.cft” or “html.cft”.

4. Make sure that {CONFIG, File-open config, Enable file-open
configuration} is enabled.

If it was not enabled and you just enabled it, you should also select
{CONFIG, Save config} to save this new config setting. (This step is not
needed if {CONFIG, Auto-save config} is enabled.)

5. Test the feature by opening a file with a .c extension. Check that
{CONFIG, Programming, Enable template editing} is on.

Open a file with a .txt extension. Check that {CONFIG, Programming,
Enable template editing} is off.

Notes:

Template editing is closely related to the topic “Syntax Highlighting”.

See also:

The topic “Startup.vdm File” in Chapter 5.

The topic “File-open Configuration” in Chapter 5.

The topic “Syntax Highlighting” in Chapter 5.

The topic “HTML Editing Features” in Chapter 5.

210 Chapter 5 Advanced Topics Template Editing

HTML Editing Features
VEDIT has several features that simplify editing HTML files, used for Internet
Web pages.

� Template editing lets you enter simple two-letter codes which are auto-
matically expanded to the full HTML codes. For example, typing “.he”
expands to “<HEAD><\HEAD>” with the cursor in the middle.

� Enhanced keyboard layout with many hot-keys for common HTML
codes. For example, pressing <Alt-1> inserts “<H1><\H1>” with the
cursor in the middle.

� Color syntax highlighting for common HTML codes.

� The WILDFILE macro can be used to perform the same search and replace
operation on entire groups of files. If you have a web site with hundreds
or even thousands of pages, you can easily make a global change in all the
pages.

� The macrohtml2txt.vdm strips out all HTML codes to create a simple
text file. The macro txt2html.vdm creates a simple HTML file from
a text file.

� The vedit\user-mac directory contains user supplied macros for website
development. This includes WebXref.vdm which creates a cross refer-
ence of all files used in a website.

HTML files can be edited using template editing or hot-keys, or both at the
same time. Template editing is performed by the html.vtm macro file. In
addition, html.key is the “normal” keyboard layout with the HTML hot-
keys.

VEDIT’s HTML support is oriented towards experienced Web page creators
(Webmasters) who want to create Web pages quickly with as few keystrokes
and errors as possible.

The on-line help topic “HTML Editing Features” (DOS: “HTML”) describes
this in complete detail.

HTML Editing Features Chapter 5 Advanced Topics 211

Command Macros (Intro)
“Command macros” are sequences of commands written in the VEDIT macro
language. This topic covers everything the casual VEDIT user needs to know
about command macros — primarily how to load and run the supplied macros.
This topic assumes you are familiar with starting VEDIT and understand “text
registers”, both covered in Chapter 4 (Editing Guide).

NOTE: The separate “VEDIT Macro Language Reference Manual” covers
the command macros in complete detail.

VEDIT Macro Language
The VEDIT macro language is a complete text oriented programming lan-
guage. It has arithmetic capabilities, numeric, character and string comparison,
if-then-else decision making, looping, user input, screen output, window
control and much more. It has over 350 commands and can perform almost
any conceivable character, line, block or file operation. The DOS version also
has special commands for peeking/poking memory, accessing I/O ports and
interfacing with low level DOS programming functions.

You can access the macro language at any time by pressing a key (e.g.
<Alt-F10>) to enter “Command Mode”. At the “COMMAND:” prompt, you
can then simply enter one or more lines of macro language commands and
VEDIT immediately executes the commands.

Besides the (technical) “COMMAND:” prompt, command macros can be
executed in three ways:

� “Short” command macros can be executed as keystroke macros. A se-
quence of up to 4000 characters can be executed.

Many keys in the layouts that emulate Brief, Word Perfect and WordStar
are implemented as keystroke macros that use the macro language.

The supplied file key-mac.lib contains numerous keystroke macros
consisting of macro language commands.

� “Longer” command macros are typically stored as files. These command
macros can be loaded into the text registers and executed with {MISC,
Load/exec macro} or {MISC, Load/exec user macro}.
Once a command macro is loaded into VEDIT, it can be executed with
{MISC, Execute macro}.
A command macro can also be “auto-executed” when VEDIT starts up.
The topic “Auto-Execution” describes this in detail.

� Command macros can also be executed from the {USER} and {TOOLS}
menus. Short macros are typically included in the user.mnu file, longer
macros are typically loaded and executed from a file with the Call_File()
command.

212 Chapter 5 Advanced Topics Command Macros (Intro)

See also:

The topic “Easy as 1-2-3-4” in the VEDIT Macro Language Reference Manual
gives step-by-step directions for running a command macro in each of the four
ways.

The separate “VEDIT Macro Language Reference Manual” covers the com-
mand macros in complete detail.

Notes:

The main editing mode of VEDIT is called “Visual Mode” to distinguish it
from “Command Mode”. VEDIT derived its name from “Visual EDITor”.

The topic “Keystroke Macros” in Chapter 4 gives a step-by-step example of
adding a keystroke macro listed in the key-mac.lib file with the
{CONFIG, Keystroke layout, Add keystroke macro} function.

You may find it easier to add keystroke macros by editing the keyboard layout
with {CONFIG, Keyboard layout, Edit/view layout}. The topic “Editing the
Keyboard Layout - Adding a Keystroke Macro from KEY-MAC.LIB” in
Chapter 4 describes how to “copy and paste” a new keystroke macro from
key-mac.lib directly into your keyboard layout.

Command Macros and Text Registers
Simple command macros can be built into VEDIT as keystroke macros.
However, more complex command macros are stored as files, typically with a
“.vdm” filename extension. There is nothing special about these files — they
are normal text files containing the macro commands and (hopefully) descrip-
tive comments.

All VEDIT command macros are in “source code” format. There are no
compiled macros. Therefore, all macros can easily be viewed, and users
familiar with the VEDIT macro language can modify any desired macros.

The VEDIT macro language has a C-like syntax and a free-form format —
each line can contain just one command or many commands.

Command macro files are run by first loading them into a text register, and
then executing the register. {MISC, Load/Execute macro} and {MISC,
Load/Execute user macro} perform this operation. Alternatively, if the macro
is already loaded, {MISC, Execute macro} executes it directly.

These functions load/execute the macro in text register “100” by default.
Although some macros can execute from other registers, you should assume
that macros are to be loaded into register “100 ”.

There is nothing special about the way command macros are stored in text
registers — there is no difference between text registers that contain “cut and
paste” blocks of text and those that contain command macros. To avoid
confusion, we recommend using registers “ 0” through “9” for block opera-
tions. The remaining registers are then available for command macros.

Once a command macro begins running, it often uses additional text registers
for its own use. Some may be used as “subroutine” macros; others as “string

Command Macros (Intro) Chapter 5 Advanced Topics 213

variables”. A command macro can write-protect its registers to prevent you
from accidentally altering them during block operations.

{HELP, Text registers} lists which registers are currently in use.

Some macros must be executed from a particular text register, such as “100”,
while others can be executed from any text register. (The beginning of a macro
should document what registers it uses.)

This chapter assumes that all command macros are loaded into text register
“100”.

Notes:

Several functions are implemented as command macros that VEDIT automat-
ically loads as needed. These macros are loaded into “hidden” text registers
120-122, and therefore will not interfere with any macros that you are running.

Loading and Executing Command Macros
� To load and execute a command macro:

Many of our supplied macros can be run from the {MISC, More macros}
menu. Others can be run by loading and executing them with {MISC,
Load/Execute macro}.

� To load and execute a command macro:
1. Select {MISC, Load/Execute macro} (<Ctrl-F7>). This dialog box

defaults to the .vdm files in the vedit\macros directory which contains all
the supplied macros.

2. Select the macro to be loaded. You can either navigate to the file in the
normal way and double-click it, or you can directly enter the name of the
macro at the “Filename:” prompt.

3. The dialog box also prompts with “Register number:”. Although most
macros can be loaded and executed from any text register, others will only
work from register 100. Therefore, it is best to simply select the default
register “100”.

NOTES: Although our supplied macros usually preserve your edit changes,
the fate of the files you are editing depends upon the macro. Some
macros will return you to your editing while others have a main
menu from which you must exit VEDIT in order to exit the macro.
Therefore, be sure to save your files before running unfamiliar
macros.

214 Chapter 5 Advanced Topics Command Macros (Intro)

Auto-Execute Macros
VEDIT’s auto-execution lets you specify a command macro to be run as soon
as VEDIT starts up and has loaded any specified file(s) for editing.

-x execfile ‘execfile’ is loaded into text register 100 and executed as
a command macro. If no filename extension is given
“.vdm” is assumed. ‘execfile’ will be executed in addition
to and after the startup.vdm file.

For example, the command to print the file datafile.dat using the
supplied print.vdm macro is:

vpw -x print.vdm datafile.dat

VEDIT first loads and executes startup.vdm as usual. It then loads
print.vdm. It then opens the file datafile.dat. Last, it executes the
print.vdm macro. The auto-execution macro is always loaded into text
register 100 and executed from there.

When an auto-execution macro file is specified, VEDIT looks for it first in the
current directory, then in the User Macro Directory, then in the VEDIT Macro
Directory and last in the VEDIT Home Directory.

You can also specify a few macro commands to be executed on the invocation
line with the “-c” startup option.

-c command The macro language commands ‘command’ are executed
upon startup. ‘command’ may be delimited with quotation
marks ("); otherwise, it ends on the first space.

+c command Same as “-c”, except that the commands are executed
before the startup.vdm file.

For example, the command to start up the editor and position the cursor at the
first occurrence of the string “error” in the file datafile.dat is:

vpw -cSearch(/error/) datafile.dat

-OR-

vpw -c"Search(/error/)" datafile.dat

(Technical) When using the “-c” and “-x” options, the order in which options
are specified can become important. This is especially true when the “VEDIT”
environment variable is used to specify default options. VEDIT first processes
the “VEDIT” environment options from left to right; then it processes any
command line options from left to right. Thestartup.vdm file is processed
after any “+” options, but before the first “-” option.

Auto-execution macros can be specified in the Windows version by changing
the “Target” in the icon’s properties, or by using the “Run” command. See
“Starting VEDIT for Windows” in Chapter 4 for more information.

Auto-Execute Macros Chapter 5 Advanced Topics 215

PRINT - Print Macro
The PRINT.VDM macro can be selected as an option in the {FILE, Print}
dialog box. It adds the filename, date and page number at the top of each page.
It also skips page perforations and indents the text from the left paper edge.
This makes it ideal for printing source code modules and other text files.

When the PRINT.VDM macro is selected from the {FILE, Print} dialog box,
an additional dialog box lets you choose from these options:

� Print line numbers on the left side.

� Print the file offset for each line in either decimal or hex.

� Print a ruler at the top and bottom of each page.

� Print the entire pathname to the file, instead of just the filename.

If desired, you can change the default options by editing the print.vdm file.
Only trivial editing changes are needed and they are documented in the file.

� To print a file with PRINT.VDM:
1. Select {FILE, Print}.
2. In the print dialog box select “() PRINT.VDM macro”. Then select

[Ok].
3. In the next dialog box, select any desired options, such as printing line

numbers on the left side. Then select [Ok].
The entire file should begin printing. To stop the printing before it is done
press <Ctrl-C>) or <Ctrl-Break>).

Alternatively, PRINT.VDM can be auto-executed when VEDIT is invoked.
This is easily done from a (DOS) command line. In Windows, you can also
create a special VEDIT icon that starts up with the PRINT.VDM macro.

� To print a file with PRINT.VDM from a command line:
1. Give the command:

vpw -x print.vdm filename
The entire file should begin printing. To stop the printing before it is done
press <Ctrl-C>) or <Ctrl-Break>).

2. When done, PRINT.VDM gives you the choice of printing another file or
returning to the operating system (OS).

NOTE: PRINT.VDM is intended as a macro example which is relatively
easy to understand and enhance. Much more sophisticated format-
ters can be written in the VEDIT macro language. If they are named
“print.vdm”, they can easily be accessed from the print dialog box.

See also:

On-line help for {FILE, Print} dialog box.

216 Chapter 5 Advanced Topics PRINT - Print Macro

WILDFILE - Multi-file
Processing

WILDFILE is probably the most useful macro supplied with VEDIT. It lets
you perform a search, search and replace or run another macro on an entire
group of files. The group of files may be specified using the wildcards “?” and
“*”. These files will be searched in any desired directory and, optionally, in all
subdirectories.

Since VEDIT can edit any file, including binary files such as “.EXE” ex-
ecutables, you can search through all files in a directory by specifying “*.*”
without worrying about what kind of files they are. “*.*” will also search any
“hidden” files.

The primary use of WILDFILE is to search for all occurrences of a word
(variable name, etc.) in a large group of files. For example, you might want to
view all occurrences of the word “printf” in all the “.C” files.

WILDFILE can also perform global replacements on many files. For example,
you might have misspelled “parallel” as “parralel” in a group of “.TXT” files.

WILDFILE can also run a second macro on a group of files. For example, the
PRINT.VDM macro could be run on all of your “.TXT” files.

The Windows version of VEDIT is supplied with two variations of the
WILDFILE macro.

� {MISC, Wildfile wizard} prompts step-by-step with dialog boxes. This
function is implemented by the wildfwiz.vdm macro.

� {MISC, More macros, Wildfile} prompts for all parameters with a
DOS-like command lines. This function is implemented by the
wildfile.vdm macro.

The operation of thewildfile.vdmmacro can be fully automated with
an “input” (redirection) file as described below. For example, you could
create on icon on your desktop which immediately converts all files in a
particular directory, without any prompts or user intervention.

Notes:

The files specified for processing with WILDFILE can include any files that
are already open in VEDIT. This way you can perform an operation, such as
searching through many files, without having to worry about which files are
currently open for editing.

All files on the entire drive can be processed with “c:*.* -s”. (It may take
several minutes to process this command, and many minutes to scan all files.)

See Also:

The function {SEARCH, Open searched files} opens all files that contain a
specified search string.

WILDFILE - Multi-file Processing Chapter 5 Advanced Topics 217

Wildfile Wizard (Windows Only)
The following describes the basic steps of using WILDFILE (Wizard) macro.
The screen shots assume we want to replace all occurrences of the misspelled
word “parralel” with “parallel” in all “.txt” files in the directory c:\doco.

1. Select {MISC, Wildfile wizard}.
2. At the filename prompt,

enter the pathname to the
group of files to process,
typically using the wildcard
characters “*” and “?”. If
you have multiple groups,
you can either enter them
on one line, separated by
commas, or press [More] to
repeat this dialog box.

3. At the Operations dialog
box, select whether you
want to search the files,
perform a search and
replace in all files, run a
(simple) macro command
or execute an entire VEDIT
.VDM macro on each file.
(This example performs a
search and replace.)

4. At the Replace dialog box,
enter the desired search and
replace strings. Pattern
matching is the default, or
select Regular expressions.
Optionally, the search can
be case sensitive. The
“Word” option specifies
that the search string must
be within separators.

5. At the next dialog box,
select how you want to dis-
play the replacements. This
example assumes you
selected [Confirm].

218 Chapter 5 Advanced Topics WILDFILE - Multi-file Processing

[Confirm] When the first occurrence is found, it prompts whether you want
to make the replacement, skip it, or globally make all replace-
ments. This is the most common selection.

[Display] The search and replace is made globally; it displays the file name
and line number of each replacement made. You can optionally
have the display pause after each screen full.

[Print] The search and replace is made globally; it prints the file name
and line number of each replacement made.

6. Assuming you selected [Confirm], VEDIT will start searching the files
until it finds the first occurrence of the search string. Similar to the
{SEARCH, Replace} function, it will then highlight the text and prompt
with Replace options.

[Yes] Replace this occurrence and search for the next occurrence,
showing the Replace options again.

[No] Don't replace this occurrence; search for the next occurrence,
showing the Replace options again. You can selectively make
some replacements, skipping others.

[All] Replace this occurrence and all remaining occurrences without
any additional prompts.

[One] Replace this occurrence and then cancel the process.

[Visual] Enter Visual Mode, in which you can make any desired editing
changes. The bottom of the screen will prompt you to press
<Ctrl-E> to search for the next occurrence or <Ctrl-Shift-E> to
cancel the process.

[Cancel] Don't replace this occurrence; cancel the process.

NOTE: We highly suggest making a few selective replacements before
selecting [All] for a global replacement. Otherwise, a mistakenly
entered search or replace string could corrupt many, many files.

When WILDFILE is done, it gives you the choice of running it again, exiting
the macro but staying in VEDIT, or completely exiting VEDIT.

Auto-executing the WILDFILE macro
The Windows version installation creates the “VEDIT Wildfile Macro” icon.
It starts up VEDIT and immediately executes the wildfwiz.vdm macro.

You can also start the Windows version of VEDIT with the WILDFILE macro
from a DOS/NT command prompt with the command:

vpw -x wildfile.vdm or vpw -x wildfwiz.vdm

WILDFILE - Multi-file Processing Chapter 5 Advanced Topics 219

Wildfile Macro (Command Line)
The following describes the basic steps of using WILDFILE command line
macro. The screen shot assumes that we want to view all occurrences of
“printf” in all “.c” files in the directory c:\develop\mail.

� Example - To view all occurrences of “printf” in all “.c” files:
1. Select {MISC, More Macros, WILDFILE}. (In the DOS version, this is

{MISC, Wildfile macro}.)

2. At the filename prompt, enter “c:\develop\mail*.c” and press <Enter>
twice.

3. At the next prompt, type “S” to select [S]earch. Then enter the desired
search string.

4. At the “[D]isplay, [P]rint or enter [V]isual Mode?” prompt, type “D” if
you only want to have the filename and line number of each found
occurrence displayed on the screen. Or type “V” if you want to enter the
normal “Visual” editing mode after each occurrence is found.

5. At the “Press any key to begin...” prompt, press <Enter>. Or press
<Ctrl-C> to abort the operation.

The DOS version of VEDIT can run the WILDFILE macro by auto-execution
or with the supplied wild.bat file:

wild

The supplied wild.bat file contains the command “vedit -x wildfile.vdm”.
To use it,wild.batmust be in the current directory or in a directory specified
by the “PATH=” command in your autoexec.bat file.

220 Chapter 5 Advanced Topics WILDFILE - Multi-file Processing

Fully Automating WILDFILE.VDM
The WILDFILE macro can be fully automated so that when a batch file is run,
or a corresponding desktop icon is clicked, WILDFILE reads all necessary
filenames and parameters from an “input” (redirection) file. It will then process
all the specified files without any prompts or user intervention.

For example, you might have a network server which receives files and places
them into a particular directory. Before being imported into a database, these
files must be converted (cleaned up) by a VEDIT macro. You can create a
desktop icon which converts all the files with a simple click!

The first step is to create an “input” (redirection) file, typically with a .INP
extension, that supplies the necessary parameters to the WILDFILE macro. A
sample file is supplied as wildfile.inp:

! VEDIT input redirection file for WILDFILE macro
!
! Replace "<Italic>" with "<Bold>" in all
! c:\typeset*.txt and c:\typset*.prn files.
!
c:\typeset*.txt ! Select first group of files
c:\typeset*.prn ! Select next group of files

! Blank line ends file selection
%r ! Select [R]eplace
<Italic> ! The search string
<Bold> ! The replace string
%d ! Select [D]isplay
%n ! Select [N]o to "More" option

! Press any key to continue
3 ! Select [3] to exit macro

Assuming the “input” (redirection) file is named “wildfile.inp”, you can then
run the supplied autowild.bat batch file to perform the entire process. It
contains the command:

vpw -e -c'rinp("wildfile.inp") call_file(100,"wildfile.vdm")'

If the “input” (redirection) file has another name, you can modify the
autowild.bat file, perhaps saving it under another name.

If desired, create a desktop icon to run the autowild.bat batch file.

See Also:

The topic “Starting VEDIT - Changing the VEDIT Icon Properties”, in Chapter
4, describes how to create a desktop icon which runs a batch file.

The topic “Input (keyboard) Redirection” in Chapter 3 of the Macro Language
Reference Manual, describes the “input” (redirection) file in more detail.

NOTE: While users that are familiar with VEDIT should have no trouble
creating their own fully automated WILDFILE, Greenview Data will,
on an hourly basis, create all the necessary custom macro, .INP
and batch files to fully automate almost any conversion process.
Please contact us for details.

WILDFILE - Multi-file Processing Chapter 5 Advanced Topics 221

COMPARE - Compare Files
The compare.vdm macro can compare two text files of arbitrary size. You
can edit the files as you are comparing them and copy blocks of text between
them. It is ideal for merging the work done by several people on the same
file(s), or determining the differences between two versions of a file. (The
programmers that develop VEDIT merge their work this way.)

Unlike the {SEARCH, Compare buffers} function, compare.vdm can
automatically re-align the "active" file with the “template” file when you
resume the comparison.

You can start this macro via auto-execution or from within VEDIT:

vpw -x compare.vdm

-OR-
1. Select {MISC, More macros, Compare}.
If you started the COMPARE macro from within VEDIT and buffers 1 and 2
already have open files, it prompts whether you want to save, abandon or
compare these files.

COMPARE then prompts for the window configuration you want. You can
select vertical-split, horizontal-split, or full-sized overlapping windows. It then
prompts for the names of the active and template files. Either enter the
filenames or press <Enter> for point and shoot file selection.

COMPARE then switches to the active file and places the cursor at the position
of the first difference. Assuming that you selected split windows, you will also
see the cursor in the template file. If desired, you can edit either file as desired,
perhaps copying blocks from one file to the other.

To continue the file comparison, switch to the active file (if needed) and
position the cursor where the files are again identical for at least 24 characters.
For example, you might press [NEXT LINE] (<Ctrl-Enter>). You only need
to position the cursor in the active file, not in the template file. COMPARE
will align the template file itself.

Then press [VISUAL EXIT] (<Ctrl-E>). The cursor will advance to the next
difference. This process is continued until the end of one or both files is
reached.

If desired, you can edit either file as desired, perhaps copying blocks from one
file to the other. You can switch between the files in the normal manner or by
pressing <F12>.

� Select {FILE, Next buffer} (<F6>) or {FILE, Previous buffer} (<F5>).

� Assuming that you selected split windows, click the mouse in the desired
window.

HINT: You can switch between the files by pressing <F12>. This is
particularly handy if you are editing additional files and don’t want
to toggle between all of them.

222 Chapter 5 Advanced Topics COMPARE - Compare Files

COMPARE makes a temporary assignment to <F12> and removes it when the
macro is done.

Pressing [ESCAPE] during the comparison brings up the following menu:

FILE COMPARISON INTERRUPTED! Select from following options:

[1] Examine active file 3) Resume, no alignment
[2] Examine template file 4) Realign template & resume
[5] Stop. Get exit options menu
Enter Option:

Options [1] and [2] switch to the desired file.

Option [4] is the same as pressing [VISUAL EXIT] from the active file.
COMPARE examines the 24 characters following the cursor and attempts to
match them in the template file; if this alignment is successful, it resumes the
file comparison.

Option [3] immediately resumes the file comparison from the current cursor
positions, without attempting any realignment. You can also select this option
by [VISUAL EXIT] from the template file.

When COMPARE is done, it gives you the choice of running it again, exiting
the macro but staying in VEDIT, or completely exiting VEDIT.

Notes:

When comparing identically named files on two drives, you only need to enter
the drive name at the “Template file:” prompt. For example, to compare
“newdoco.txt” in the current directory of default drive “C:” with the same
filename in the current directory of drive “D:”, you could enter:

Enter the name of the active file: newdoco.txt

Enter the name of the template file: d:

The comparison will either be case sensitive or insensitive, depending upon
the setting of {CONFIG, Search options, Default case-sensitive option}.
COMPARE attempts to align the template file with the active file by looking
within the template file for the 24-character string following the active-file
cursor. If it cannot find a match within 20 lines preceding the template cursor
or within 100 lines following the cursor, it gives the error: “Unable to realign
template file”.

Realignment failure is most likely due to the active file cursor being positioned
where the files are not identical for the next 24 characters. It could also be due
to the cursor having been moved too far forward or backward. To continue the
comparison, reposition the active file cursor and press [VISUAL EXIT].
Occasionally, COMPARE will be unable to realign the files. To continue the
file comparison, you must then manually realign the cursor in both files and
select option [3] from the above menu.

COMPARE - Compare Files Chapter 5 Advanced Topics 223

COMPDIR - Compare
Directories

The COMPDIR.VDM macro quickly compares all files in two directories
(folders) and displays which files are different and which are unique to each
directory. You can place the cursor on the name of a file which is different and
press <F12> to start up the COMPARE macro to compare the two files.

COMPDIR first checks each pair of files time/date stamp and size; if they are
the same, it assumes that the files are the same. Otherwise, it compares the files
byte-by-byte to check if they really are different.

To run COMPDIR, select {MISC, More macros, COMPDIR}. It will prompt
you for the two directories to compare. You can optionally compare all files
in any sub-directories too.

Alternatively, if you are running from a DOS/NT command, you can run the
supplied compdirw.bat batch file and specify the two directories on the
command line:

compdirw \direc1 \direc2

When the comparison is done, the top window displays the names of the files
that are different in the two directories. The middle windows display the
filenames that are unique in each directory, i.e. files that are in one directory
and not in the other. The bottom window gives a short description of each
window.

If desired, you can compare a file which is different by moving the cursor to
it in the top windows, e.g. with the mouse, and pressing <F12>. This will start
up another copy of VEDIT running the COMPARE macro to compare the two
files. When you exit the COMPARE macro, you will return to this COMPDIR
macro. This makes it very easy to determine which files are different in any
two directories and see what the differences are.

If desired, you can print the contents of each window, by switching to the
desired window and selecting {FILE, Print}.
To exit, select {FILE, Exit}, then select “[Quit-all]” and confirm with “[Ok]”.

224 Chapter 5 Advanced Topics COMPDIR - Compare Directories

SORTMAIL - Sorting Macro
The SORTMAIL macro alphabetically sorts records consisting of multiple
lines. Each record can either consist of the same number of lines, or the records
can be separated by a blank line. The “sort key” is simply the entire first line;
specific columns cannot be selected.

NOTE: Simple lines and single-line records are better sorted with the
{EDIT, Sort, Sort lines} function, which lets you sort according to
any specified columns (fields).

A simple mailing list consisting of address lines separated by one or more blank
lines can be sorted by SORTMAIL. The sort is based on the first address line,
assumed to be a name. For example, the following list could be sorted:

Scott, Charles
3219 Space Ct.
Albany, NY 14311
-(305) 321-7654
-Broadcast Producer

Burnett, Tammie
642 Sunset Blvd.
Miami, FL 32103
-Travel Consultant

Mathews, Lee
236 Bluelake Dr.
Marquette, MI 48123
-(313) 123-4567
-Basketball Player

The SORTMAIL macro can be started from within VEDIT, or by auto-execu-
tion from the DOS prompt or the Windows “Run” command. However, you
must start SORTMAIL from within VEDIT when editing files with fixed-
length records so that you can set the record length before beginning the sort.

� To sort a file already opened in VEDIT:
1. If it is a database file with fixed-length records, be sure that {CONFIG,

File handling, File type} and {CONFIG, File handling, Record header
size} are set correctly.

2. By default, the sorting is not case sensitive. To make it case sensitive,
enable {CONFIG, Search options, Default case sensitive option}.

3. Select {MISC, More macros, Sort}.
If no file is yet open, SORTMAIL prompts for the filename of the file to be
sorted and for the name of the file to contain the sorted output.

SORTMAIL then prompts for the number of lines in each record; enter the
number, or “0” if the records are separated by a blank line. The entire file will
then be sorted.

SORTMAIL - Sorting Macro Chapter 5 Advanced Topics 225

Running SORTMAIL via DOS/NT command prompt
The SORTMAIL macro can also be started from the DOS/NT prompt, the
Windows “Run” command or a Windows icon with the appropriate properties.

The following examples assume the Windows version of VEDIT. For the DOS
version use “vedit”.

vpw -x sortmail.vdm

SORTMAIL prompts for the filename of the file to be sorted and for the name
of the file to contain the sorted output. Just press <Enter> if they are the same.

You can also specify the name of the file to be sorted:

vpw -x sortmail.vdm filename

Alternatively, you can specify the (input) file to be sorted and the (output) file
to contain the sorted output:

vpw -x sortmail.vdm infile -a outfile

SORTMAIL then prompts for the number of lines in each record; enter the
number, or “0” if the records are separated by a blank line. The entire file will
then be sorted.

Alternatively, you can specify the number of lines in each record with the “-n”
option:

vpw -x sortmail.vdm -n4 filename
vpw -x sortmail.vdm -n0 filename

This format sorts a file without any prompts or user intervention.

Notes:

The SORTMAIL macro can realistically handle files up to a few megabytes.
A typical 2-Megabyte file with several thousand records will be sorted in about
one minute (600mhz Pentium). Multi-megabyte files may take unreasonably
long to sort; however, SORTMAIL displays its progress and can be interrupted
at any time.

HINT: To sort multiple line records according to a specific field (columns),
you may be able to convert the record into a single line, sort it with
{EDIT, Sort, Sort lines} and then split each line back into the
desired multiple lines.

This technique can also be used to sort huge files since {EDIT,
Sort, Sort lines} can quickly sort 100+ megabyte files.

226 Chapter 5 Advanced Topics SORTMAIL - Sorting Macro

DBASE.VDM Macro
The DBASE.VDM macro simplifies editing dBASE III type “.DBF” database
files. It sets the correct record size and header offset for the dBase III data file
in the current buffer, i.e. it automatically sets {CONFIG, File handling, File
type} and {CONFIG, File handling, Record header size}. This way, the
records will be properly aligned on the screen and the “LINE:” display on the
status line will display the correct record number.

DBASE.VDM also sets up table information in an unused buffer. This lets you
view the field names, field types, field sizes and determine which column each
field begins in. For example, it can create a display such as the following:

Last updated: 2/23/94
Total Records: 20

Record Length: 182
Header Length: 449

Field Field Name Type COL: Width Dec.
==

1 CO Logical 2 1
2 LN_CO Logical 3 1
3 LBL_LINES Numeric 4 1 0
4 HOW_WIDE Numeric 5 2 0
5 TO_LINE Character 7 32
6 ADDR1 Character 39 32
7 ADDR2 Character 71 32
8 ADDR3 Character 103 32
9 CITY Character 135 18

10 STATE Character 153 2
11 ZIP Character 155 10
12 ADD_DATE Date 165 8
13 NOTES Memo 173 10

� To run DBASE.VDM from within VEDIT:
1. Switch to the buffer containing the “.DBF” file.

2. Select {MISC, More macros, Dbase}.
The “.DBF” file should now be correctly displayed. You can check the “record
size“ and “record header size” in {CONFIG, File handling}.
To view the table information, select {FILE, Next buffer} (default: <F6>)
until you see it.

DBASE.VDM Macro Chapter 5 Advanced Topics 227

Optional “Hot-key” for xBase Files
You can quickly configure VEDIT to an xBase file by selecting {MISC, More
macros, Dbasekey}. This sets the correct “record size” and “record header
size”. All fields will then immediately line up on the screen. However, this
simpler macro does not create the detailed table information display shown
above.

If you often use this function, you may want to set up a hot-key for it. You can
either add the hot-key to your vedit.key file or set it up in the
ustartup.vdm. The default hot-key is <Alt-F12>.

� To enable the xBase hot-key in ustartup.vdm:
1. Open the file ustartup.vdm in the User Config Directory for editing.

2. Locate the line: // Key_Add("Alt-F12" ...

3. Delete the leftmost “//” to enable the command.

4. Enable {CONFIG, Misc, Enable USTARTUP.VDM file}.
Select {CONFIG, Save config} to ensure this setting is saved into the
vedit.cfg file.

5. Save the file and exit VEDIT.

6. Restart VEDIT. Open an xBase file and press <Alt-F12> to confirm that
it works.

228 Chapter 5 Advanced Topics DBASE.VDM Macro

CFUNC - C Program Outliner
The CFUNC macro is a split-screen outliner that lists each C program routine
declaration in a separate window; as you move through the list, the original
window moves through the C program.

� To start the C program outliner:
1. Select {MISC, More macros, Cfunc}.
A typical screen display while the cfunc.vdm macro is running is:

Use <Cursor Up> and <Cursor Down> to move through the outline. Then
press <Enter> to resume editing at the current location in the outline.

NOTES: PFUNC.VDM is the same macro for Pascal.

BFUNC.VDM is the same macro for Visual Basic.

{USER, Search all and select} performs a similar function for any
search string.

CFUNC - C Program Outliner Chapter 5 Advanced Topics 229

RUNSHELL - Run Other
Programs

The function {MISC, Run program} is only suitable for running other
programs (or DOS commands) that do not access the files currently open in
VEDIT.

The functions in the {MISC, Save and run programs} sub-menu are designed
to run compilers and other programs that need to access the currently open
files.

These functions first prompt for the command to run a program (e.g. compiler).
Enter the full command, including any parameters and options. The command
is saved as the default command for the next time. After all open files are saved
and closed, the command is executed by shelling out, possibly via a DOS box.
When the program is done, any DOS box is auto-closed and all files are
reopened.

To run a Windows program, precede the command with “win:”. Depending
upon which version of VEDIT is running (Win32 or Win16), and the operating
system (WinNT/2000/XP, Win95/98/ME, Win31), it may bypass the DOS box
in order to run a Windows program.

NOTES: The program can open and even change the files you were editing
in VEDIT.

The command to run a Windows program should normally be
preceded with “win: ”. Otherwise, VEDIT will continue running and
will immediately re-open the files and lock them, preventing the
program from accessing them.

If a Windows program is not running properly under Windows
95/98, you can try preceding the command with “start /w” instead
of “win:”.

The full pathname of the currently edited file can be passed to the program by
including “##” as a parameter in the command. To illustrate this and how to
run a Windows program, open a small text file, select {MISC, Save and run
programs, Save and run program #2} and enter the command:

win: notepad ##

This will open the current text file in Notepad for editing. When you close
Notepad, the file will be reopened in VEDIT and you should be able to see any
changes made in Notepad.

If the program is set up to create the special file “vout”, this file is automat-
ically opened in a new window. For example, this can be used to view the
output (error) messages from a compiler.

To illustrate the “vout” file, select {MISC, Save and run programs, Save
and run program #1} and enter the command:

230 Chapter 5 Advanced Topics RUNSHELL - Run Other Programs

dir > vout

This redirects the directory command into the file “vout” which is then
automatically opened in VEDIT. Before shelling out, any existing “vout”
file in the current directory is deleted. In the unlikely event this is a problem,
a trivial change documented in the runshell.vdm file disables the “vout”
feature.

The functions in the {MISC, Save and run programs} sub-menu are imple-
mented by the runshell.vdm macro. The only difference between these
functions is the “slot” in which the command is saved. The last command is
the default command the next time the function is selected. This makes it easy
to run the same compiler command over and over again, or to change it as
needed.

If desired, you can run the runshell.vdm macro from the {USER} menu
with more descriptive messages. For example, you could add the following
lines to the user.mnu file:

22
Save and run program 3
#103=3 CallF(122,"runshell.vdm")
22
Save and run program 4
#103=4 CallF(122,"runshell.vdm")
22
Save and run program 5
#103=5 CallF(122,"runshell.vdm")

(Change the message “Save and run...“ to something more descriptive. Change
the preceding number to determine the underlined selection letter.)

Users familiar with the VEDIT macro language can also change the
runshell.vdm macro to better serve specific needs.

See also:

The topic “{USER} and {TOOLS} menus”.

Compiler Support
The {MISC, Run program} and {MISC, Save and run programs} functions
do not support compiler error tracking as does the normal compiler support.
However, if you don’t need to track errors, or have an unsupported compiler,
these functions should work well.

These functions can be used to start up a package such as Microsoft’s Visual
Studio.

See also:

The topic “Compiler Support”.

RUNSHELL - Run Other Programs Chapter 5 Advanced Topics 231

“ctags” Symbol Lookup
The “ctags” facility is useful to programmers that are working on large
programs, particularly programs that consist of many files. Once setup, you
can place the cursor on any function (subroutine) or symbol name and select
{MISC, More macros, Utags} or press a hot-key (default: <F12>) to lookup
the symbol. VEDIT will open the file in which the symbol is declared, with
the cursor on the symbol’s declaration. You can then press the hot-key again
to return to the original file. (Other lookup options can be selected within the
utags.vdm macro).

The “ctags” facility consists of two macro files — ctags.vdm and
utags.vdm. ctags.vdm creates the tags database file with symbol
declarations. utags.vdm performs the lookup function. The lookup can be
performed by selecting {MISC, More macros, Utags}, but as a convenience,
it is usually assigned to a hot-key by the ustartup.vdm file.

To set up for ctags and create thetags database, select {MISC, More macros,
Ctags}. As supplied, ctags.vdm supports C and Assembly language. You
can either create a newtags database or append to the existing one. It supports
programs consisting of C and assembly language modules.

ctags.vdm also supports a user specified symbol “search” string for other
languages. It could also be useful for non-programming applications.

ctags.vdmworks similar to the WILDFILE macro. At the filename prompt,
you enter a wildcard specification such as “*.c”, “*.h” and “*.asm”. It then
processes all specified files in the current directory. By adding “-s” to the
filename, e.g. “*.c -s”, it processes all matching files in all subdirectories.

VEDIT’s ctags facility therefore supports the biggest projects, even those with
thousands of files in many subdirectories.

The format of the generated tags file is identical to that produced by the
UNIX “ctags” utility. Therefore, as an alternative to the ctags.vdm macro,
you should be able to produce the tags file with any utility that is “ctags”
compatible.

Setup
To use ctags, you must create the tags database in the main project directory.
(This is the directory you use to edit and compile the program.)

� To create a “tags” database:
1. Start VEDIT and open just one file in the main project directory. This will

set VEDIT’s “current” directory so that the tags database is created in
this directory.

2. Run thectags.vdmmacro by selecting {MISC, More macros, Ctags}.
-OR-

1. At a DOS/NT command prompt, switch to the main project directory. The
file tags will be created in this directory.

232 Chapter 5 Advanced Topics “ctags” Symbol Lookup

2. Run the ctags.vdm macro:

vpw -x ctags

3. At the CTAGS macro’s language prompt, select whether you are working
in C or Assembler, or want to enter a custom symbol recognition search
pattern.

4. At the filename prompt, enter a file specification, typically using the
wildcard characters “*” and “?”. E.g., enter “*.c” or “*.asm”.

Follow the filename with “-s” to process all matching files in all subdirec-
tories. For example, “*.c -s” will process all .C files in the current directory
and all subdirectories.

Enter as many file specifications as needed; if the files are not in the current
directory, enter the full pathname.

When all files have been entered, immediately press <Enter> again.

5. The ctags macro will then display “Processing <filename>” for each file
processed. (Processing is quite fast - one Megabyte of source code will be
processed in under one minute.)

You can perform a lookup by selecting {MISC, More macros, Utags}, but it
is usually more convenient to set up a hot-key to perform the lookup. This is
easily done in the ustartup.vdm (macro) file. The supplied
ustartup.vdm file contains the necessary command. (However, the com-
mand has been disabled by preceding it with “// ” — the comment characters.)

For example, to assign the lookup function to <F12>, enable {CONFIG, Misc,
Enable USTARTUP.VDM} and add the following line to your
ustartup.vdm file:

Key_Add("F12",'[MENU]MMU',OK)

Usage
Once setup, the ctags facility is trivial to use. Simply place the cursor on a
function name, press the hot-key (default: <F12>) and VEDIT will switch to
the function’s declaration. Then press the hot-key again to return to the original
file and position.

Advanced Usage Notes
You can easily modify utags.vdm to select what it does when the function
declaration is found — simply switch to the file, switch to the file and cascade
the windows, or (default) switch to the file and setup <F12> to switch back.
View the utags.vdm file for more information. This macro is not overly
complex and can be modified to your preferences.

utags.vdm only looks for thetags file in the current directory. If necessary,
you could copy utags.vdm to various local directories and modify the
“File_Open()” command to specify the full pathname to the tags file.

(We would appreciate any improvements you might make to these macros.)

“ctags” Symbol Lookup Chapter 5 Advanced Topics 233

Compiler Support

Overview
VEDIT’s compiler support allows most command-line based compiler, assem-
bler, linker, debugger and Make utilities to be run from within the editor.

The compiler support is implemented as items in the {TOOLS} menu.

Either the “normal” compiler support can be loaded into the {TOOLS} menu
or Java SDK specific support can be loaded into the {JavaTools} menu. You
can easily switch between Java SDK and another compiler by selecting
{MISC, Load compiler support}.
The item {TOOLS, Compile} runs the currently selected compiler. If an error
is reported, the correct source code file is loaded and the cursor placed on the
line containing the error; the entire error reported by the compiler is displayed
in a separate window. You can immediately edit the file and with a hot-key
advance to the next error or re-compile the program.

Once your program compiles without errors you can also run your linker and
debugger from within VEDIT. The {JavaTools} menu item “Compile with
debug” includes debugging information in the compiled program.

The “normal” compiler support also supports several popular Make utilities
and will even track errors reported by different compilers in a Make script. For
example, a Make script could involve running an assembler, a C compiler, a
Fortran compiler and a linker.

The compiler support consists of thecompile.vdmmacro which loads either
compile.mnu or java-sdk.mnu as the new {TOOLS} menu, the
c-xxxxxx.vdm macros which implement each {TOOLS} menu function,
compiler specific .vcs files, and the compile.cnf and java-sdk.cnf
configuration files.

For each supported compiler there is a corresponding “.vcs” macro file. The
file names correspond to the compiler’s command name, e.g. the Microsoft C
compiler is cl.vcs, the Borland C compiler is bcc.vcs, and the Java SDK
compiler is javac.vcs.

The compile.cnf file, located in the VEDIT Home Directory determines
the default Compile, Link, Debug and Make commands. You must edit this
file to set the default commands and compiler options. Optionally, you can
override the compile.cnf file by creating a compile.vco file in a
project’s source code directory; it specifies the Compile and other commands
to be used for that project. For example, you may have a program in one
directory which is compiled as a 32-bit program, and a program in another
directory which is compiled as a 16-bit program.

Similarly, the java-sdk.cnf file determines the default Compile, Com-
pile-with-Debug, Debug and Java-VM commands that will be used when Java
SDK has been selected.

234 Chapter 5 Advanced Topics Compiler Support

Besides the compiler specific .vcs files, also included is a generic compiler
support macro (generic.vcs) and a fully commented example support
macro (sample.vcs) which is an excellent guide for creating your own
compiler specific macro.

Compiler Support Installation
The installation procedure for the Windows and DOS versions of VEDIT give
you the option of installing the compiler support files. If you did not initially
select this option, you must reinstall either version of VEDIT. Since the
installation can save your current configuration and keyboard layout; this is a
simple procedure that only takes a few minutes.

We also assume that you have already installed the desired compiler(s). Make
sure that the compiler is functioning and that any necessary PATH and
environment variables have been set.

Enable Compiler Support
The default {TOOLS} menu contains the compiler support items. If you have
a custom {TOOLS} menu, and you want to change your {TOOLS} menu back
to the Compiler support items, select {MISC, Load Compiler support}. You
can select either the normal compiler support items or the Java support items.

� To change the default {TOOLS} menu:
1. Set {CONFIG, Misc, {TOOL} menu on startup} to “2” to select the

compiler support items.

Alternatively, set {CONFIG, Misc, {TOOL} menu on startup} to “3”
to select the Java support items.

2. Select {CONFIG, Save config} to ensure that the configuration change
is permanent for the next time you run VEDIT. (This step in not needed
if {CONFIG, Auto-save config} is enabled.)

3. Restart VEDIT. The {TOOLS} or {JavaTools} menu should now display
the desired compiler support items.

If this does not work, you may need to disable {FILE, Edit session
restore}, exit VEDIT and restart it.

NOTES: Enabling the compiler support with {MISC, Load Compiler
support} runs the macro compile.vdm which also changes your
keyboard layout as described below.

compile.vdm sets up the hot-keys for the common compiler support items
in the {TOOLS} menu. These additional hot-keys are designed for the “Nor-
mal” keyboard layout and may cause conflicts with other layouts. In this case,
you must change the hot-keys by editing thecompile.vdm file directly. The
default hot-keys are:

Alt-T Selects the {TOOLS} menu.

Shift-F5 Selects {TOOLS, Compile}.

Compiler Support Chapter 5 Advanced Topics 235

Shift-F6 Selects {TOOLS, Link}.
Shift-F7 Selects {TOOLS, Debug}.
Shift-F8 Selects {TOOLS, Make}.
Alt-P Selects {TOOLS, Previous error}.
Alt-N Selects {TOOLS, Next error}.
Shift-F10 Selects {TOOLS, Resume editing}.

Configuring the COMPILE.CNF
(or JAVA-SDK.CNF) file

Thecompile.cnf file specifies the default Compile, Link, Debug and Make
commands to be used. Open this file for editing. You will see the following:
COMPILE.CNF - Default compiler support.

Must be located in VEDIT Home Directory
e.g. “c:\vedit”.

DEFCOMPILE=CL /c -proj.ext
DEFLINK=LINK /codeview -proj.obj;
DEFDEBUG=CV /e -proj.exe
DEFMAKE=NMAKE /n

The following parameters must be set:

DEFCOMPILE
This specifies the default Compiler command (e.g. “cl /c -proj.ext” or “bcc
-c -proj.ext”). The name of the compiler must have an associated “.vcs”
file (e.g. cl.vcs or bcc.vcs).

Typically, a Compiler command will consist of the compiler name, any
desired compiler options and “-proj.ext”. -proj.ext specifies where in the
compile command the name of the (project) file being compiled should
appear.

When running the compiler, “-proj.ext” will be expanded to the full project
path, filename and extension. Alternatively, “-proj” will be expanded to
the project path and filename without extension.

Note that “-proj” will not interfere with any “-p” option your compiler
may have.

You can also use “-name”, which is similar to “-proj”, but includes only
the filename without the full path.

You should set DEFCOMPILE to your most commonly used Compiler
command.

DEFLINK, DEFDEBUG, DEFMAKE
These specify the default Linker, Debugger and Make commands. There
are no associated .vcs files.

The Linker command will typically include “-proj” to specify where the
name of the project file should appear. “-proj” is immediately followed
by the filename extension of the object files, typically “.obj” or “.o”.

236 Chapter 5 Advanced Topics Compiler Support

If you have trouble with the Microsoft “NMAKE”, try adding the “/n”
option. Similarly, with the Borland or Avocet “MAKE”, try adding the
“-n” option.

Java SDK: In the java-sdk.cnf file, DEFLINK actually sets the
“Compile with debug” command and DEFMAKE sets the
“Java VM” command.

COLORDISPLAY, WINDOW ATTRIBUTES...
These specify the colors used by the compiler support. They are docu-
mented in the compile.cnf file.

After editing compile.cnf, the compiler support should now be properly
installed and functional.

Example COMPILE.CNF for Microsoft C
DEFCOMPILE=cl /am /c -proj.ext

DEFLINK=link /codeview -proj.obj;

DEFDEBUG=cv /e -proj.exe

DEFMAKE=nmake

Example COMPILE.CNF for Borland Turbo Asm
DEFCOMPILE=tasm /zi -proj.ext

DEFLINK=tlink /m/v -proj.obj

DEFDEBUG=td -proj.exe

DEFMAKE=make

Running the Compiler Support
Assuming you have enabled the compiler support and have configured the
compile.cnf (or java-sdk.cnf) file correctly, you are ready to use the
compiler support.

Compiler Support Chapter 5 Advanced Topics 237

� To run the compiler support:
1. Start VEDIT and open the main file to be compiled. E.g., you want to be

switched to the main .c file and not to a .h or other “include” file.

The current file will be the “project file”. This is the filename that is given
to the compiler or linker command. (Via the “-proj.ext” or “-name”
expansion described above.)

If you are using a “Make” file to compile and link your project, you do
not need to be switched to the main project file.

2. Select {TOOLS, Compile} or press its hot-key. The compiler will imme-
diately run; you may temporarily see some output on the screen.

NOTE: If you do not have a {TOOLS, Compile} item, refer to the section
“Enable compiler support” above.

3. When the compiler is done, the output from the compiler will be displayed
in a VEDIT window.

If there were no compilation errors, or you don’t want to look at them now,
simply press <Enter> or <Esc> to resume editing.

If there were errors and you want to go to the first one now, press “F”. It
will switch to the source code file with the error and position the cursor
on the line containing the error. The full error message will be displayed
in a separate window.

To browse the compiler output and optionally select an error, press “B”.

4. Select {TOOLS, Next error} (hot-key: <Alt-N>), {TOOLS, Previous
error} (hot-key: <Alt-P>) to move the cursor to each source code line
containing an error.

Notes: These functions go to absolute line numbers. If you add or delete
lines in the source file, they will go to the wrong line. If this becomes
too confusing, you will probably want to re-compile.

To remove the error window, either select {TOOLS, Next/previous
error} until you reach the end, or select {TOOLS, Resume
editing}.

5. When all errors are (hopefully) corrected, select {TOOLS, Compile}
again to re-compile.

6. After a successful compilation, you can select {TOOLS, Link} to run the
linker and then {TOOLS, Debug} to run the debugger.

If desired, you can set up “Debug” to simply run the program without a
debugger.

See also:

On-line help for compiler support items.

The on-line help topic “Compiler Support” (DOS: “COMPILE”) describes
many additional details about using the compiler support.

238 Chapter 5 Advanced Topics Compiler Support

Chapter 6

Menu Reference

This chapter is a detailed description of the VEDIT menus and provides a quick
reference for specific menu operations.

This chapter lists the menus in the order in which they appear on the top menu
line. Introductory information pertaining to each menu is given. Also included
are the “hot-key” assignments in the “Normal” keyboard layout which may be
used to directly access each menu and many menu items.

The description of each menu item is divided into the following sections:

Menu Item This is the name of the menu item as it appears on
the screen.

Brief Description Read this brief description to determine if you have
found the desired item.

Keystroke
Equivalent:

If the “normal” IBM PC keyboard layout has a
“hot-key” or other keystroke equivalent for select-
ing this item, it is listed here. Many keystroke
equivalents are set up as “keystroke macros”; other
menu items are equivalent to basic edit functions.
Use {CONFIG, Keyboard layout, Edit/view
layout} to view all assigned keys and keystroke
macros. For those items without keystroke equiva-
lents, you can always create a new keystroke
macro.

Full Description: A detailed description of the menu item and how
to use it. This often includes step-by-step instruc-
tions for performing common operations.

Notes: Related comments, suggestions and warnings.

See Also: List of related menu items, edit operations and
other supporting references.

Chapter 6 Menu Reference 239

File Menu
Keystroke Equivalent:

<Alt-F>, This is a keystroke macro.

Introduction:

The File menu includes functions for opening a file for editing, switching
between the multiple files being edited, saving and exiting.

New
Open a new (empty) buffer without an assigned filename.

Keystroke Equivalent:

<Ctrl-N>, This is a keystroke macro.

This function is also on the toolbar.

Full Description:

“New” opens a new (unused) buffer; it will initially be empty and have no
assigned filename. To assign a filename to the new buffer, select {FILE, Save
as}.
Experienced users will probably prefer to use {FILE, Open} even when
creating new files.

240 Chapter 6 Menu Reference File Menu

Notes:

“New” is rarely used in VEDIT. Some other editors force you to select “New”
and then “Save as” to create a new file. However, VEDIT automatically creates
a new file when the filename you enter in {FILE, Open} doesn’t already exist.

The buffer number selected by “New” will be the lowest numbered buffer
between 1 and 99 that is currently unused. Buffers that are currently open, but
are empty, are not selected. “New” is ignored if the current buffer is empty.

You can also open an empty buffer with {FILE, Buffer switch}. When the
specified buffer is not already open, it is opened as an empty buffer.

VEDIT can have multiple “<Untitled>” buffers open without assigned file-
names. However, selecting {FILE, Exit} and then “Save-all” does not save
those buffers which have no filename.

See Also:

The topic “Editing Multiple Files” in Chapter 4.
{FILE, Open}, {FILE, Buffer switch}

Open
Open an additional file (or files) for editing.
If the entered filename does not exist, it is created.

Keystroke Equivalent:

<Ctrl-O>, This is a keystroke macro.

This function is also on the toolbar.

Full Description:

“Open” opens (or creates) an additional file in an unused buffer and displays
it in its own window. Multiple files can be opened at once.

The File-open dialog box optionally lets you open the file in “Read-only” mode
so that you don’t accidentally alter it and can navigate it more quickly. You
can also open binary and fixed-length record files. The on-line help for the
File-open dialog describes these options in detail.

� To simultaneously edit another file in a new window:
1. Select {FILE, Open} (<Ctrl-O>).

2. You are prompted for the name of the file to edit.

If you enter a filename which does not exist, VEDIT will create the file.

In the Windows version, you can highlight multiple files to be opened at once.

In the DOS version, you can enable “[x] Load multiple files” and, e.g., enter
“*.c” to open all “.C” files in the current directory.

The new window will either be full-sized or cascaded, depending upon the
setting of {CONFIG, Display options, Auto-create window style}.
The status line will display the new buffer number; the window border will
display the new filename.

File Menu Chapter 6 Menu Reference 241

Notes:

VEDIT requires enough disk space to accommodate approximately twice the
actual file size. You should always work with at least that much free disk space.

If you select a file which is already open in another buffer, “Open” only
switches to that buffer; you cannot have the same file open in two buffers at
once. To display different parts of one file in two windows, select {WINDOW,
Split}.
The new buffer selected by “Open” will be the lowest numbered buffer
between 1 and 99 that is currently unused. Buffers that are currently open, but
are empty, are not selected. However, for routine editing, buffer numbers are
not important.

To edit a file in a particular buffer (instead of the next available buffer), use
{FILE, Buffer switch} (<F4>) to switch to the desired buffer. Then select
{FILE, Open}.

See Also:

The topic “Opening Files” in Chapter 4.
The topic “Editing Multiple Files” in Chapter 4.
{FILE, New}, {FILE, Open (More)}
{WINDOW, Split}, {WINDOW, Switch},
{VIEW, Zoom}, {VIEW, Full size}

Open More (Sub-menu)
This sub-menu offers three variations of {FILE, Open} to save steps when
editing multiple files. You can open a new file in the same buffer/window after
closing the current file. Or the current window can be split into two windows
so that you can see the current window and the new window at the same time.

The handy “Quick open” function lets you quickly open one or more files with
a simple dialog box.

“Insert file” is a duplicate of {EDIT, Insert, Insert file}; many users look for
this function in the {FILE} menu.

Keystroke Equivalent:

<Ctrl+Shift-O>, Keystroke macro for {FILE, Open (more), Quick open}.
<Alt-O>, Keystroke macro for {FILE, Open (more), Same buffer}.
<Alt-Y>, Keystroke macro for {FILE, Open (more), Horizontal split
window}.

Full Description:

{FILE, Open (More), Quick open} (<Ctrl+Shift-O>) prompts with a simple
dialog box for the name(s) of the file(s) to open. You may need to enter the
full pathname to each file; the dialog box displays the current directory. It is
particularly useful for opening multiple files — separate the filenames with a
comma, or enter, e.g. “*.txt” to open all .TXT files.

{FILE, Open (More), Same buffer} (<Alt-O>) is a shortcut way of closing
the current file and opening the next file. It saves keystrokes and/or mouse

242 Chapter 6 Menu Reference File Menu

clicks. It is the best way of editing one file after another; it reduces the
confusion of having many unnecessary files and windows open at once.

“Open with Horizontal split window” and “Open with Vertical split window”
simplify opening two files side-by-side or one above the other, perhaps to
compare them.

� To quickly open multiple files (e.g. all “.CPP” and “.H” files):
1. Select {FILE, Open (More), Quick open} (<Ctrl-Shift-O>).

2. In the dialog box, you can use the wildcards “*” and “?” to specify entire
groups of files. For example, to open all .CPP and .H file, enter:

*.cpp *.h

(To enter filenames that contains spaces or commas, you must enclose the
filenames in double-quotes.)

� To edit a new file (in the same buffer and window):
1. Select {FILE, Open (More), Same buffer} (<Alt-O>).

2. If the current buffer contains a modified file, you will be prompted whether
the file should be saved or abandoned before opening the new one:
Save current file? [Yes] [No-Abandon]

Answer [Yes] to save the current file with all modifications. Answer [No]
to abandon any changes made since the last time the file was saved.

3. You are prompted for the name of the file to edit with the normal File-open
dialog box.

� To simultaneously edit two files in a split window:
1. Open the first file with {FILE, Open} (<Ctrl-O>) or {FILE, Open

(More), Same buffer} (<Alt-O>).

2. You probably will want to expand the window to full size, if not already,
with {VIEW, Full size}.

3. Select {FILE, Open (More), Horizontal window} (<Alt-Y>) to display
the new file in the lower half of the current window. Or select {FILE,
Open (More), Vertical window} to display the new file in the right half
of the current window.

4. You are prompted for the name of the file to edit.

The current window will be split into two windows and you will now be
editing the new file in the new window.

Notes:

You can later resize, tile, cascade or reset the windows.

See the Notes for {FILE, Open}.

See Also:

The topic “Opening Files” in Chapter 4.
The topic “Editing Multiple Files” in Chapter 4.

File Menu Chapter 6 Menu Reference 243

Close
Close the current buffer; save or abandon any current file.

Keystroke Equivalent:

<Ctrl-W>, This is a keystroke macro.

Full Description:

“Close” closes the current file and associated buffer, and all corresponding
(attached) windows. If the buffer contains a modified file that has not been
saved, you are prompted whether you want to save or abandon it.

When closing the last buffer, VEDIT keeps the buffer open as an empty buffer.
VEDIT always keeps at least one buffer and window open.

NOTE: It is usually more convenient to click the mouse on the window’s
“close” button to close both the window and file. When the buffer
(file) is displayed in only one window, {FILE, Close} and
{WINDOW, Close} are identical. There is only a difference when
the buffer is displayed in two or more windows, e.g. after
{WINDOW, Split}.

� To close the current buffer and all attached windows:
1. Select {FILE, Close} (<Ctrl-W>). If the buffer contains a modified file,

it prompts whether the file should be saved or abandoned:
Save current file? [Yes] [No-Abandon]

2. Answer [Yes] to save the current file. Answer [No] to abandon any
changes that have been made since the last time the file was saved.

3. If you answer [Yes] to save the file, but no filename is assigned, you will
be prompted for the “Save as” filename in which to save the file.

Notes:

VEDIT skips confirmation prompts when you abandon unmodified files and
does not re-write unmodified files to disk.

Use {WINDOW, Close} (<Ctrl-F4>) or click the mouse on the window’s
“close” button to close both the window and the buffer. However, since the
last window cannot be closed, {WINDOW, Close} is equivalent to {FILE,
Close} when only one window exists.

In most cases {WINDOW, Close} is preferred over {FILE, Close}.

See Also:

“Editing Multiple Files - Closing Files” in Chapter 4.
{FILE, Open}, {WINDOW, Close}

244 Chapter 6 Menu Reference File Menu

Reload
Abandon any changes and reload the original file.

Keystroke Equivalent: (None)

Full Description:

“Reload” abandons any changes you have made to the file, closes it and
re-opens it. The file will then be in the same state as it was when you last saved
it. “Reload” is useful for quickly abandoning any changes and starting over,
especially if the changes are too extensive to “undo”.

Notes:

If you saved any intermediate changes, or VEDIT “auto-saved” the file, then
“Reload” will only go back to the last saved state. To go back to the originally
opened file, you will need to open the backup file.

See Also:

“Exiting VEDIT - Backup files” in Chapter 4.

Save

Save All
Save the current file or files and continue editing.

Keystroke Equivalent:

<Ctrl-Shift-S> is a keystroke macro for “Save”.

These functions are also on the toolbar.

Full Description:

“Save” saves any changes you have made to the current file so that they won’t
be lost by power failure, system crash or a major editing mistake.

“Save all” similarly saves any changes you have made in all currently open
files.

You should select “Save” or “Save all” frequently. It is important and takes
very little time.

Alternatively, you can enable VEDIT’s auto-save feature to save all files at
regular intervals. See {CONFIG, File handling, Auto-save interval}.

� To save the current file and continue editing:
1. Select {FILE, Save}. If you made any changes since the last time you

saved the file, the file will be saved to disk. If you did not make any
changes, VEDIT will not bother to save the file again.

2. Continue editing the file. Remember to regularly save your changes.

File Menu Chapter 6 Menu Reference 245

Notes:

When editing multiple files, “Save” saves only the current file; this is useful
when the other files are not in a state in which you want to save them.
Otherwise, use “Save all” to save all modified files.

If the current buffer has no assigned filename, you will be prompted to enter
the “Save as” filename.

“Save all” only saves the current file, the file in buffer 1, and files in those
buffers that have assigned filenames. If the current buffer or buffer 1 do not
have filenames assigned, it will prompt for the “Save as” filename.

If {CONFIG, File handling, Auto-save} is enabled, VEDIT automatically
performs a {FILE, Save all} at regular intervals.

See Also:

“Exiting VEDIT - Auto-file Save” in Chapter 4.
{FILE, Save all}, {FILE, Save as}, {FILE, Exit}

Save As
Name a file and save contents of buffer.

Keystroke Equivalent: (None)

Full Description:

“Save as” saves the file you are currently editing under a new name. This is
convenient when you want to use an existing file as a template or prototype
for a new file.

“Save as” also lets you save the contents of a buffer that currently has no
filename associated with it.

� To save the current file under a new name:
1. Select {FILE, Save as}.
2. You are prompted for the desired filename. You could select an existing

file, but more likely you will enter a new filename.

Notes:

You can save steps by entering the “Save as” filename when you open the
original file. E.g., at the filename prompt enter “oldfile.txt -a newfile.txt”.

See Also:

{FILE, Save}, {FILE, Exit},

246 Chapter 6 Menu Reference File Menu

Save Block As
Save the highlighted block as a file.

Keystroke Equivalent: (None)

Full Description:

A block of any size may be saved to disk. You can use this function to split a
large file into smaller files, or to save a text block to disk for future use.

� To save a block of text to disk:
1. Highlight the desired text. You can either set both markers or use the

cursor as the second marker. You can highlight either a “stream”, “colum-
nar” or “line” block.

2. Select {FILE, Save block as}. You are prompted for the desired filename.
Either enter a new filename or select an existing file to be overwritten.

See Also:

“Block Operations - Cut and Paste Huge Blocks” in Chapter 4.
{FILE, Open (more), Insert file} or {EDIT, Insert, Insert file}

Buffer Switch
Switch to another buffer and corresponding file.

Keystroke Equivalent:

<F4>, This is a keystroke macro.

Full Description:

“Buffer switch” switches directly to any desired buffer and its corresponding
file, if any. If the specified buffer is already open, this is similar to using {FILE,
Next buffer} or {FILE, Previous buffer}. If the buffer is not open (i.e.
“unused”), it opens the buffer as an empty buffer, similar to {FILE, New}.
When simultaneously editing multiple files, {FILE, Buffer switch} can be
used to switch directly to a given file. If that file is currently displayed in a
different window, it also switches to that window.

� To switch to a desired file (buffer):
1. Select {FILE, Buffer switch} (<F4>).

2. In the dialog box you can either directly enter the desired buffer number
or select a buffer using “point and shoot”.

The new buffer’s number will be displayed on the status line.

Notes:

The list of files displayed in the dialog box can be useful for determining which
files are current open, modified, etc. It also displays the full pathname of the
files being edited. The filename is preceded with “*” if the file has been altered.
It is preceded with “!” if the file is in Read-only mode.

File Menu Chapter 6 Menu Reference 247

If you are only viewing the file/ buffer information, press <Esc> or [Cancel]
if you don't want to switch buffers.

You can also switch to any desired file with the Tabbar (Window version only).

Don’t confuse buffer numbers with window ID numbers. Although they are
often the same, they are independent. When you display a buffer in two or more
windows, e.g. with {VIEW, Toggle hex mode split}, the buffer is attached to
additional windows.

Use {WINDOW, Switch} to switch directly to a window.

See Also:

“Editing Multiple Files” in Chapter 4.
{FILE, Open}, {FILE, Next buffer}, {FILE, Exit}
{WINDOW, Switch}

Next Buffer

Previous Buffer
Toggle round-robin style to the next or previous buffer (file).

Keystroke Equivalent:

<F6> is a keystroke macro for “Next buffer”.

<F5> is a keystroke macro for “Previous buffer”.

These functions are also on the toolbar.

Full Description:

This is the easiest way to switch to another file when simultaneously editing
multiple files. It toggles you, round-robin fashion, to the next/previous buffer
(file). If necessary, select {FILE, Next buffer} (<F6> or toolbar) repeatedly
until you reach the desired file.

You can also switch directly to a given file by switching to its corresponding
buffer with {File, Buffer switch}, but usually “Next buffer” or “Previous
buffer” is simpler and quicker.

Notes:

These functions will also switch to empty buffers that are in use but have no
file open in them. This can happen after you have used {FILE, New}, {FILE,
Buffer switch} or when a command macro sets up additional buffers.

You can close buffers that are no longer needed, e.g. buffers that are empty or
contain files you have finished editing, by switching to the buffer and selecting
{FILE, Close} (<Ctrl-W>) or {WINDOW, Close} (<Ctrl-F4>).

See Also:

“Editing Multiple Files” in Chapter 4.
{FILE, Open}, {FILE, Buffer switch}
{WINDOW, Next window}, {WINDOW, Previous window}

248 Chapter 6 Menu Reference File Menu

Print
Select the print dialog box to print the entire file or selected block.

Keystroke Equivalent:

<Ctrl-P>, This is a keystroke macro.

This function is also on the toolbar.

Full Description:

This item selects the Print dialog box. You can print the entire file, just the
highlighted block, or select the “PRINT.VDM macro”.

You can select whether the file/block is printed using the currently configured
margins and print mode, or whether it is printed “raw” without margins.

You can also select the font and size used for printing. All characters are printed
in the same font and size.

Theprint.vdmmacro, as supplied, adds the filename, page number and date
to the top of each printed page. It can optionally print rulers, line numbers and
file positions (offsets).

Notes:

You can print multiple blocks of text on the same page by disabling the
“[] Auto-close (finish) print job” option which leaves the print job open. You
must then select {FILE, Print} again to print another block or finish and close
the print job.

See Also:

“Printing” in Chapter 4 describes this function in complete detail.

Enable edit restore
Save the entire editing status when you exit.

Keystroke Equivalent: (None)

Full Description:

When enabled, VEDIT saves its entire status when you exit. Subsequently
restarting VEDIT resumes your previous edit session, just as if you had never
exited.

If you start VEDIT with files, the previous edit session status is not used. To
invoke VEDIT without filenames and without restoring the previous edit
session, use the “-e” option, e.g. “vpw -e”.

NOTE: To save this setting for the next time you run VEDIT, you must select
{CONFIG, Save config}.

See Also:

“Exiting VEDIT - Edit Session Restore” in Chapter 4.
{FILE, Exit}

File Menu Chapter 6 Menu Reference 249

Exit (save)
Save or abandon the file or files being edited and exit VEDIT.

Keystroke Equivalent:

<Alt-F4> or <Alt-X>, These are keystroke macros

Full Description:

“Exit” lets you selectively save or abandon each modified file, or save/abandon
all files at once. It displays each altered buffer (file) and prompts whether it is
to be saved or abandoned. It repeats this for each buffer and then exits VEDIT.
For example, the prompt might be:

Save ERRATA.DOC ? [Yes] [No] [Save-all] [Quit-all]

[Yes] Saves the specified file (buffer); if the file has no assigned
filename, you are prompted for one. If this is the last altered file,
it exits VEDIT; otherwise, it prompts for the next file.

[No] Abandons (quits) the specified file; the changes are not saved. If
this is the last altered file, it exits VEDIT; otherwise, it prompts
for the next file.

[Save-all] Saves all files currently being edited and exits VEDIT without
any further prompting. Note: it only saves those files (buffers) that
have assigned filenames!

[Quit-all] Abandons all files currently being edited and exits VEDIT. If
additional altered files are open, it prompts for verification.

[Cancel] Cancels the operation; same as pressing <Esc>.

Notes:

The [Save-all] and [Quit-all] selections may seem superfluous when only one
file is being edited. However, they are necessary for a keystroke macro such
as “[MENU] F X S” to work.

Selecting [Save-all] only saves text in those buffers that have assigned file-
names. However, if buffer 1 has no filename assigned, it will prompt for the
“Save as” filename.

Abandoning a file causes VEDIT to “forget” any changes you have made since
the last time the file was saved. Use this capability with caution!

If {FILE, Enable edit restore} is enabled, VEDIT saves the entire edit session.
Restarting VEDIT then resumes the editing.

{FILE, Exit} is identical to {ESCAPE, Exit}.

See Also:

“Exiting VEDIT” in Chapter 4.
{FILE, Save as}, {FILE, Save}

250 Chapter 6 Menu Reference File Menu

Recent File List
Recently edited files are listed and can be easily selected for further editing.

Keystroke Equivalent:

<Alt-F> followed by the number of the file.

Full Description:

(Windows version only) The most recently edited files are listed in the {FILE}
menu. This is referred to as the “MRU file list” (Most-Recently-Used). To
re-open a file, simply select it.

Notes:

The number of files listed can be changed by editing the vedit.ini file and
changing the “MaxMRU” parameter. Allowable values are “1” through “10”;
“0” turns this feature off. You should select a value according to your screen
resolution and personal preferences. The new value will take effect the next
time you start VEDIT.

(Windows) The “Recent” tab of the File selector window lets you access up to
100 of the most recently edited files.

File Menu Chapter 6 Menu Reference 251

Edit Menu
Keystroke Equivalent:

<Alt-E>, This is a keystroke macro.

Introduction:

The Edit Menu provides quick access to the Windows clipboard and the
VEDIT scratchpad. It also has sub-menus for Undo, Formatting, Sorting,
Converting and Translating.

Browse Mode
Enable/disable browse mode for the current file and the next file edited.

Keystroke Equivalent: (None)

Full Description:

When set, the current file cannot be altered any further. If VEDIT was invoked
with the “-b” invocation option, or if the current file was opened in Read-only
mode, this toggle is set and cannot be turned off.

This item is normally disabled so that the current file can be altered. When
enabled, the current file cannot be altered, or if the file has already been altered,
it cannot be altered any further.

252 Chapter 6 Menu Reference Edit Menu

CD-ROM and other read-only files are automatically opened in Read-only
mode.

Notes:

Using browse mode is convenient when you want to ensure that a file is not
accidentally altered.

See Also:

“Starting VEDIT - Read-only Mode” in Chapter 4.

Cut to clipboard

Copy to clipboard
Copy or cut (move) the marked block of text to the Windows clipboard.

Keystroke Equivalent:

<Ctrl-X> or <Shft-Del>, These are keystroke macros.

<Ctrl-C> or <Ctrl-Ins>, These are keystroke macros.

These functions are also on the toolbar.
These functions are also in the right-click context menu.

Full Description:

“Copy to clipboard” saves a copy of the marked (highlighted) block of text in
the Windows clipboard, while “Cut to clipboard” also deletes the marked block
from your file.

If no block is highlighted, these functions copy/cut the current line to the
clipboard.

� To save (cut or copy) text to the clipboard:
1. Highlight the desired text. You can either set both markers or use the

cursor as the second marker.

2. Select {EDIT, Cut to clipboard} (<Ctrl-X>) to cut (move) the block.

Select {EDIT, Copy to clipboard} (<Ctrl-C>) to copy the block.

Notes:

The Windows “clipboard” is a temporary holding area for text to be exchanged
with other programs. Text placed in the clipboard remains there until it is
overwritten or you exit Windows. All Windows programs share the same
clipboard. For example, you can copy a block of text from VEDIT to an E-mail
program.

While most other editors require that you use the clipboard to cut and paste
blocks within your file, we strongly suggest that you use VEDIT’s text
registers instead. The default text register 0, also called the scratchpad, is just
as easy to use. (The clipboard does not handle columnar blocks as well as the
text registers, and does not support binary data.)

Edit Menu Chapter 6 Menu Reference 253

You can simply press <Ctrl-C> to copy the current line to the clipboard, there
is no need to first highlight it.

Technical Notes:

VEDIT always copies data to the clipboard as “text” and can only paste from
the clipboard when it contains “text”, i.e. graphic bitmaps cannot be pasted
into VEDIT. In “text” format, the clipboard cannot contain the “null” character
(value 00). If you copy a block containing a “null” to the clipboard, anything
past the “null” will appear to be truncated. Therefore, the clipboard cannot be
used to exchange binary data between VEDIT and other programs.

DOS version: The Window clipboard is only available in Windows 95/98/ME.

See Also:

“Block Operations - The Windows Clipboard” in Chapter 4.
{EDIT, Scratchpad, Cut to scratchpad}, {BLOCK, Copy to register}.

Paste clipboard

Paste columnar clipboard
Insert the contents of the Windows clipboard as a “stream” or “columnar”
block at the current cursor position.

Keystroke Equivalent:

<Ctrl-V> or <Shft-Ins>, These are keystroke macros for {EDIT, Paste
clipboard}.
This function is also on the toolbar.
This function is also in the right-click context menu.

Full Description:

“Paste Clipboard” inserts the contents of the Windows clipboard when it
contains “text” type data; it does not insert graphical data.

You can paste the clipboard as either a “stream” or “columnar” block. Selecting
“Paste clipboard” inserts the entire clipboard at the cursor position. Selecting
“Paste columnar clipboard” inserts each line of the clipboard into successive
lines of your file, each time starting at the current column.

Notes:

By default, the cursor will be positioned past the inserted text. Alternatively,
disable {CONFIG, Emulation, Advance cursor past block insert} to have
the cursor remain at the beginning of the inserted text.

See Also:

“Block Operations - The Windows Clipboard” in Chapter 4.
{EDIT, Copy to clipboard}, {BLOCK, Insert register}

254 Chapter 6 Menu Reference Edit Menu

Select All
Select the entire file as a stream block.

Keystroke Equivalent:

<Ctrl-A>, this is a keystroke macro.

Full Description:

This item marks the entire file as a block of text. It is often used when the file
is about to be processed with the {EDIT, Convert} or {EDIT, Translate}
functions.

This item is also available in the {EDIT} menu.

See Also:

“Block Operations - Marking a Block of Text” in Chapter 4.
{BLOCK, Set stream marker}

Clear Markers
Clear any existing block markers.

Keystroke Equivalent:

<Shft-F9>, this is a keystroke macro.
You can also clear markers by double-tapping <Ctrl>, or pressing <Ctrl-\>
or <Ctrl-Break>.

This function is also on the toolbar.
This function is also in the right-click context menu.

Full Description:

You can clear (remove) the block markers at any time; this also clears the
highlighting. Normally, most block operations clear the block markers when
completed.

Notes:

It is usually easier to clear the block markers by pressing [CANCEL]
(<Ctrl-\>) or (<Ctrl-Break>) or simultaneously pressing both mouse buttons.

You can also perform [CANCEL] by simply double-tapping <Ctrl>; this
assumes {CONFIG, Emulation, Alt/Ctrl/Shift key shortcut modes} is
enabled.

This item is also available in the {EDIT} and {ESCAPE} menus.

See Also:

“Block Operations - Persistent Blocks” in Chapter 4.
{BLOCK, Set stream marker}
[CANCEL]

Edit Menu Chapter 6 Menu Reference 255

Repeat
Repeat next edit operation.

Keystroke Equivalent:

<Ctrl-R>, identical to [REPEAT]

Full Description:

“Repeat” repeats the following edit operation the specified number of times.
Any edit operation, such as typing in a character, pressing an edit function key,
selecting an item from a menu or even executing a keystroke macro, can be
repeated.

� To repeat an edit operation:
1. Select {EDIT, Repeat} (<Ctrl-R>). You will see the following prompt

on the status line:
Enter repeat count:

2. Enter the count of how many times to repeat the upcoming operation. You
can enter a numeric expression such as “(1250+540)/24”.

3. At the prompt “Press key to repeat:” simply press the edit function or
displayable character you want repeated. You can also select an item from
the menus.

For example, to create the top of a box, you could press [REPEAT], “50”
<Enter> and “*”.

Notes:

The maximum repeat count defaults to 256 but can be changed with
{CONFIG, Misc, Maximum [REPEAT] count}. This prevents you from
accidentally repeating an operation so many times that it cannot be undone.

This menu item is usually only selected with a mouse; from the keyboard it is
usually more convenient to simply press [REPEAT] (<Ctrl-R>).

When repeating menu items, YOU MUST select the items by typing the
appropriate selection letters. Attempting to select items with the cursor keys
will confuse the process and lead to undesirable results.

Because of the way VEDIT updates the screen, only the final screen may be
shown when using [REPEAT]. Since some operations may take a bit of time
to perform, you may notice some delay when they are repeated many times.

To abort a lengthy “Repeat”, press [CANCEL] (<Ctrl-\>) or <Ctrl-Break>.

See Also:

[REPEAT], [REPEAT LAST]

256 Chapter 6 Menu Reference Edit Menu

Center Line
Center the current line.

Keystroke Equivalent: (None)

Full Description:

“Center line” adds just enough space to the beginning of a line to center the
line between column 1 and the right margin. If no explicit right margin is set,
it defaults to the width of the current window.

� To center a line of text:
1. Make sure that the right margin is set correctly with {CONFIG, Word

processing, Right margin}.
2. Select {EDIT, Center line}. This will center the current line. It also

advances the cursor to the next line so that you can easily repeat this
process to quickly center several consecutive lines.

Notes:

Unlike other functions which indent with the optimal number of tab characters
and spaces, “Center line” only adds spaces as needed.

To center a number of lines or an entire paragraph, precede this function with
[REPEAT] (<Ctrl-R>) and the desired count. Alternatively, immediately
press [REPEAT LAST] (<Alt-R>) to center additional lines.

See Also:

{CONFIG, Word processing, Right margin}

Edit Menu Chapter 6 Menu Reference 257

Undo (Sub-menu)
Introduction:

VEDIT can undo most editing operations including cursor movements,
insertions, deletions and search/replace. You can undo operations keystroke-
by-keystroke, line-by-line or deletion-by-deletion. The “redo” capability lets
you “undo” the undo.

See Also:

The topic “Undo and Redo” in Chapter 4.

Edit
Undo a single keystroke or editing operation.

Keystroke Equivalent:

<Ctrl-Z> or <Alt-Bksp>, These are keystroke macros.

This function is also on the toolbar.

Full Description:

Each time “Edit” is used, it reverses the effect of the previous edit operation.
It can be used repeatedly to back up step-by-step.

Notes:

Selecting a menu item or performing a search/replace is considered a single
edit operation even though it may take several keystrokes to perform.

If you undo all the way back to the point where you opened the file, VEDIT
will know that the file has not been altered.

Line
Undo all changes made to the current line.

Keystroke Equivalent:

<Ctrl-Shift-Z>, This is a keystroke macro.

Full Description:

All changes made to the current line of text can be reversed in one step with
this item. Immediately selecting this item again will move the cursor to the

258 Chapter 6 Menu Reference Undo (Sub-menu)

previously modified line, but not yet undo any changes to this line. This lets
you review whether you also want to undo this line. Select this item again to
also undo this line.

Deletion
Insert the last text deletion(s).

Keystroke Equivalent: (None)

Full Description:

Up to five blocks of text deleted with [ERASE EOL], [ERASE LINE] and
{BLOCK, Delete block} can be re-inserted at any place in your file using this
function. It works independently of other undo operations. Even if other undo
functions have been used to restore these blocks of text exactly where they
originally resided, {EDIT, Undo, Deletion} can re-insert the same blocks at
the current cursor position.

Blocks are re-inserted in the reverse order they were deleted (technically
“popping” the text off a deletion “stack”).

Notes:

Technically, {EDIT, Undo, Deletion} is not an undo function; it is an editing
function that inserts a previously deleted block of text anywhere in the file.
Therefore, you can undo {EDIT, Undo, Deletion} with {EDIT, Undo, Edit}.
When enough memory is available, VEDIT can undo up to 256 Kbytes of
deleted text. Only the last five deleted lines and blocks can be re-inserted with
{EDIT, Undo, Deletion}. If the last five deletions exceed 256 Kbytes, it may
not be possible to re-insert more than one or two deleted blocks.

A block deletion giving the confirmation prompt “Cannot undo this operation!
Proceed anyway?” cannot be re-inserted or otherwise undone.

Redo
Redo the effects of the last undo operation.

Keystroke Equivalent:

<Ctrl-Y>, These is a keystroke macros.

This function is also on the toolbar.

Full Description:

Each “Redo” reverses the effects of the previous “undo” operation. This is
useful when you have gone too far with “undo” and want to restore your editing
changes.

Redo is only available while performing Undo operations. Once you stop using
Undo and perform normal editing, redo is no longer available. After switching
buffers (files) you can no longer redo changes to previous buffers. You can
Redo as many operations as you can Undo.

Undo (Sub-menu) Chapter 6 Menu Reference 259

Each redo only restores one editing operation at a time — each redo reverses
the effects of one {EDIT, Undo, Edit}. Since {EDIT, Undo, Line} can undo
several (many) edit operations at a time, it may take several (or many) {EDIT,
Undo, Redo} to reverse the effects of one {EDIT, Undo, Line}.

Reset
Reset the undo memory.

Keystroke Equivalent: (None)

Full Description:

“Reset” clears the undo memory (and resets all undo stacks). If you now make
additional edit changes, you will not be able to undo any further back than
when you selected this item. You can now try out different editing scenarios
and if they do not work, use [REPEAT] 255 {EDIT, Undo, Line} to quickly
undo back to this point.

260 Chapter 6 Menu Reference Undo (Sub-menu)

Scratchpad (Sub-menu)
Introduction:

The scratchpad is a temporary holding area for “cut and paste” operations
within VEDIT. It is also referred to as the default text register “0”; VEDIT has
over 100 text registers. Text you save stays in the scratchpad until you either
save a different block or exit VEDIT.

The scratchpad is not the same as the Windows clipboard; but you can think
of it as VEDIT’s internal clipboard. The scratchpad’s advantages include being
able to handle columnar blocks better and support for binary files.

� Use the clipboard for exchanging text with other Windows programs.

� Use the scratchpad for “cut and paste” operations within VEDIT.

Cut to scratchpad

Copy to scratchpad
Copy or cut (move) a single line or the highlighted block of text to the
“scratchpad” — text register “0”.

Keystroke Equivalent:

<Ctrl-Shift-C> and <Ctrl-Shift-X>, These are keystroke macros.

Alternatively, double-press the keys assigned to {BLOCK, Move to register}
(default: <Alt-F11> or <Numpad->) and {BLOCK, Copy to register}
(<Ctrl-F11> or <Numpad+>) to cut/copy to the scratchpad.

These functions are also on the toolbar.
These functions are also in the right-click context menu.

Full Description:

“Copy to scratchpad” saves a copy of the highlighted block in the scratchpad,
while “Cut to scratchpad” also deletes the highlighted block from the file.

If no block is highlighted, these functions copy/cut the current line to the
scratchpad. The line is stored as a “line block”; when inserted it is always
inserted at the beginning of the current line.

These functions are used in the same way as {EDIT, Cut/copy to clipboard}.

Notes:

For maximum flexibility, experienced users may want to skip the scratchpad
functions in the {EDIT} menu and use the text register functions in the

Scratchpad (Sub-menu) Chapter 6 Menu Reference 261

{BLOCK} menu instead. With these functions you can optionally append to
a text register and fill the original block with spaces.

HINT: We highly suggest accessing the scratchpad by double-pressing
the hot keys assigned to the Copy/Move/Insert text register func-
tions in the {BLOCK} menu, e.g. the <Numpad> keys. Double-
pressing the hot-key for any text register prompt selects the default
scratchpad.

The toolbar also has buttons for selecting the scratchpad.

See the “Notes” for {BLOCK, Copy to register}.

See Also:

“Block Operations - Scratchpad and Text Registers” in Chapter 4.
{BLOCK, Copy to register}

Paste scratchpad
Insert the contents of the scratchpad at the current cursor position.

Keystroke Equivalent:

<Ctrl-Shift-V>, This is a keystroke macro.

Alternatively, double-press the key assigned to {BLOCK, Insert register}
(default: <F11> or <Numpad*>) to insert the scratchpad.

This function is also on the toolbar.
This function is also in the right-click context menu.

Full Description:

This item inserts the contents of the scratchpad — text register “0” — at the
current cursor location. If the scratchpad is empty, this command has no effect.

Notes:

The scratchpad will be inserted as the same type of block as it was saved. A
line block will be inserted before the current line. A columnar block will be
inserted on the current line and at the starting column on successive lines.

This item normally inserts text regardless of the “Insert mode” status for
normal editing. {BLOCK, Insert register} has an option for overwriting the
existing text. However, in “overstrike-only” mode, e.g. when editing
binary/data files, the existing text at the cursor will be overwritten.

By default, the cursor will be positioned past the inserted text. Alternatively,
set {CONFIG, Emulation, Advance cursor past block insert} to “No” to
have the cursor remain at the beginning of the inserted text.

See Also:

“Block Operations - The Scratchpad and Text Registers” in Chapter 4.
{BLOCK, Insert registers}

262 Chapter 6 Menu Reference Scratchpad (Sub-menu)

Formatting (Sub-menu)

Format Paragraph
Format a paragraph with the current right margin.

Keystroke Equivalent:

<Ctrl-B>, This is a keystroke macro.

This function is also on the toolbar.

Full Description:

This item formats (or reformats) a paragraph to fit it entirely within the right
margin. You can optionally justify the right edge and change the paragraph's
indentation. The formatting normally starts with the current line, but can
optionally start at the beginning of the paragraph.

After formatting, the cursor advances to the next paragraph. Therefore, you
can repeatedly press the normal hot-key <Ctrl-B> to format one paragraph
after another.

Notes:

If {EDIT, Formatting, Enable word wrap} is not enabled, you will be
prompted for confirmation to enable it.

Blank lines MUST be used to separate paragraphs from each other; just an
indented line is not enough. Otherwise, formatting paragraphs will combine
several paragraphs into one! The configuration parameter
Config_String(PARA_SEP) (Chapter 8) determines which special characters
at the beginning of a line also separate paragraphs from each other.

When formatting paragraphs, VEDIT normally trims trailing spaces, removes
extra spaces from between words and leaves only a single space following “.”,
“!” and “?”. If this is not desirable for your application, you can select other
options with {CONFIG, Word processing, Format paragraph options}.

See Also:

“Word Processing - Formatting and Justifying Paragraphs” in Chapter 4.
{EDIT, Formatting, Indent}, {EDIT, Formatting, Undent}
{CONFIG, Word processing} sub-menu

Formatting (Sub-menu) Chapter 6 Menu Reference 263

Indent (margin/block)

Undent
Change the left margin or indent/undent the entire block.

Keystroke Equivalent:

<F8>, This is a keystroke macro.

<F7>, This is a keystroke macro.

These functions are also on the toolbar.

Full Description:

If no block is highlighted, “Indent” increases the left margin by the amount of
the indent increment. Each newly entered line is then automatically padded
with tabs and spaces to the left margin. If the cursor is before any text on the
current line, the current line is indented to the new left margin.

If the cursor is within a highlighted block, it increases the indentation of all
lines within the block by the amount of the indent increment. The left margin
is not changed.

Similarly, “Undent” decreases the left margin or undents a highlighted block.

Notes:

The “indent increment” can be changed with {CONFIG, Programming,
Indent increment}. The default value is “4”.

By default, the indentation uses the optimal number of tabs and spaces. To only
use spaces, set {CONFIG, Tab/Fill, Expand <Tab> key with spaces}.

See also:

“Block Operations - Indenting Lines” in Chapter 4
“Word Processing - Indenting Text” in Chapter 4
{CONFIG, Word processing, Left margin}

Enable word wrap
Enable word wrap at right margin and Format Paragraph.

Keystroke Equivalent: (None)

This function is identical to {CONFIG, Word processing, Enable word
wrap}.
This function is also on the toolbar.

Full Description:

This item enables word wrap when entering new text and paragraph formatting
with {EDIT, Formatting, Format paragraph}. It should be disabled when
editing programs!

VEDIT only performs word wrap when entering text past the right margin.
Use {EDIT, Formatting, Format paragraph} to reformat existing text.

264 Chapter 6 Menu Reference Formatting (Sub-menu)

If {CONFIG, Config all buffers} is disabled, you can enable or disable word
wrap for each file being edited.

Notes:

This item disables {VIEW, Word wrap (Display)} since it is typically not
useful (and would be very confusing) to have both enabled at the same time.
However, if you insist, you can enable both in {CONFIG, Word processing}.

See also:

“Word Processing - Word wrap” in Chapter 4.
{EDIT, Formatting, Format paragraph}
{CONFIG, Word processing} sub-menu

Formatting (Sub-menu) Chapter 6 Menu Reference 265

Sort (Sub-menu)

Sort Lines
Sort lines in highlighted block or entire file.

Keystroke Equivalent: (None)

Full Description:

This function sorts lines (records) according to a primary “key” field and up
to nine secondary key fields. The sort can by ascending or descending, and
optionally case sensitive. You can sort the lines just in the highlighted block
or in the entire file.

This function first displays a dialog box for specifying the column ranges for
the key fields and the desired options. If a columnar block was highlighted,
these columns are the default primary key.

A changeable “collate table” determines the sort order of characters. The
default table equates null, space and tabs. It also sorts European characters such
as “umlaut u” immediately after the letter “u”.

Notes:

VEDIT's sorting speed is the fastest anywhere. A 100-megabyte file can be
sorted in about three minutes on a typical 1-GHz computer. When sorting huge
files, we highly recommend that the file reside on a local hard disk and not on
a network server. VEDIT displays a detailed progress report while sorting.

See also:

“Sorting Lines in a File / Block” in Chapter 4.
“SORTMAIL.VDM Sort Macro” in Chapter 5.
{EDIT, Sort, Load collate table}
Command Sort_Merge() in Macro Language Reference Manual

Load Collate Table
Load a different collate table for use by {EDIT, Sort, Sort Lines}.

Keystroke Equivalent: (None)

Full Description:

VEDIT uses a “collate table” to control the order in which characters are sorted.
This is much more flexible than simply ordering all characters by their hex
value.

266 Chapter 6 Menu Reference Sort (Sub-menu)

The default table equates null, space and tabs. It also sorts European characters
such as “umlaut u” immediately after the letter “u”, according to the ANSI
character set.

With a custom collate table, you can sort digits before or after letters, sort
punctuation before or after letters, and completely control the sort order.

� To load a new collate table:
1. Select {EDIT, Sort, Load collate table}.
2. You are prompted for the desired filename which typically has a “.tbl”

extension.

The dialog box for {EDIT, Sort, Sort lines} displays on the name of the
currently loaded collate table.

See also:

“Sorting Lines in a File / Block - Collate Tables” in Chapter 4.
{EDIT, Sort, Sort lines}

Sort Mailing Lists
Sort records consisting of multiple lines, e.g. a mailing list

Keystroke Equivalent: (None)

Full Description:

This function sorts a typical mailing list of multiple-line records into (ascend-
ing) alphabetic order. Each record can either consist of the same number of
lines, or the records can be separated by a blank line. The “sort key” is simply
the entire first line.

This function first prompts you to enter the number of lines in each record or
simply press <Enter> if the records are separated by a blank line. It then
immediately starts sorting.

Notes:

This function is implemented by the sortmail.vdm macro. Users experi-
enced with the VEDIT macro language can modify this macro to change how
this function works.

“Sort Mailing Lists” can realistically handle files up to a few megabytes. A
very large 20+ megabyte file may take unreasonably long to sort; however, it
displays it progress and can be interrupted at any time.

To sort a huge file, you could convert the multi-line records in a one-line record,
use the ultra-fast {EDIT, Sort, Sort lines} function, and then convert the
one-line record back into multiple-line records.

See Also:

“SORTMAIL - Sorting Macro” in Chapter 5.
{EDIT, Sort, Sort lines}

Sort (Sub-menu) Chapter 6 Menu Reference 267

Insert (Sub-menu)
This sub-menu has functions for inserting control characters, viewing and
inserting from an ASCII table, inserting an external file, and changing the state
of the Insert mode.

Enter CTRL Char
Enter the next key press literally into the text.

Keystroke Equivalent:

<Ctrl-Q>, This is identical to [ENTER CTRL].

Full Description:

To enter a control character into the file, you must precede it with [ENTER
CTRL]. Otherwise, VEDIT treats a typed control character as an editing
function or hot-key.

Certain control characters can be useful in your text. “Form-Feed” (<Ctrl-L>)
and “Escape” (<Esc>) are frequently used in text files.

For example, printing a file containing Form-Feed characters will generally
cause the printer to start a new page when each Form-Feed character is
encountered.

� To insert a control character into your file:
1. Make sure you are in Insert mode — “INS” should be displayed on the

status line. Otherwise, the control character will overstrike any existing
character.

2. Position the cursor where the control character is to be inserted.

3. Select {EDIT, Enter CTRL} or press [ENTER CTRL] (<Ctrl-Q>). You
are prompted for the control character on the status line.

4. Type the desired control character. For example, to insert <Ctrl-L>, hold
down the <Ctrl> key while you type “L”.

268 Chapter 6 Menu Reference Insert (Sub-menu)

HINT: Alternatively, you can enter control and graphics characters by
holding down the <Alt> key and then typing its decimal value on
the numeric keypad. (In Windows, you must precede the ANSI
decimal value with “0”.) This is a function of Windows/DOS and also
works with most other programs.

Notes:

This item is rarely used because it is usually more convenient to simply press
[ENTER CTRL] (<Ctrl-Q>). However, this is a logical item to have in the
{EDIT, Insert} menu.

In the DOS version, [ENTER CTRL] also works in the search and replace
dialog boxes.

Characters can also be entered by ASCII value with {EDIT, Insert, ASCII
table}.
If you are entering or changing many control characters, it may be easier to
switch to Hex-mode editing.

See Also:

“Screen Display and Keyboard Characters” in Chapter 4.
[ENTER CTRL] in Chapter 7.

ASCII Table
Display ASCII table and optionally enter any desired characters.

Keystroke Equivalent: (None)

This is the same function as {MISC, ASCII table}.

Full Description:

“ASCII table” displays a table of all possible characters with their correspond-
ing decimal value. This includes all control and graphics characters.

The ASCII table is particularly useful for viewing graphics characters before
you enter them.

� To display the ASCII table and insert a desired character:
1. Select {EDIT, Insert, ASCII table} or {MISC, ASCII table}. If neces-

sary, scroll the window until the desired character is displayed.

2. Highlight the character to be inserted with the mouse or the cursor keys.

3. Press the [Insert] button. If desired, additional characters can be inserted.

DOS Version:

The display is three “windows” long, press <Enter> to toggle to the next
window. Press “I” to insert a particular value — you will be prompted for its
decimal value. Only one character can be entered.

Insert (Sub-menu) Chapter 6 Menu Reference 269

Notes:

If you already know the decimal value of a character you can enter it (with
Windows or DOS) by holding down the <Alt> key and typing the value on the
numeric keypad; the character will be entered when you release the <Alt> key.
In Windows, you must precede the decimal value with “0”; otherwise, Win-
dows translates it from the OEM (IBM PC) to the ANSI character set.

Some fonts display the characters with values 00 and 255 as a space, effectively
making them invisible. For this reason, VEDIT can optionally display the
“Null” (value 00) as any other character; this is set with {CONFIG,
Characters/Cursors, Null display character}.
VEDIT can display control and graphics characters in the file in several ways.
This is described under “Screen Display and Keyboard Characters - Control
and Graphics Character display” in Chapter 4.

You can also insert control characters using [ENTER CTRL].

See Also:

“Entering Control and Graphics Characters” in Chapter 4.
{EDIT, Insert, ASCII Table 2}
[ENTER CTRL] in Chapter 7.

ASCII Table 2
Display an alternate ASCII table and optionally enter any desired characters.

Keystroke Equivalent: (None)

Full Description:

“ASCII table 2” displays a compact ASCII table similar to “ASCII table”. To
insert one or more characters into the file, cursor to the desired character(s)
and press <Enter>. Press <Esc> when done.

Notes:

“ASCII table 2” is easier to use from the keyboard; it does not have mouse
support

“ASCII table” is easier to use with a mouse.

This function is implemented by the ascii2.vdm macro. (It was written by
user Maxim Glukhov. Thank you.)

Insert File
Insert an entire file at the cursor position.

Keystroke Equivalent: (None)

Full Description:

“Insert file” inserts an entire file at the current cursor position. This can be used
to merge several files together or to start a newly created file with the contents
of a “template” file.

270 Chapter 6 Menu Reference Insert (Sub-menu)

� To insert the contents of another file:
1. Place the cursor at the location where the file should be inserted. The file

will be inserted just before the cursor.

2. Select {EDIT, Insert, Insert file}.
3. You are prompted for the desired filename with the File dialog box.

Notes:

Assuming you have a file open, there is no limit to the size of the file that can
be inserted. This is the reason you should use {FILE, Save block as} and
{EDIT, Insert, Insert file} when copying or moving very large blocks of text
between files. If necessary, use {FILE, Save as} to open the destination file
before inserting a large file.

After inserting a file, the cursor will normally be positioned past the inserted
text. However, if desired, set the configuration parameter {CONFIG,
Emulation, Advance cursor past block insert} to “No” to have the cursor
remain at the beginning of the inserted text.

See Also:

“Block Operations - Cut and Paste Huge Blocks” in Chapter 4.
{FILE, Save block as}

Insert (Sub-menu) Chapter 6 Menu Reference 271

Delete (Sub-menu)
This sub-menu contains items for deleting text.

Delete (char/block)
Delete the current character or highlighted block of text.

Keystroke Equivalent:

, identical to [DELETE]

Full Description:

Deletes the character at the cursor. At the end of a line, it deletes the “newline”.
(For Windows/DOS text files, the “newline” consists of “Carriage-return” and
“Line-feed”.)

If a block is currently highlighted and the cursor is within the block (or
immediately past it), it deletes the block; same as {BLOCK, Delete block}.

Notes:

{CONFIG, Emulation, Special emulation modes} controls whether this
command deletes “newlines” and highlighted blocks.

{BLOCK, Delete block} always deletes the highlighted block, regardless of
how this configuration parameter is set.

This menu item is usually only selected with a mouse; from the keyboard it is
usually more convenient to simply press [DELETE] ().

See Also:

“Block Operations - Marking a Block of Text” in Chapter 4.
{BLOCK, Delete block}
[DELETE] in Chapter 7.

272 Chapter 6 Menu Reference Delete (Sub-menu)

Delete Previous Word

Delete Next Word
Delete the previous/next word and the space between words.

Keystroke Equivalent:

<Ctrl-Del>, identical to [DEL NEXT WORD]
<Ctrl-Bksp>, identical to [DEL PREV WORD]

Full Description:

“Delete previous word” deletes the word, or portion of a word, or whitespace
to the left of the cursor. Pressing it again deletes the next whitespace or word.

Similarly, “Delete next word” deletes the word, portion of a word, or
whitespace to the right of the cursor.

Notes:

The configuration parameter Config_String(WORD_SEP) (Chapter 8)
specifies which characters, in addition to spaces, tabs, newlines and control
characters, separate words from each other.

See Also:

The topic “Word Processing” in Chapter 4.
[DEL NEXT WORD] in Chapter 7.

Erase Line

Erase EOL

Erase BOL
Erase (delete) a partial or entire line.

Keystroke Equivalent:

<Ctrl-L>, identical to [ERASE LINE]
<Ctrl-K>, identical to [ERASE EOL]
<Ctrl-J>, identical to [ERASE BOL]

Full Description:

“Erase Line” deletes the entire line of text on which the cursor is located. It
also deletes the “newline” character(s) at the end of the line and closes up the
line on the screen.

“Erase EOL” deletes all characters from the cursor position to the end of the
line. It does not delete the “newline” character(s) at the end of the line.

“Erase BOL” deletes all characters from the beginning of the line up to, but
not including, the cursor position.

Delete (Sub-menu) Chapter 6 Menu Reference 273

Notes:

These menu items are usually only selected with a mouse; from the keyboard
it is usually more convenient to simply press the corresponding key.

{EDIT, Undo, Deletion} re-inserts deleted lines in a different location. Up to
five lines can be re-inserted, in reverse order, in this way.

HINTS: If you set {CONFIG, Emulation, Alt/Ctrl/Shift key shortcuts} to
“15”, you can also delete lines by pressing <Ctrl-Shift>.

You can also delete a line by moving it to the scratchpad with
{BLOCK, Move to register}; this assumes no block is highlighted.
Since the “Normal” hot-key is the easy-to-reach <Numpad-> on the
numeric keypad, you can double-press this key to erase lines when
you don’t have anything saved in the scratchpad.

See Also:

[ERASE LINE], [ERASE BOL] and [ERASE EOL] in Chapter 7.

Toggle Insert Mode

Insert Mode

Overstrike Mode
Toggle or set Insert/Overstrike mode.

Keystroke Equivalent:

<Ins>, identical to [INSERT TOGGLE]

Full Description:

<Ins> is usually used to toggle between “Insert” and “Overstrike” modes.

“Insert mode” and “Overstrike mode” explicitly put VEDIT into Insert or
Overstrike mode. The primary purpose for these items is for keystroke macros
that require a particular mode.

Notes:

In Insert mode, characters you type are inserted in front of the character at the
cursor. The message “INS” is displayed on the status line.

In Overstrike mode, characters you type replace any existing text at the cursor
position. The message “INS” is not displayed on the status line.

{EDIT, Delete, Overstrike mode} explicitly puts VEDIT into Overstrike
mode. Unlike [INSERT TOGGLE] (<Ins>), which toggles between Insert
and Overstrike modes, this item can be used in a keystroke macro to ensure
that Insert mode is off.

See Also:

{EDIT, Delete, Insert mode}
[INSERT TOGGLE]

274 Chapter 6 Menu Reference Delete (Sub-menu)

Convert (Sub-menu)
Introduction:

This menu converts newline characters to the selected type for Windows/DOS,
UNIX or Macintosh. Also converts between fixed-length (database) records
and normal text files, and can pad all line to have the same length. This menu
also changes case and detabs/retabs a block or entire file.

DOS to UNIX

UNIX to DOS
Convert all CR+LF in a block to just LF.

Convert all LF in a block to CR+LF.

Keystroke Equivalent: (None)

Full Description:

“DOS to UNIX” converts all “newlines” in the highlighted block from the type
for Windows/DOS (CR+LF) to the type for UNIX (LF only). In other words,
it replaces all “Carriage-Return and Line-Feed” character pairs with just a
Line-Feed character.

If the entire file is highlighted, it converts a Windows/DOS text file into a
UNIX text file. It then also changes {CONFIG, File handling, File type} to
“1”.

“UNIX to DOS” converts all “newlines” in the highlighted block from the type
for UNIX (LF only) to the type for Windows/DOS CR+LF). In other words,
it replaces each Line-Feed character with a “Carriage-Return and Line-Feed”
character pair.

Convert (Sub-menu) Chapter 6 Menu Reference 275

If the entire file is highlighted, it converts a UNIX text file into a Win-
dows/DOS text file. It then also changes {CONFIG, File handling, File type}
to “0”.

For example, “DOS to UNIX” can be used to fix a block which was pasted
from a Windows/DOS file into a UNIX text file.

Notes:

These items runs the convert.vdm macro without any prompts. However,
if there is an error, e.g. no “newlines” are found, it will return to the
CONVERT.VDM menu.

If you accidentally select “UNIX to DOS” with a DOS text file, you will have
two Carriage-Returns at the end of each line. This can be corrected by selecting
“DOS to UNIX”; you may also need to manually change {CONFIG, File
handling, File type} to “0”.

To see what is really at the end of each line, select {VIEW, Toggle display
mode} (<Alt-D> or toolbar) several times until the window displays all
characters in hexadecimal. A Carriage-Return is hex code “0D”, a Line-Feed
is hex code “0A”.

See Also:

“File Types - Text and Binary/Data” in Chapter 4.
{EDIT, Convert, CONVERT macro}

CONVERT macro
Convert to/from fixed-length record files. Convert to/from Macintosh files.

Keystroke Equivalent: (None)

Full Description:

This item converts all “newlines” in the highlight block to the selected type
for Windows/DOS, UNIX or Macintosh. It can also convert between fixed-
length (database) records and normal text files.

For example, it can convert a database file without any “newlines” into a
normal text file with “newlines”.

This item displays a simple menu of conversion options.

Notes:

This function is implemented by the macro convert.vdm. Users experi-
enced with the VEDIT macro language can change it to better suit their needs.
For example, you could easily change all {BLOCK, Convert newline}
functions to convert the entire file if no block if highlighted; as supplied, the
macro gives an error if no block is highlighted.

See Also:

“File Types - Text and Binary/Data” in Chapter 4.
“Converting Files in Chapter 4.

276 Chapter 6 Menu Reference Convert (Sub-menu)

All Lines Same Length
Force all lines to same length by padding and/or truncating.

Keystroke Equivalent: (None)

Full Description:

This function forces all text lines to have the same length; it prompts for the
desired length. Lines shorter than the desired length are padded at their end
with spaces; lines longer than the desired length are optionally truncated.

Notes:

This function is useful when working with data records which will be converted
into a fixed-length-record file with {EDIT, Convert, CONVERT macro}.

See Also:

{EDIT, Convert, CONVERT macro}
{USER, Find longest line} and {USER, Check lines same length}
“Converting Files - Make All Lines the Same Length” in Chapter 4.

Upper Case

Lower Case

Switch Case
Change the case of the current character (of limited use) or all characters in a
highlighted block (very useful).

Keystroke Equivalent: (None)

Full Description:

If the cursor is in a highlighted block of text, the case of all letters in the block
is changed. Otherwise, these functions simply change the case of the current
letter and advance the cursor to the next character. Non-letters are not affected.

After changing the case of a single character, you can repeatedly press (or hold
down) [REPEAT LAST] (<Alt-R>) to change additional characters.

These functions work with a stream, columnar or line block of any size.

See Also:

{CONFIG, Programming, Lower/Upper case key conversion}
The file keymac.lib contains a keystroke macro for switching the case of
all letters from the cursor to the end of the line.

Convert (Sub-menu) Chapter 6 Menu Reference 277

Detab (Tabs to spaces)

Retab (Spaces to tabs)
Convert Tab characters in a block to spaces; convert spaces to the optimum
number of tabs.

Keystroke Equivalent: (None)

Full Description:

If a block is marked, “Detab” converts all tab characters in the marked block
to spaces according to the currently set tab stops.

If no block is marked, the entire file is detabbed. However, any tab characters
within single or double-quotes are not converted. This is useful when editing
C and other programs; literal tab characters may occur within quoted strings
and should not be converted to spaces.

Similarly, if a block is marked, “Retab” converts sequences of space characters
in the marked block to the optimal number of tabs and spaces according to the
currently set tab stops.

If no block is marked, the entire file is retabbed. However, any spaces within
single or double-quotes are not converted. This is better for C and other
programs.

� To convert all Tabs in a file to spaces:
1. If necessary, set the correct tab stops with {CONFIG, Tab stops}. The

default for Windows/DOS is every 8 columns.

2. Select {BLOCK, Select all} to mark the entire file as a block.

3. Select {EDIT, Convert, Detab}. All tabs will be converted to the correct
number of spaces.

Notes:

To prevent tab characters from being inserted into your file by the <Tab> key
and some columnar operations, set {CONFIG, Tab/Fill, Expand <Tab> with
spaces} to “7”.

These functions are implemented by the macros detab.vdm and
retab.vdm. Users experienced with the VEDIT macro language can change
them to better suit their needs.

278 Chapter 6 Menu Reference Convert (Sub-menu)

Strip High bit
Strip the “high” (8th bit) from all characters in the marked block.

Keystroke Equivalent: (None)

Full Description:

This function strips the high (8th) bit from all characters in the marked
(highlighted) block. {BLOCK, Select all} can be used to mark the entire file
as a block.

Notes:

Use this function with care! It will convert IBM PC graphics characters and
non-English language characters into meaningless text characters.

Some word processors, such as WordStar (tm), set the high bit on some text
characters for internal formatting purposes. These text files are then difficult
to edit in VEDIT because the high bit characters appear as graphics characters
and the words are not readable.

See Also:

“Screen Display and Keyboard Characters” in Chapter 4.

Convert (Sub-menu) Chapter 6 Menu Reference 279

Translate (Sub-menu)
Introduction:

The functions in this menu translate the entire file or just the highlighted block.
They translate between the ANSI and OEM character sets, between Unicode
and ASCII representation and between EBCDIC and ASCII. A custom trans-
lation table can be loaded.

ANSI to OEM

OEM to ANSI
Translate the file or block between the ANSI and OEM character sets.

Keystroke Equivalent: (None)

Full Description:

“ANSI to OEM” translates each byte in the file, or highlighted block, from the
ANSI character set to the OEM (IBM-PC or DOS) character set.

“OEM to ANSI” translates each byte in the file, or highlighted block, from the
OEM to the ANSI character set.

Since the ANSI and OEM character sets are only different for the “extended”
characters with decimal value 128 - 255, normal ASCII characters with value
0 - 127 are not affected.

See Also:

“ANSI and OEM Characters” in Chapter 4.
“Printing - Printing the OEM Character Set” in Chapter 4.
“Translating between ANSI and OEM-PC” in Chapter 4.

280 Chapter 6 Menu Reference Translate (Sub-menu)

Unicode to ASCII

ASCII to Unicode
Translate the entire file between Unicode and ASCII.

Keystroke Equivalent: (None)

Full Description:

“Unicode to ASCII” translates the current file from 2-byte Unicode characters
to 1-byte ASCII characters. Since it simply strips the upper byte, it should only
be used with languages, e.g. English, French, German and Italian, that have an
ASCII equivalent. It should not be used with Chinese and Japanese.

“ASCII to Unicode” translates the current file from 1-byte ASCII characters
to 2-byte Unicode characters. It performs a simple translation by creating
Unicode characters with an upper byte of 00 hex.

Notes:

These functions are performed by the unic-asc.vdm and
asc-unic.vdm macros.

“Unicode to ASCII” displays an error message if the file is not recognized as
Unicode which is supported by VEDIT.

See Also:

“Translating between Unicode and ASCII” in Chapter 4.

Translate from EBCDIC

Translate to EBCDIC
Translate a block to/from EBCDIC or use a custom translation table.

Keystroke Equivalent: (None)

Full Description:

A marked block or entire file can be translated using the built-in EBCDIC table
or with a user-created table. When a block/file is translated, each byte is simply
converted to another byte according to the current table; the size of the file
does not change.

� Translate a file from EBCDIC to ASCII:
1. Open the EBCDIC file in the normal manner, e.g. with {FILE, Open}.
2. Select {EDIT, Select all} (<Ctrl-A>) to mark the entire file as a block.

3. Select {EDIT, Translate, Translate from EBCDIC} to translate the file
to ASCII.

You may need to change {CONFIG, File handling, File type} to “0” or
“1” to recognize ASCII “newlines” and make the file more readable.

4. Select {FILE, Close buffer} or {FILE, Exit} to save the translated file.

Translate (Sub-menu) Chapter 6 Menu Reference 281

Similarly, an ASCII file can be translated to EBCDIC with “Translate to
EBCDIC”.

Notes:

The name “EBCDIC” displayed in the menu will change when a custom
translation table is loaded.

You can also display an EBCDIC file in normal ASCII without having to
translate the file. See {VIEW, Toggle display mode}.
The topic “Translating a Block or File” in Chapter 4 describes VEDIT’s
translation capabilities in more detail.

EBCDIC conversion packages are available for translating EBCDIC files with
packed (signed) decimal, packed binary, zoned and other special COBOL
fields into ASCII. Please refer to the “EBCDIC” page on our Web site or
contact us for details.

See Also:

“Translating between EBCDIC and ASCII” in Chapter 4.
“Printing - EBCDIC and other Translate Tables” in Chapter 4.

Load Translate Table
Load a custom translation table to replace the built-in EBCDIC table.

A custom translation table can be loaded to replace the built-in ASCII-
EBCDIC table. USER.TBL is supplied as a template for creating your own
translation table.

� To load a new translation table:
1. Select {EDIT, Translate, Load translate table}.
2. You are prompted for the desired filename which typically has a “.tbl”

extension.

Each translation table file includes the new name that will replace “EBCDIC”
in the {EDIT, Translate} sub-menu.

See Also:

“Translating - Loading other Translate Tables” in Chapter 4.
{EDIT, Translate, Translate from EBCDIC}

282 Chapter 6 Menu Reference Translate (Sub-menu)

View Menu
Keystroke Equivalent:

<Alt-V>, This is a keystroke macro.

Introduction:

The {VIEW} menu lets you change the window view by zooming/dezooming
a window, resetting all windows, and changing the window text font. You can
also toggle through a wide range of Display, Binary and Hex editing modes.

Zoom
Zoom / de-zoom (Maximize / normalize) the current window.

Keystroke Equivalent:

<Alt-Z>, This is a keystroke macro.

Full Description:

“Zoom” expands the current window to its maximum possible size, thereby
displaying more of the file. Each window that you subsequently switch to will
also be zoomed.

Selecting “Zoom” again restores the window to its normal size.

View Menu Chapter 6 Menu Reference 283

Notes:

This item is the same as clicking the mouse on the window’s “maximize”
button.

The VEDIT program also has an “overall maximize button” which expands it
to the full screen. Click both VEDIT’s maximize button and the window’s
maximize button to expand a window to full screen size.

Some VEDIT macros create special “reserved” windows at the top or bottom
of the screen that always remain visible. They effectively reduce the maximum
size of zoomed windows, just like the status line, toolbar and menu.

See Also:

“Windows - Zooming a Window” in Chapter 4.
{WINDOW, Switch}

Full Size

Full Size - All
Expand the size of the current window or all windows to full-size.

Keystroke Equivalent: (None)

Full Description:

“Full size” is similar to manually stretching a window’s borders to the
maximum possible size. However, a full-size window will change size if you
change VEDIT’s overall window size. A window remains full-size until you
explicitly resize, tile or cascade it.

This lets you edit in the largest possible window without having to zoom all
windows.

“Full size - all” makes all editing windows full-size.

Notes:

“Full size” is not the same as “zoomed” (maximized). When “zoomed”, each
window you switch to will be zoomed, until you “dezoom”. In contrast, some
of your editing windows can be full-sized, while others are not; they can be
custom-sized or tiled.

{CONFIG, Display options, Auto-create window style} determines if newly
created window are initially full-sized or cascaded.

Some VEDIT macros create “reserved” windows at the top or bottom of the
screen that always remain visible. They effectively reduce the size of full-size
windows.

See Also:

“Windows - Full-Size Windows” in Chapter 4.

284 Chapter 6 Menu Reference View Menu

Reset
Reset all windows to full-size or cascaded; remove extra windows.

Keystroke Equivalent: (None)

Full Description:

“Reset” initializes the windows, resets the display mode and window colors
(attributes). The buffers (files) are not affected. No text is lost!

Following “Reset” each open buffer (file) will have one corresponding win-
dow; it will be either full-size or cascaded, depending upon the setting of
{CONFIG, Display options, Auto-create window style}. All other windows
will be removed.

DOS Version:

Assuming {CONFIG, Display options, Auto-create window style} is en-
abled (default), each open buffer (file) will have one corresponding window
of full screen size; all other windows will have been deleted. If disabled, only
the main window “1” will exist; all buffers will then share the same window.

Notes:

This function is useful for getting VEDIT back to a reasonable state after you
have split many windows, changed display modes and switched window
colors.

Toggle Display Mode
Toggle the current window through ASCII, Hex and EBCDIC display modes.

Keystroke Equivalent:

<Alt-D>, This is a keystroke macro.

This function is also on the toolbar.

Full Description:

This item toggles the current window through five ASCII display modes,
hexadecimal, octal and EBCDIC. The ASCII display modes let you view
control and graphics characters in different ways.

It is easiest to understand these modes by toggling through all modes while
viewing a file containing some control and graphics characters.

� To toggle the current window through all display modes:
1. Select {VIEW, Toggle display mode} (<Alt-D> or toolbar). This will

toggle to the next mode.

2. With the normal keyboard layout, repeatedly press (<Alt-D>) until you
have toggled through all modes. Alternatively, if the <Alt-D> hot-key is
not defined, you can repeatedly press [REPEAT LAST] (<Alt-R>).

Notes:

The status line temporarily displays a message indicating the new mode.

View Menu Chapter 6 Menu Reference 285

If you toggle an ASCII file into EBCDIC mode, it will display as gibberish.
Conversely, an EBCDIC file displays as gibberish in ASCII mode. For this
reason the status line displays “EBCDIC” when in this mode.

You can restore the screen to its normal mode by selecting{VIEW, Reset}.
This will also remove extra windows.

You can select a particular display mode with {CONFIG,
Characters/Cursors, Screen display mode}. This will affect the current
window and all newly created windows.

See Also:

“Screen Display and Keyboard Characters - Display Modes” in Chapter 4.
{VIEW, Toggle Hex mode split}
{CONFIG, Characters/Cursors, Screen display mode}.

Toggle Binary/Text Mode
Toggle the current file between 16 and 64 bytes per line, and the original file
type.

Keystroke Equivalent:

<Alt-=>, This is a keystroke macro.

This function is also on the toolbar.

Full Description:

Toggles the current file’s “file type” to binary (i.e. fixed-length records) with
16 or 64 bytes per line and back to the original file type. This is useful for
editing binary, data and other non-standard files, especially in hexadecimal.

Notes:

This function does not alter the file. Use the {BLOCK, Convert newlines}
sub-menu to translate between different file types or from fixed-length records
to “newlines”.

The status line temporarily displays a message indicating the new mode

See Also:

“File Types - Binary/Data Files” in Chapter 4.

Toggle Hex Mode Split
Split the current window into ASCII and Hex-mode windows.

Keystroke Equivalent:

<Alt-\>, This is a keystroke macro.

Full Description:

This item splits the current window into two vertical windows. The left window
displays the file in hexadecimal and the right window in ASCII. You can edit
in either window; both windows will update together.

286 Chapter 6 Menu Reference View Menu

Selected again, it changes the file type to Binary-16 for easier hex mode
editing. Selected again, it toggles back to the original editing mode.

The ASCII window uses display mode “4” in which all characters, including
the “newline” <LF>, <CR> and <Tab> character are displayed literally (using
the IBM PC character set). The hex window uses display mode “8” to display
all characters in hexadecimal.

Use {WINDOW, Switch} (<Alt-F5>), {WINDOW, Next window}
(<Ctrl-F6>) or the mouse to switch between the windows. In the hex-mode
window, new characters must be entered in hexadecimal.

Notes:

The ASCII and the hex-mode windows will scroll together as you move about
in the file.

You can change the display mode used in either window by switching to that
window and using {VIEW, Toggle display mode} (<Alt-D> or toolbar).
Therefore, you can easily edit in Hex and EBCDIC.

This function is implemented by the hexsplit.vdm macro.

See Also:

“Hexadecimal and Octal Mode Editing” in Chapter 4.

Word Wrap (Display)
Wrap long lines on the screen without altering the file.

Keystroke Equivalent: (None)

This function is also on the toolbar.

Full Description:

When enabled, long lines are word wrapped on the screen according to the
current right margin, which defaults to the window width. The file is NOT
altered; “newlines” are not inserted.

The true end-of-line (i.e. the CR+LF) is shown with the “newline” display
character; this is similar to enabling {VIEW, Options, Show newlines
(CR/LF)}.
This function is the same as {CONFIG, Word processing, Display lines with
word wrap}.

Notes:

To enable word wrap with “hard” Carriage-Return / Line-Feed characters, use
{EDIT, Formatting, Enable word wrap} instead.

{VIEW, Word wrap} and {EDIT, Formatting, Enable word wrap} are
mutually exclusive - enabling one turns off the other.

See Also:

“Word Processing - Word Wrap” in Chapter 4.
{EDIT, Formatting, Enable word wrap}

View Menu Chapter 6 Menu Reference 287

Rulers (Windows only)
Toggle the rulers in all editing windows on and off.

Keystroke Equivalent: (None)

Full Description:

This item toggles the rulers on and off. The vertical ruler on the left displays
line numbers. The horizontal ruler at the top displays column numbers.

To configure whether the scroll bars are enabled when VEDIT starts up, set
{CONFIG, Display options, Enable rulers} and then select {CONFIG, Save
config} to save the new setting.

See Also:

“Toolbar, Tabbar and Rulers” in Chapter 4.

Scroll bars (Windows only)
Toggle the scroll bars in all windows on and off.

Keystroke Equivalent: (None)

Full Description:

Toggles the scroll bars in all editing windows on and off. Scroll bars are usually
desirable, but if you must see as many columns and lines as possible, you can
turn them off.

The vertical scroll bar is only displayed when the file (buffer) contains enough
lines to require scrolling.

To configure whether the scroll bars are enabled when VEDIT starts up, set
{CONFIG, Display options, Enable scroll bars} and then select {CONFIG,
Save config} to save the new setting.

Tabbar (Windows only)
Toggle the tabbar on and off.

Keystroke Equivalent: (None)

Full Description:

The tabbar displays a tab for each file currently open in VEDIT. You can
quickly switch to another file by clicking the mouse on the corresponding tab.
Note the scroll buttons on the right side when many files are open and not all
tabs can be seen at one time.

To configure whether the toolbar is enabled when VEDIT starts up, set
{CONFIG, Display options, Enable tabbar} and then select {CONFIG,
Save config} to save the new setting.

See Also:

“Toolbar, Tabbar and Rulers” in Chapter 4.

288 Chapter 6 Menu Reference View Menu

Toolbar (Windows only)
Toggle the VEDIT toolbar on and off.

Keystroke Equivalent: (None)

Full Description:

The Windows version of VEDIT normally displays a toolbar with icons. The
toolbar is an easy way to access commonly used menu items with the mouse.
If desired, the toolbar can be turned off to make more screen area available for
editing.

To configure whether the toolbar is enabled when VEDIT starts up, set
{CONFIG, Display options, Enable toolbar} and then select {CONFIG,
Save config} to save the new setting.

Notes:

Clicking the right mouse button also pops up a menu of commonly used items.

See Also:

“Toolbar, Tabbar and Rulers” in Chapter 4.

File Selector (Windows Only)
Toggle the File selector window on and off.

Keystroke Equivalent:

<Alt-Q>, This is a keystroke macro.

Full Description:

This item turns on and off an Explorer-like window on the left side. It contains
four tabs. “Open” displays and selects from the currently open files. “Fav”
displays and adds to a list of up to 100 favorite files. “Rec” displays an
expanded Most-Recently-Used (MRU) list of up to 100 files. “Xplor” is an
“Explorer” from which you can open additional files.

See Also:

“File Selector” in Chapter 4.

VGA 25/28/50 Line Toggle (DOS Only)
Switch between 25, 28 and 50 line VGA modes.

Keystroke Equivalent:

<Alt-T>, This is a keystroke macro.

Full Description:

“VGA 25/28/50 line toggle” switches most VGA compatible display adapters
between 25, 28 and 50 lines of text. If Config(H_VGA_TYPE) is set to “7”,
it also toggles to 30, 34 and 60-line modes.

Upon startup, VEDIT normally adjusts itself to the current size of the display.

View Menu Chapter 6 Menu Reference 289

Notes:

Some systems only support 25 and 50-line modes and may hang when
attempting to switch to 28-line mode. The default VGA text mode uses 400
scan lines; by switching to 480 scan lines, 30, 34 and 60 lines can be displayed.
The allowable modes are selected with {CONFIG, Misc, Enable VGA
28/30/34/50/60}.
The supplied key-mac.lib file lists a keystroke macro for switching into
132 column mode. This item can only toggle between the standard 80 charac-
ters/line modes.

To force VEDIT to start in 50 line mode, set Config(S_N_LINE) in the
vedit.cfg file to “50”.

Color Toggle
Select the next suggested color combination.

Keystroke Equivalent:

<Alt-J>, This is a keystroke macro.

Full Description:

This function toggles the current window’s text color through about twenty
combinations. This provides some variety as you work and can be used to make
some windows visually stand out.

The initial text color is set according to {CONFIG, Editing colors, Edited
text}. If only one window is open, this item also changes the configuration
value; however, it does not automatically save it.

� To change the window’s text color and save it as the configured value:
1. Ensure that only one window is open. This method only works when only

one window is open.

2. Repeatedly select {VIEW, Color toggle} (<Alt-J>) until the text appears
in the desired color.

3. Select {CONFIG, Save config} if you want to make the new color
combination permanent.

Notes:

Additional color combinations can be selected with {CONFIG, Editing
colors, Edited text}. (Non-Windows versions: {CONFIG, Colors, Windows
and editing, Edited text}).
The overall color scheme, including coordinated syntax highlighting colors,
can be selected by running the color.vdm macro via {USER, Color
scheme} or {MISC, More macros, Color}.

290 Chapter 6 Menu Reference View Menu

Font (Windows only)
Change the display font used for all windows.

Keystroke Equivalent: (None)

Full Description:

“Font” changes the display font and size used for all editing windows. It
displays the standard font selection dialog box; however, only “fixed-width”
fonts are listed and supported by VEDIT.

The fonts “VEDIT Ansi”, “VEDIT Oem”, “Fixedsys” and “Terminal” look
and work best with VEDIT; each comes in several sizes. The True-Type font
“Courier New” can be set to any desired size, but is of lower quality and does
not display control characters in a useful way.

The fonts “VEDIT Oem” and “Terminal” use the OEM (IBM PC) character
set. “VEDIT Ansi”, “Fixedsys”, “Courier” and most other fonts use the ANSI
character set.

The custom “VEDIT” fonts display control characters in a useful mnemonic
way, e.g. Ctrl-A is displayed as a small single-character “^A”. Most other
ANSI fonts display control characters as a useless solid block. Other OEM
fonts display control characters as on the original IBM PC, e.g. Ctrl-A is
displayed as the “smiley face”.

The last selected font is saved into the vedit.ini file and the same font will
be used the next time VEDIT is run.

See Also:

“User Interface - Selecting Display Fonts” in Chapter 4.

Highlight Cursor Line

Highlight Cursor Columns
Highlight cursor position with horizontal / vertical bar.

Keystroke Equivalent: (None)

Full Description:

When “Highlight cursor line” is enabled, the entire cursor line is displayed in
a highlighting color. This makes it easier to see what line you are working on.

This item is similar to {CONFIG, Display options, Highlight cursor line}.
However, the {CONFIG} item can optionally highlight only the text charac-
ters on the cursor line.

The highlighting color can be selected with {CONFIG, Editing colors,
Cursor line}.
When “Highlight cursor color” is enabled, the entire cursor column is high-
lighted. This is often useful when working with columnar data and fixed-length
records.

View Menu Chapter 6 Menu Reference 291

Enabling both gives a “cross wire” effect.

Show Newlines (CR/LF)
Display a special character at the end of each text line.

Keystroke Equivalent: (None)

Full Description:

When enabled, a “newline” character is displayed at the end of each text line
where the Carriage-Return and/or Line-Feed is. This makes it easier to see any
trailing spaces on a line.

The “newline” character is only shown in those display modes which doesn't
explicitly display the CR and LF characters, e.g. it is not shown in “Hex” mode.

This item is identical to {CONFIG, Characters/cursors, Show newlines
(CR/LF)}.
The “newline” display character can be selected with {CONFIG,
Characters/cursors, Newline display character}.

Show <<EOF>>
Display a red “<<E-O-F>>” at the end of the file.

Keystroke Equivalent: (None)

Full Description:

When enabled, a red “<<EOF>>” is displayed immediately after the last
character in the file to clearly show when the End-Of-File is. This can be useful
for determining whether there are blank lines at the end of the file.

Show Character Value
Display value of current character on status line.

Keystroke Equivalent: (None)

Full Description:

When enabled, the value of the character at the cursor position is continuously
displayed on the status line in both decimal and hexadecimal. This is useful
for editing data and binary files.

Notes:

You can see the hex value of all characters by selecting {VIEW, Toggle hex
mode split}.

292 Chapter 6 Menu Reference View Menu

Block Menu
Keystroke Equivalent:

<Alt-B>, This is a keystroke macro.

Introduction:

The Block menu contains items for manipulating blocks of text. These include
marking a block (highlighting the desired text), copying or moving a block,
and accessing the text registers.

Set Stream Marker
Mark the beginning and end of a “stream” block of text.

Keystroke Equivalent:

<F9>, this is a keystroke macro.

This function is also on the toolbar.

Full Description:

Before you can copy, move, delete or otherwise manipulate a block of text,
you need to set block markers to select the area of text.

Small block are often simply marked by dragging the mouse over them or by
holding down the <Shift> key while moving the cursor. However, to mark a
larger block, it is best to explicitly mark the beginning and end of the block.

Block Menu Chapter 6 Menu Reference 293

� To mark a block of text (assuming no block markers are set):
1. Position the cursor on the first character to be included in the block. (If

you prefer, you can mark the end of the block first.)

2. Set the first block marker with {BLOCK, Set stream marker} (<F9> or
toolbar). Note the message “1-END” on the status line.

Alternatively, select a columnar block with {BLOCK, Set column
marker} (<Alt-I> or toolbar) or a line block with {BLOCK, Set line
marker} (<Alt-L>).

3. As you now move the cursor to the end of the block, intervening text will
be highlighted to define the block.

4. Set the second marker by again selecting {BLOCK, Set stream marker}
(<F9>). Note the message “BLOCK” on the status line.

Assuming {BLOCK, Persistent blocks} is enabled, you can now freely move
the cursor anywhere in the file without affecting the highlighted block, even
if doing so moves the highlighted text off the screen.

After marking a block, you can change its size and/or the type of block. Move
the cursor to the desired end of the block and then select “Set stream marker”,
“Set column marker” or “Set line marker” from the {BLOCK} menu.

� To clear the block markers at any time:
Press [CANCEL] <Ctrl-\>) or <Ctrl-Break>.

-OR- Simply double-tap the <Ctrl> key; this assumes {CONFIG, Emulation,
Alt/Ctrl/Shift key shortcut modes} is enabled.

-OR- Select {EDIT, Clear markers}, {BLOCK, Clear markers} or
{ESCAPE, Clear block markers} (<Shift-F9> or toolbar).

-OR- Select “Clear markers” from the mouse right-click context menu.

-OR- Simultaneously press both mouse buttons.

Notes:

Most block operations can be performed after setting only the first marker; the
cursor position acts as the second marker.

You must mark the end of the block with the cursor one character PAST the
last character to be included in the block. See “Block Operations - What
Exactly does the Block Include” in Chapter 4 for a complete explanation.

Search/replace operations can be restricted to the highlighted block. See
“Search and Replace - Searching within a Block” in Chapter 4.

The block markers can also be set with the mouse. The block markers can also
be set by holding down the <Shift> key and moving the cursor.

See Also:

“Block Operations - Marking a Block of Text” in Chapter 4.
{BLOCK, Copy to cursor}, {BLOCK, Set column marker}
DOS only - On-line help topic “MOUSE”.

294 Chapter 6 Menu Reference Block Menu

Set Column Marker
Mark the beginning and end of a “columnar” block of text.

Keystroke Equivalent:

<Alt-I>, this is a keystroke macro.

This function is also on the toolbar.

Full Description:

“Set column marker” is similar to “Set stream marker” except that it selects
(and highlights) “columnar blocks”. In a columnar block, only text which is
located within a rectangle whose opposite corners are defined by the first block
marker and the cursor (or second marker) is selected.

Notes:

Selecting {BLOCK, Set column marker} after {BLOCK, Set stream
marker} will change the block from a “stream” to a “columnar” one. The
opposite is also true.

When highlighting a columnar block, the cursor can be moved past the end of
a line. This action is similar to Cursor positioning mode 4 and makes it easier
to select a column of text.

By highlighting a columnar block with both block markers, you can restrict a
search or search-and-replace operation to the selected columns.

After copying a columnar block to a text register, VEDIT remembers that the
register contains a columnar block and will insert it as a columnar block.

To mark a columnar block with the mouse, hold down the <Alt> key while
dragging the mouse over the desired text.

See Also:

“Block Operations - Columnar Blocks” in Chapter 4 describes columnar
blocks in details with examples.
{BLOCK, Set stream marker}

Set Line Marker
Mark the beginning and end of a “line” block of text.

Keystroke Equivalent:

<Alt-L>, this is a keystroke macro.

Full Description:

“Set line marker” is similar to “Set stream marker” except that it selects entire
lines in the file including the “newline” at the end of each text line.

Notes:

After copying a line block to a text register, VEDIT remembers that the register
contains a line block and will insert it at the beginning of the current line instead
of exactly at the cursor position.

Block Menu Chapter 6 Menu Reference 295

See Also:

“Block Operations - Marking a Block of Text” in Chapter 4.
{BLOCK, Set stream marker}

Select Word
Select the current word as a block.

Keystroke Equivalent: (None)

Full Description:

This item selects and highlights the current word as a block. If the cursor is
between words, the previous word and all whitespace up to the cursor is
highlighted.

Notes:

It is usually easier to select a word by double-clicking on it with the mouse.

The configuration parameter Config_String(WORD_SEP) (Chapter 8)
determines which characters separate words from each other.

See Also:

“Word Processing - Definition of Word and Paragraph” in Chapter 4.

Select All
Select the entire file as a stream block.

Keystroke Equivalent:

<Ctrl-A>, this is a keystroke macro.

Full Description:

This item marks the entire file as a block of text. It is equivalent to using “Set
stream marker” at both ends of the file. It is often used when the file is about
to be processed with the {EDIT, Convert} or {EDIT, Translate} functions.

This item is also available in the {EDIT} menu.

See Also:

“Block Operations - Marking a Block of Text” in Chapter 4.
{BLOCK, Set stream marker}

Clear Markers
Clear any existing block markers.

Keystroke Equivalent:

<Shft-F9>, this is a keystroke macro.

This function is also on the toolbar.
This function is also in the mouse right-click context menu.

296 Chapter 6 Menu Reference Block Menu

Full Description:

You can clear (remove) the block markers at any time; this also clears the
highlighting. Normally, most block operations clear the block markers when
completed.

Notes:

It is usually easier to clear the block markers by pressing [CANCEL]
(<Ctrl-\>) or <Ctrl-Break>, or simultaneously pressing both mouse buttons.

You can also perform [CANCEL] by just double-tapping <Ctrl>; this
assumes {CONFIG, Emulation, Alt/Ctrl/Shift key shortcut modes} is en-
abled.

This item is also available in the {EDIT} and {ESCAPE} menus.

See Also:

“Block Operations - Persistent Blocks” in Chapter 4.
{BLOCK, Set stream marker} describes in detail how to clear block makers.
[CANCEL]

Copy to Register

Move to Register
Save (copy or move) the current line or highlighted block to a text register.

Keystroke Equivalent:

<Ctrl-F11> or <Numpad+>, identical to [T-REG COPY].
<Alt-F11> or <Numpad->, identical to [T-REG MOVE].
These functions are also on the toolbar.

Full Description:

A text register is a temporary holding area for blocks of text. Once text is saved
in a text register, it can be used again and again. Text you save stays in the
register until you either save a different block of text or exit VEDIT.

“Copy to register” saves a copy of the highlighted text in a register while
“Move to register” also deletes the highlighted text from your file as it is placed
in the text register.

If no block is highlighted, these functions copy/move the current line to the
selected register.

� To save (copy or move) text into a text register:
1. Highlight the desired text. You can either set both markers or use the

cursor as the second marker.

2. Select {BLOCK, Copy to register} (<Ctrl-F11> or <Numpad+>) to
copy the block.

Select {BLOCK, Move to register} (<Alt-F11> or <Numpad->) to
move the block.

Block Menu Chapter 6 Menu Reference 297

You are prompted for the register number with a dialog box.

3. To select the default text register “0” (the scratchpad), just press <Enter>
or press the hot-key again.

Otherwise, enter the desired text register number “0” through “100”.

HINT: When prompted for a text register number, press any function/con-
trol key to select the default “scratchpad” register “0”. For example,
simply double-press the hot-key for [T-REG COPY] to copy the
highlighted block to register “0”.

To append the block to the existing contents of a text register or insert the block
at the beginning of the existing contents, select the () Append or () Insert
option in the dialog box.

Notes:

The <Numpad> hot-keys are usually more convenient, but laptop users can
use <F11> instead.

In “overstrike-only” mode, e.g. when editing binary/data files, “Move to
register” causes the original text to be filled (overwritten) with the configurable
“block fill” character, typically spaces.

Text register contents are typically lost when you exit VEDIT. However, if
you restore a previous edit session, the text register contents are also restored.

There is a limit to the amount of text that can be saved in the text registers.
This is typically 250 Kbytes for the Windows version and 60Kbytes for the
DOS version. If possible, try working with several smaller pieces of text.

Huge blocks can be copied by first writing them to disk with {FILE, Save
block as}. Then position the cursor at the destination, perhaps after opening
another file, and insert the block with {EDIT, Insert, Insert file}.
The text register dialog box has a “terse” selection option. To select from the
first ten registers, simply press “0” through “9”. To select other registers, first
type “.” (period), type the number and then press <Enter>. For example, to
select register 10, enter “.10”.

In the DOS version, {CONFIG, Misc, Full/Terse dialog box options} con-
trols whether terse dialog boxes are used.

See Also:

“Block Operations - Scratchpad and Text Registers” in Chapter 4.
{EDIT, Scratchpad, Cut to scratchpad}
{BLOCK, Set stream marker}, {BLOCK, Copy to cursor}

298 Chapter 6 Menu Reference Block Menu

Insert Register
Insert the contents of a text register at the current cursor position.

Keystroke Equivalent:

<F11> or <Numpad*>, identical to [T-REG INSERT].
This function is also on the toolbar.

Full Description:

“Insert register” inserts the contents of a text register at the current cursor
location. If the text register is empty, this command has no effect.

� To insert the contents of a text register:
1. Position the cursor at the desired location in the file. The register contents

will be inserted just before the cursor.

2. Select {BLOCK, Insert register} (<F11> or <Numpad*>). You are
prompted for the register number:
Register number:

3. To select the default text register 0 (the scratchpad), just press <Enter>
or press the hot-key again.

Otherwise, enter the desired text register number “0” through “100”.

You can optionally have the register overwrite the existing text. Select the “[]
Overwrite” option before entering the register number.

Notes:

The register will be inserted as the same type of block as it was saved. A line
block will be inserted before the current line. A columnar block will be inserted
on the current line and at the starting column on successive lines.

In “overstrike-only” mode, e.g. when editing binary/data files, the overwrite
option is automatically selected.

You can insert a text register even when a block is currently highlighted.

By default, the cursor will be positioned past the inserted text. Alternatively,
set {CONFIG, Emulation, Advance cursor past block insert} to “No” to
have the cursor remain at the beginning of the inserted text.

You can also insert the contents of an buffer. At the prompt enter the buffer
number followed by “+BUFFER”. For example, to insert buffer 5, enter
“.5+buffer”.

See the Hints and Notes for {BLOCK, Copy to register}.

See Also:

“Block Operations - Text Registers and Scratchpad” in Chapter 4.
{EDIT, Scratchpad, Paste scratchpad}
{BLOCK, Copy to register}, {BLOCK, Move to register}

Block Menu Chapter 6 Menu Reference 299

Persistent Blocks
Enable / disable persistent blocks

Keystroke Equivalent: (None)

Full Description:

When persistent blocks are enabled, a block remains highlighted as you move
the cursor. This makes it easier to work with huge blocks. It also lets you
directly copy or move the block to another location with “Copy to cursor” or
“Move to cursor”.

When disabled, moving the cursor removes the highlighting from a block. This
is typical of most Windows programs.

Notes:

To clear the highlighting from a block, either press [CANCEL] (default:
<Ctrl-\>) or <Ctrl-Break>, simply double-tap the <Ctrl>B key, select
“Clear markers” from the {EDIT}, {BLOCK} or mouse context (right-
click) menu, or simultaneously click both mouse buttons.

See Also:

“Block Operations - Persistent Blocks” in Chapter 4.

Copy to Cursor

Move to Cursor
Copy or move the highlighted block of text to the current cursor position,
without using the scratchpad or clipboard.

Keystroke Equivalent:

<Ctrl-F9>, This is a keystroke macro.

<Alt-F9>, This is a keystroke macro.

Full Description:

“Copy to cursor” copies a highlighted block of text from one location in your
file to another. It does not delete or otherwise affect the original block. It
requires fewer steps than using the scratchpad (or clipboard) to copy and paste
a block.

“Move to cursor” is similar except that the original block is deleted after it is
copied to the new location. In more common terms, it’s as if you “cut” the text
out of the original location and “pasted” it into the current cursor location.

If a block is not yet highlighted, these functions set the first and second block
markers, same as {BLOCK, Set stream marker}. Only when both block
markers are set, do they copy/move the block. This lets them be used as “smart”
keys that both mark the block and copy/move it.

300 Chapter 6 Menu Reference Block Menu

� To directly copy/move a block of text:
1. Highlight the desired text, setting both block markers. If desired, the

hot-keys for these functions can be used to set the block markers.

2. Move the cursor to the location in the file to which you would like the text
copied. The text will be copied in front of the cursor.

3. Select {BLOCK, Copy to cursor} (<Ctrl-F9>) to copy the block.

Alternatively, select {BLOCK, Move to cursor} (<Alt-F9>) to move the
block.

Notes:

These functions are only accessible when {BLOCK, Persistent blocks} is
enabled.

These functions normally clear the block markers. However, by setting the
configuration parameter {CONFIG, Emulation, Block marker emulation
mode} to “1” or “2”, the block will be highlighted in its new location.

In “overstrike-only” mode, e.g. when editing binary/data files, “Move to
cursor” causes the original text to be filled (overwritten) with the configurable
“block fill” character, typically spaces. The existing text at the cursor is also
overwritten.

To repeatedly copy the same block to multiple locations in your file or files, it
is easier to copy the block to a text register (scratchpad) and then insert the
register where needed.

You can also copy or move blocks with the mouse. <Ctrl-Right-Click> copies
the block to mouse position, while <Alt-Right-Click> moves the block.

See Also:

“Block Operations - {BLOCK, Copy/Move to cursor}” in Chapter 4.
{BLOCK, Set stream marker}, {BLOCK, Copy to register}

Delete Block
Delete the highlighted block of text.

Keystroke Equivalent:

(None). However, [DELETE] also deletes highlighted blocks.

Full Description:

A stream, columnar or line block of any size can be deleted.

� To delete a block of text:
1. Highlight the desired text. You can highlight a “stream”, “columnar” or

“line” block of any size.

2. Select {BLOCK, Delete block}. Or press [DELETE].

Block Menu Chapter 6 Menu Reference 301

Notes:

It is usually simpler to delete a highlighted block by pressing [DELETE].
However, if {CONFIG, Emulation, Special emulation modes} is configured
to not allow [DELETE] to delete blocks, this item must then be used.

If the block being deleted is too large for “Undo” to restore it, you will be
prompted for verification whether to still delete the block.

You can also effectively “delete” a (small) block of text by moving it into a
text register or the clipboard.

See Also:

{EDIT, Delete, Delete}, {EDIT, Undo, Deletion}
{BLOCK, Set stream marker}, {BLOCK, Move to register}
[DELETE]

Fill Block
Fill (overwrite) the marked block with any character, usually spaces.

Keystroke Equivalent: (None)

Full Description:

The marked block is filled (overwritten) with the configurable “block-fill”
character, typically spaces. A stream, columnar or line block of any size can
be filled.

This item is primarily used to fill (erase) columnar blocks without affecting
the position of other columns.

See Also:

{CONFIG, Tab/Fill, Block fill character}

302 Chapter 6 Menu Reference Block Menu

Insert Empty Columns
Insert an empty columnar block between other columns.

Keystroke Equivalent: (None)

Full Description:

This item inserts an empty block, consisting of the configurable “block-fill”
character, at the cursor position. A block is first marked (highlighted) to
indicate the size and position of the empty block to be inserted. The existing
marked text is then shifted (indented) to the right.

This item makes it easy to increase the amount of space between two columns
of text.

� To insert an empty columnar block:
1. Move the cursor to the first line and column at which you want the empty

block inserted. Select {BLOCK, Set column marker} (normal: <Alt-I>).

2. Move the cursor to the bottom right corner for the empty block. Existing
text will probably be highlighted. Select {BLOCK, Set column marker}
again.

3. Select {BLOCK, Insert empty columns}. An empty columnar block will
be inserted and any existing text on the selected lines will be indented to
the right.

HINT: This useful (and unique) function is best understood by trying it in
a small test file.

Notes:

This function may seem confusing at first because the highlighted text is not
really processed; the highlighting simply indicates the size and position of the
empty block being inserted. The highlighted text and the text to the right of it
will be indented to make room for the empty block.

You can reduce the space between two columns of text, e.g. newspaper style,
by highlighting one or more columns of spaces and then deleting them. “Insert
empty column” performs the opposite operation of increasing the space
between two columns of text.

This function is most useful with columnar blocks, but it could be used with
stream and line blocks too.

Block Menu Chapter 6 Menu Reference 303

Goto Menu
Keystroke Equivalent:

<Alt-G>, This is a keystroke macro.

Introduction:

The Goto Menu gives quick access to a wide variety of locations in your file.
In addition to items in this menu, VEDIT offers numerous edit functions for
moving about your text. If you do not find an expected operation in this menu,
look in Chapter 7.

Beginning of File

End of File
Position the cursor at the beginning or end of the file.

Keystroke Equivalent:

<Ctrl-Home>, This is a keystroke macro.

<Ctrl-End>, This is a keystroke macro.

Full Description:

“Beginning of file” moves the cursor to the first character in the file.

“End of file” moves the cursor past the last character in the file.

Notes:

These functions may take some time to perform on very large files when the
entire file cannot be kept in memory. If the “LI” of the word “LINE” on the
status line is capitalized, the beginning of the file is in memory. If the “NE” is
capitalized, the end of the file is in memory.

304 Chapter 6 Menu Reference Goto Menu

If you only need to browse a huge file, you should open it in “Read-only” mode.
This function and other cursor movements will then be performed instantly on
even the largest files.

Block-Begin

Block-End
Move the cursor to the beginning or end of the currently highlighted block.

Keystroke Equivalent:

<Alt-[>, this is a keystroke macro.

<Alt-]>, this is a keystroke macro.

Full Description:

These functions move the cursor to the beginning or end of a highlighted block.
It is useful when you forget precisely where the beginning of a large block is
after it has scrolled off the screen.

Notes:

To restrict a search within a highlighted block you must first highlight the block
and then move the cursor to the beginning of the block. {GOTO, Block-begin}
is a convenient way of doing this.

If a block is extremely large, these functions may result in some disk activity
and delay.

See Also:

{BLOCK, Set stream marker}
{SEARCH, Search} - Search within a block

Line #
Move the cursor to the beginning of a specific line or record.

Keystroke Equivalent: (None)

Full Description:

Lines are numbered starting from the first line in your file. The current line
number is indicated on the status line. There are no actual line numbers as you
might find in a BASIC language program and the line numbers do not “stick”
to real text lines. If you insert or delete a line in the middle of your file, the line
numbers of all following lines will be changed accordingly.

{GOTO, Line #} is useful when working with large files. If you know an exact
or even approximate line number of a particular location in your file, you can
get to it very quickly.

� To go to a specific line (record) in the file:
1. Select {GOTO, Line #}.

Goto Menu Chapter 6 Menu Reference 305

2. You are prompted for the line number. Enter the desired line number and
press <Enter>. You can also enter numeric expressions such as
“(1245+858)/2”.

Notes:

When a file is opened for editing, you can start editing on a particular line
number by following the filename with the “-Lnnn” option.

This function may take some time to perform on very large files when the entire
file cannot be kept in memory.

The mouse can also be used to quickly access relative positions in the file.

See Also:

{GOTO, Set Text marker}, {GOTO, Goto text marker}

Column #
Move the cursor to a specific column in the current line.

Keystroke Equivalent: (None)

Full Description:

� To go to a specific column in the current line:
1. Select {GOTO, Column #}.
2. You are prompted for the column number. Enter the desired column

number and press <Enter>. You can also enter numeric expressions such
as “1980/4”.

Notes:

This item is primarily useful when editing very long lines. For example, if you
know that a line is about 2000 characters long and you want to go to the middle
of it, you could simply go to column 1000.

The mouse and bottom scroll bar can also be used to scroll sideways in long
lines.

File Position
Move the cursor to a specific file position.

Keystroke Equivalent: (None)

Full Description:

This function moves the cursor directly to the ‘n’th character (offset) in a file.
The first character in the file is considered to be the 0’th character. The position
at the end of the file is the same as the file size. (There are good reasons for
counting from zero).

This function is often useful when editing binary and data files.

306 Chapter 6 Menu Reference Goto Menu

� To go to a specific file position (offset):
1. Select {GOTO, File position}.
2. You are prompted for the file position. Enter the desired position and press

<Enter>. You can also enter numeric expressions such as “128000/4”, or
enter numbers in hexadecimal such as “0xF7A43”.

Set Text Marker
Set a text marker at the current cursor location.

Keystroke Equivalent:

<Ctrl-D>, This is a keystroke macro.

Full Description:

Ten invisible “text markers” are available for remembering locations in your
file and returning to them later. These markers “stick” to the character at which
you set them. If you insert or delete text in front of a text marker, the marker
will continue to stick to the same character.

Marker information is not saved in files. As a result, markers are maintained
only until you close the file or exit VEDIT. However, if you restore a previous
edit session, the text markers are also restored.

� To set a text marker:
1. Move the cursor to the desired position.

2. Select {GOTO, Set text marker}. You are prompted with:
Marker number: (0-9)

3. Enter the desired marker number “0” through “9”. As a shortcut, you can
immediately press <Enter>, <Ctrl-D> again (or any function/control
key) to select marker “0”.

Notes:

Text markers are invisible; the only way to determine where, or if, they are set
is by using {GOTO, Goto text marker} to position the cursor at the marker.

{BLOCK, Clear markers} only clears the block markers, it does not affect
the text markers. There is no way (or reason) to remove text markers once they
are set.

If you restore a previous edit session, all text markers are also restored.

Certain editing operations affect both text and block markers:

� Any operation which deletes text at or around a marker leaves the marker
set at the first character past the deleted text. “Undoing” the deletion will
not restore the marker to its original position.

� Moving a block that contains a marker does not move the marker. The
marker behaves exactly as if the original text were deleted.

Goto Menu Chapter 6 Menu Reference 307

� Reformatting a paragraph moves any markers located within that para-
graph to the last character in the paragraph.

See Also:

{GOTO, Goto text marker}

Goto Text Marker
Return the cursor to a previously set text marker.

Keystroke Equivalent:

<Ctrl-G>, This is a keystroke macro.

Full Description:

“Goto Marker” moves the cursor to the location of a desired text marker. The
marker must first be set using {GOTO, Set text marker}. You can have up to
10 markers set at any one time.

� To move back to a previously marked position:
1. Select {GOTO, Goto text marker}.
2. You are prompted for the text marker. Enter the desired marker number

“0” through “9”. As a shortcut, you can immediately press <Enter> or
<Ctrl-G> again to select marker “0”.

Notes:

See the description of {GOTO, Set text marker} for a discussion of text
markers.

When working with a large multi-megabyte file, {GOTO, Goto text marker}
may take a few moments to execute.

See Also:

{GOTO, Set text marker}

Matching ()
Move the cursor to the character which is logically paired with the character
at the cursor.

Keystroke Equivalent:

<Ctrl-]>, This is a keystroke macro.

Full Description:

This item examines the character at the current cursor position and attempts to
locate a logically matching character. The characters which have logical
matches are “(”, “)”, “{”, “}”, “[”, “]”, “<” and “>”. These characters are
frequently used in program source code, arithmetic expressions and other
logical constructs. {GOTO, Matching ()} is designed to help you move from
one end of these logical units to the other and to locate mismatches.

308 Chapter 6 Menu Reference Goto Menu

For example, if you place the cursor at the first “(” in the following expression
and select this item, the cursor will be moved to the last “)” instead of the first
one it finds.

((a/2) + (b/3))

While it is easy to see that all parentheses properly match in the above
expression, some expressions, functions and program source code routines can
be so lengthy and complex that it may not be obvious. {GOTO, Matching ()}
can check for proper matching over thousands of lines of source code.

VEDIT matches these characters in either direction. If the cursor is on an
opening character “(”, “{”, “[” or “<”, VEDIT searches forward for a match.
If the cursor is on a closing character “)”, “}”, “]” or “>”, VEDIT searches
backward for a match.

� To locate a matching character:
1. Place the cursor on the character you would like to match. If the cursor is

not located on such a character when this item is selected, the first of these
eight characters will be found for you.

2. Select {GOTO, Matching ()}. The cursor will be moved to the matching
character if there is one. Otherwise, an error is given.

HINT: Here’s a method for checking an entire file for proper character
matching. Place a “(” at the beginning of the file and a “)” at the end.
Place the cursor at one of these two characters and select {GOTO,
Matching ()}. If the cursor moves all the way to the other end of
the file without an error message, everything is properly paired.

Goto Menu Chapter 6 Menu Reference 309

Misc Menu
Keystroke Equivalent:

<Alt-M>, This is a keystroke macro.

ASCII Table
Display ASCII table and optionally enter any desired characters.

Keystroke Equivalent: (None)

Full Description:

“ASCII table” displays a table of all possible characters with their correspond-
ing decimal value. This includes all control and graphic characters. Any desired
character, including “Null” (value 00) can be entered.

See the description of {EDIT, Insert, ASCII table} for details. They are
identical functions.

See Also:

“Entering Control and Graphics Characters” in Chapter 4.
{EDIT, Insert, ASCII table}
[ENTER CTRL]

310 Chapter 6 Menu Reference Misc Menu

Box Drawing Mode
Draw “graphic” boxes using cursor keys.

Keystroke Equivalent: (None)

Full Description:

Enters a special mode for drawing decorative boxes in the current file using
the cursor keys. The style for vertical and horizontal lines is selected with
{CONFIG, Misc, Box drawing style}.
Press <Esc> to exit this mode and return to normal editing.

Notes:

This function is only available when a font using the “OEM” character set has
been selected with {VIEW, Font}. “ANSI” fonts do not have box drawing
characters.

This function is implemented by the box-draw.vdm macro.

DOS Shell
Keystroke Equivalent: (None)

Full Description:

“DOS Shell” temporarily suspends VEDIT and “shells out” to a DOS box (NT
command window). You can then run any commands and/or programs. You
run both Windows and DOS programs.

Give the DOS/NT command “exit” to return to VEDIT.

{MISC, DOS shell} does not affect your files, it merely suspends VEDIT.
When you return to VEDIT, you will find everything exactly as it was when
you left it.

� To temporarily suspend VEDIT and enter a DOS/NT command box:
1. It is a good idea to select {FILE, Save all} to save all file before shelling.

2. Select {MISC, DOS shell}. You may now see a copyright notice for your
operating system and the DOS command prompt.

3. You can now execute DOS/NT commands and other software.

4. To return to VEDIT, type “exit” at the DOS/NT prompt.

WARNING: If you forget to return to VEDIT before you shut down your
computer, any changes made since the last time your files
were saved will be lost! Therefore, it is a good habit to save
all files before shelling out to DOS/NT.

DO NOT delete files that are currently open for editing or
have a filename extension of “.r$$” or “.rR$”. These may be
temporary files in use by VEDIT.

Misc Menu Chapter 6 Menu Reference 311

DOS Version:

While shelled out to DOS, VEDIT changes the DOS prompt to “pathname>>”.
The double “>>” is a reminder that VEDIT is still loaded. This can be changed
with Config_String(OS_PROMPT) in the vedit.cfg file.

YOU SHOULD NOT load any “resident” (TSR) programs while shelled out
to DOS!

If V-SWAP is installed in memory, VEDIT will use it to swap itself out of
memory before re-entering DOS. V-SWAP can be disabled by setting
{CONFIG, File handling, Use V-SWAP when entering DOS} to “No”.

If VEDIT has used up all available memory and V-SWAP is not installed or
disabled, you will not be able to shell out to DOS.

Notes:

The Windows 95/98/ME version shells to DOS with the MSDOS95.PIF file
in the VEDIT Home Directory. If desired, right-click on it, select “Properties”
and change whether the DOS window is opened full-screen or the size of the
window.

{MISC, DOS shell} will not work unless the DOS “COMSPEC” parameter is
properly set. This is usually set automatically or it may have an override in
your AUTOEXEC.BAT file using a command similar to the following:

SET COMSPEC=C:\COMMAND.COM

Refer to a DOS manual for information on the “COMSPEC” parameter.

See Also:

“RUNSHELL - Run other programs” in Chapter 5.
{MISC, Run program}

Run Program
Execute a Windows/DOS program and return to VEDIT.

Keystroke Equivalent: (None)

Full Description:

“Run program” executes DOS/NT commands or runs Windows/DOS pro-
grams. Unlike {MISC, DOS shell}, {MISC, Run program} automatically
returns to VEDIT as soon as the requested command or program is completed.
Use {MISC, DOS shell} to run multiple commands or programs and use
{MISC, Run program} to run a single command or program.

� To execute a single DOS command or program:
1. Select {MISC, Run program}. You are prompted with:

DOS command / program:

2. Enter the desired DOS/NT command or program name. You may enter
any valid DOS/NT command or run any program which may be run using
a single command.

312 Chapter 6 Menu Reference Misc Menu

Notes:

The functions in the {MISC, Save and run programs} menu are often
preferable. They have the advantage of saving and closing all files before
running another program; when done, the files are re-opened.

All Notes and Warnings for {MISC, DOS shell} also apply here.

If you frequently run a program which requires a series of commands to
execute, you should consider creating a “batch” file and using {MISC, Run
program} to execute the batch file.

See Also:

“RUNSHELL - Run other programs” in Chapter 5.
{MISC, DOS shell}

Save and Run Programs (Sub-menu)
This sub-menu contains five identical functions which save and close all files
before running the specified Windows/DOS program; upon return the files are
reopened. This allows the run (shell) program to access files which are
currently open in VEDIT. Since these functions save all files, you won't lose
your work in case the run (shell) program crashes, or you shut down your
computer before returning to VEDIT.

Each function saves the last command entered as the next default. Therefore,
the only difference between the functions is the saved default command.

If the shell program is set up to create the special file “vout”, this file is
automatically opened in a new window upon returning to VEDIT. For exam-
ple, this can be used to view the output (error) messages from a compiler.

See Also:

The topic “RUNSHELL - Run Other Programs” in Chapter 5 describes these
functions in complete detail.

Wildfile Wizard (Windows version)

WILDFILE Macro (DOS version)
Windows - Start up the multiple file processing macro WILDFWIZ.VDM.

DOS - Start up the multiple file processing macro WILDFILE.VDM.

Keystroke Equivalent: (None)

This function is also on the toolbar.

Full Description:

This starts up the wildfwiz.vdm or wildfile.vdmmacro which is fully
described in Chapter 5.

This macro is often used to perform a search and/or replace on entire groups
of files. This can include files currently being edited and/or any other files.

Misc Menu Chapter 6 Menu Reference 313

The groups of files to be processed can be specified using the wildcard
characters “*” and “?”. For example, you could perform a search and/or replace
on all .c and .h files in any directory or directories. Optionally, all matching
files in all subdirectories can also be processed.

See Also:

“WILDFILE - Multi-file Processing” in Chapter 5.
{MISC, More Macros, WILDFILE}

More Macros
Load and execute other supplied macros.

Keystroke Equivalent: (None)

Full Description:

This sub-menu quickly loads and executes many of the macros supplied with
VEDIT. Some of these macros are described in detail in Chapter 5 (Advanced
Topics).

Select this sub-menu and press [HELP] (<F1>) for a short description of each
macro.

Load/Execute Macro

Load/Execute User Macro
Load and execute a command macro.

Keystroke Equivalent:

<Ctrl-F7>, This is a keystroke macro.

Full Description:

These items load and immediately execute a VEDIT “command macro”. They
are typically used to load and execute macros which are not listed in {MISC,
More macros}, such as macros that you write yourself.

Most macros supplied with VEDIT are installed into the VEDIT Macro
Directory, typically c:\vedit\macros. We suggest that user written macros be
saved in the VEDIT User Macro Directory, typically c:\vedit\user-mac.

� To load and execute a command macro:
1. Select {MISC, Load/Execute macro}.
2. Either enter the desired filename or use the point and shoot filename

selection.

“Load/Execute Macro” defaults to all “.vdm” files in the VEDIT Macro
Directory, e.g. c:\vedit\macros*.vdm.

“Load/Execute User Macro” defaults to all “.vdm” files in the VEDIT User
Macro Directory, e.g. c:\vedit\user-mac*.vdm. We suggest that you
save your own macros in this directory.

314 Chapter 6 Menu Reference Misc Menu

3. You are prompted for the text register number in which to load the macro.
By convention, macros are usually loaded into registers 10 through 100.
The default register is “100”.

DOS Version:

If “terse” dialog boxes have been selected, press <Enter> at the short filename
prompt for point and shoot file selection.

Notes:

When entering a command macro filename, you can leave off the default
“.vdm” extension.

Don’t confuse “command macros” stored in files and text registers with
“keystroke macros”. Command macros are programs written in the VEDIT
macro language. Keystroke macros are “strings” of key-presses, possibly
including macro language commands, that are assigned to “hot-keys”.

Use {HELP, Text registers} to determine which registers are empty and
therefore available for holding command macros.

If you use a custom macro often, you may want to add it to the {USER} menu
for easier access.

See Also:

“Command Macros” in Chapter 5.
{HELP, Text registers}, {MISC, Execute macro}

Execute Macro
Execute the command macro stored in a text register.

Keystroke Equivalent:

<Ctrl-F8>, This is a keystroke macro.

Full Description:

Once a macro has been loaded into a register, it may be executed using {MISC,
Execute macro}. Except for the operation of loading a macro into a register,
this item is identical to {MISC, Load/Execute macro}.
{MISC, Execute macro} is often used to repeatedly execute a macro after it
is loaded and executed for the first time with {MISC, Load/Execute macro}.

Notes:

You can execute a command macro stored in an buffer, but not in the current
edit buffer. To execute a macro in the current edit buffer, you must first switch
to another edit buffer using {FILE, Buffer switch} (<F4>). Then enter a text
register number of “b+buffer” where ‘b’ is the buffer number.

See Also:

{MISC, Load/Execute macro}

Misc Menu Chapter 6 Menu Reference 315

Load Syntax File
Load a syntax highlighting definition file and enable this feature.

Keystroke Equivalent: (None)

Full Description:

This item loads a new syntax highlighting definition file, such as c.syn,
html.syn or a custom file. It also enables {CONFIG, Programming,
Enable color syntax highlighting} in the current file.

You are prompted for the desired filename. The file selection dialog box starts
with all *.syn files in the VEDIT Home Directory.

Notes:

VEDIT can automatically load a syntax highlighting file depending upon a
file's filename extensions. See the topics “Syntax Highlighting” in Chapter 5
for details.

{CONFIG, Programming, Enable color syntax highlighting} is only en-
abled in the current file (buffer) regardless of how {CONFIG, Config all
buffers} is set. You may have to manually enable it for other buffers.

Load Template File
Load a template editing macro and enable template editing.

Keystroke Equivalent: (None)

Full Description:

This item loads a new template editing macro file, such asc.vtm,html.vtm
or a custom macro. It also enables {CONFIG, Programming, Enable
template editing} in the current file.

You are prompted for the desired filename. The file selection dialog box starts
with all *.vtm files in the VEDIT Home Directory.

Notes:

VEDIT can automatically load a template editing macro depending upon a
file's filename extensions. See the topics “Template Editing” in Chapter 5 for
details.

{CONFIG, Programming, Enable template editing} is only enabled in the
current file (buffer) regardless of how {CONFIG, Config all buffers} is set.
You may have to manually enable it for other buffers.

316 Chapter 6 Menu Reference Misc Menu

Load Compiler Support
Load the compiler support items into the {Tools} menu.

Keystroke Equivalent: (None)

Full Description:

This item loads the compiler support items into the {Tools} menu, replacing
any existing {Tools} or {Tutorial} menu.

You can load either the “normal” compiler support which uses the
compile.cnf configuration file or the Java SDK specific support which
uses the java-sdk.cnf configuration file and a slightly different
{JavaTools} menu. You can easily switch between Java SDK and another
compiler by selecting {MISC, Load compiler support} again.

{CONFIG, Misc, TOOLS menu} determines which menu is loaded into the
{TOOLS} menu at startup.

Notes:

If the normal compiler support is selected, it loads the compile.mnu menu
file. If the Java SDK compiler support is selected, it loads the
java-sdk.mnu menu file.

This function is implemented by the compile.vdm macro.

See Also:

“Integrated Compiler Support” in Chapter 5.
On-line help topic “Compiler Support” (DOS: “COMPILE”).

Load {TOOLS} Menu

Load {USER} Menu
Load a new {TOOLS} or {USER} menu.

Keystroke Equivalent: (None)

Full Description:

These items load a new menu file as the {TOOLS} or {USER} menu. You are
prompted for the desired filename. The file selection dialog box initially
displays all *.mnu files in the VEDIT Home Directory.

Since only user.mnu is supplied with VEDIT and is automatically loaded
during startup, this function’s purpose is to load custom {USER} menus.

Notes:

The topic “{USER} and {TOOL} Menu” in Chapter 5 describes how to modify
the existing {USER} menu and create custom “.mnu” files.

Misc Menu Chapter 6 Menu Reference 317

Search Menu
Keystroke Equivalent:

<Alt-S>, This is a keystroke macro.

Introduction:

You can easily and quickly search for a particular string of text and optionally
replace it with different text. Just the current file or all open files can be
searched. Any two open files can also be compared.

Search
Search for a string of text.

Keystroke Equivalent:

<F2> or <Ctrl-F>, These are keystroke macros.

This function is also on the toolbar and in the right-click context menu.

Full Description:

Starts a new search for the specified search string. The flexible search dialog
box includes options for searching only for entire words, making the search
case sensitive, or restricting the search to the highlighted block.

Besides searching for a literal sequence of characters, you can also search using
VEDIT’s powerful pattern matching or regular expressions. These search
modes are fully described under “Search and Replace” in Chapter 4. Pattern
matching is the default.

You can search for more occurrences in the forward or backward directions.

Notes:

The on-line help for the Search dialog box (click on [Help]) explains how to
search for Tab, “newline”, “Null” and other control characters.

The search and replacement strings are limited to 260 characters.

318 Chapter 6 Menu Reference Search Menu

See Also:

“Search and Replace” in Chapter 4 has complete details and step-by-step
instructions.
“WILDFILE - Multi-file Processing” in Chapter 5 explains how to search
entire groups of files.
On-line help for the Search dialog box.

Replace
Locate a text string and replace it with another text string.

Keystroke Equivalent:

<Alt-F2> or <Ctrl-H>, They are keystroke macros.

This function is also on the toolbar and in the right-click context menu.

Full Description:

Starts a new search for the specified search string; and if matching text is
found, replaces it with the replace string.

After the matching text is found, a dialog box lets you perform the replacement
a single time, selectively, or globally throughout the file.

See Also:

“Search and Replace” in Chapter 4 has complete details and step-by-step
instructions.

Next

Previous
Repeat the last “Search” or “Replace” operation again in the forwards or
backwards direction.

Keystroke Equivalent:

<F3>, This is a keystroke macro for {SEARCH, Next}.
<Shft-F3>, This is a keystroke macro for {SEARCH, Previous}.
These functions are also on the toolbar.

Full Description:

“Next” repeats the last “Search” or “Replace” operation again in the forwards
direction toward the end of the file, starting at the cursor position

Similarly, “Previous” repeats it in the backwards direction toward the begin-
ning of the file.

The same search options will be used that were specified for the original
search/replace. It will only be restricted to the highlighted block of text if the
original search/replace was also so restricted.

If desired, you can switch to another buffer and repeat the search/replace there.

Search Menu Chapter 6 Menu Reference 319

Incremental Search
Search for text as you enter the search string.

Keystroke Equivalent:

<Ctrl-I>, This is a keystroke macro.

Full Description:

This items prompts for a search string and searches the current file, starting
from the cursor position, for the accumulated search string after each key-
stroke. Press <Esc> when done. This is a convenient way to search without
having to enter more of the search string than is necessary.

Following each keystroke, if matching text is found, it is highlighted. Other-
wise, the previously marked text remains highlighted. If desired, you can then
press <Backspace> and change the search string.

The following function/control keys can be used:

<Esc> Finishes the incremental search.

<Backspace> Erases the last entered character and backs up to the
previous cursor position.

<Ctrl-N> Enters the current newline character(s) into the search
string.

[ENTER CTRL] (Default: <Ctrl-Q>) Enters the subsequent control
character into the search string.

<Enter> Searches for the next occurrence.

You can later select {SEARCH, Next} or {SEARCH, Previous} to find the
next/previous occurrence of the string.

Notes:

The prompt for the search string is on the status line; this is a bit difficult to
see in the Windows version. (We hope to improve this soon.)

The search is case sensitive if {CONFIG, Search options, Default case
sensitive option} is enabled. The search mode (pattern matching or regular
expressions) is set by {CONFIG, Search options, Default search mode}.
This function is implemented by the srchincr.vdm macro.

Since incremental searching that fails in huge files can be time consuming, this
macro can be set up to initially perform a “local” search. Seesrchincr.vdm
for details.

320 Chapter 6 Menu Reference Search Menu

Search Block/Word
Search for occurrences of block or word at cursor.

Keystroke Equivalent:

<Shft-F2>, This is a keystroke macro.

Full Description:

This item searches for the next occurrence of the text which is currently
highlighted as a block. The search starts at the cursor position. If no block is
highlighted, it searches for the word at the cursor position; if the cursor is on
a space following a word, it searches for the preceding word and a space.

You can either press the hot-key again or {SEARCH, Next} (<F3>) to search
for additional occurrences.

Notes:

The search is case sensitive if {CONFIG, Search options, Default case
sensitive option} is enabled.

This function is implemented by the srchblck.vdm macro.

Search All Buffers
Search all open files for a string of text.

Keystroke Equivalent:

<Ctrl-F2>, This is a keystroke macro.

Full Description:

This item prompts for a search string and then searches all open files (buffers)
for the specified string, starting with the current file.

Press [VISUAL EXIT] (default: <Ctrl-E>) to search for the next occurrence,
switching to another buffer (file) if necessary.

Press [VISUAL ESCAPE] (default: <Ctrl-Shift-E> or <Alt-F10>) to end the
search.

� To search all open files for a string of text:
1. Select {SEARCH, Search all buffers}.
2. At the prompt, enter the desired search string. Simply press <Enter> to

use the same string as for the last {SEARCH, Search}.
3. When the string is found, you can make any desired editing changes.

4. Press [VISUAL EXIT] (<Ctrl-E>) to search for the next occurrence.

5. Press [VISUAL ESCAPE] (<Ctrl-Shift-E> or <Alt-F10>) when done
searching.

Search Menu Chapter 6 Menu Reference 321

Notes:

The search is case sensitive if {CONFIG, Search options, Default case
sensitive option} is enabled. The search mode (pattern matching or regular
expressions) is set by {CONFIG, Search options, Default search mode}.
This function is implemented by the sallbuff.vdm macro.

The WILDFILE macro can also search/replace numerous files without having
to simultaneously openthem in VEDIT. WILDFILE can search/replace thou-
sands of files in one operation, e.g. it can search all files in a subdirectory tree.

See Also:

“WILDFILE - Multi-file Processing” in Chapter 5.
{SEARCH, Search}

Compare Buffers
Perform a byte-by-byte comparison between two buffers (files).

Keystroke Equivalent:

<Ctrl-F3>, This is a keystroke macro.

Full Description:

This function performs a quick comparison of two buffers (files). It compares
the current buffer with the selected one. The comparison starts at the current
cursor position of both buffers, and both cursor positions are advanced over
all matching characters. To continue the comparison, you must first manually
re-align the cursor in both buffers.

As a convenience, if only two files are open, this function skips the selection
prompt and immediately compares against the “other” file.

� To compare two buffers (files):
1. If necessary, switch to both buffers and ensure that the cursor in each

buffer is in the correct position for starting the comparison. Remain in
either buffer.

2. Select {SEARCH, Compare buffers} (<Ctrl-F3>). If only two buffers
are open, the comparison starts immediately and you should notice that
the cursor has moved over all matching characters.

If more than two buffers are open, you are prompted for the “other” buffer
number with the buffer selection dialog box.

3. Enter the desired buffer number, or select a buffer in the dialog box.

(DOS version) If “terse” dialog boxes have been selected, erase the default
“1” buffer and then press <Enter> for point and shoot buffer selection.

Notes:

To perform a case sensitive comparison, e.g. to compare two binary files,
enable {SEARCH, Config, Default Case-sensitive option}.

322 Chapter 6 Menu Reference Search Menu

The supplied COMPARE file comparison macro is more sophisticated and
often easier to use. It can automatically re-align the files being compared to
continue the comparison.

See Also:

“COMPARE - Compare Files” in Chapter 5.

Open Searched Files
Open all files that contain a specified search string.

Keystroke Equivalent: (None)

Full Description:

This item searches entire groups of files and opens all files which contain the
specified search string. The cursor will be positioned at the first occurrence of
the search string in each file.

You are first prompted for a group of files to search. The wildcard characters
“*” and “?” are typically used to specify a group of files in any desired
directory. Optionally follow the file specification with “-s” to search all
sub-directories too. Press <Enter> and you are prompted for another group of
files. Simply press <Enter> one more time after all files have been entered.

For example, to search all “.C” and “.H” files in the directory
c:\develop\mail, you would enter:

c:\develop\mail*.c <Enter>
c:\develop\mail*.h <Enter>
<Enter>

You are then prompted for a search string, which may contain pattern matching
codes.

All specified files will then be searched, and those that contain the search string
will be opened with the cursor at the first search occurrence.

Notes:

The search is case sensitive if {CONFIG, Search options, Default case
sensitive option} is enabled. The search mode is set by {CONFIG, Search
options, Default search mode}. Other search options cannot be specified.

This function is implemented by the srchfile.vdm macro.

The WILDFILE macro can also search/replace numerous files, e.g. it can
search all files in a subdirectory tree.

See Also:

“WILDFILE - Multi-file Processing” in Chapter 5.

Search Menu Chapter 6 Menu Reference 323

Window Menu
Keystroke Equivalent:

<Alt-W>, This is a keystroke macro.

Introduction:

The {Window} menu lets you cascade or tile windows, split windows, close
and remove windows, and switch to any desired window.

Cascade

Tile Horizontally

Tile Vertically
Rearrange the existing windows into a cascading or tiled view.

Keystroke Equivalent: (None)

Full Description:

“Cascade” resizes all windows to the same size; it moves them so that they
partially overlap each other with all filenames on the top border visible. The
most recently used windows will be on top.

“Tile” moves and resizes all windows so that they fit on the screen without
overlapping (the windows may be very small). “Tile horizontally” gives a
preference to full width windows, “Tile vertically” gives a preference to
side-by-side full height windows.

324 Chapter 6 Menu Reference Window Menu

Notes:

Some VEDIT macros create special “reserved” windows at the top or bottom
of the screen that cannot be cascaded, tiled, or resized.

See Also:

“Windows” in Chapter 4.

Arrange Icons
Line up minimized icons at bottom of VEDIT’s desktop

Keystroke Equivalent: (None)

Full Description:

“Arrange Icons” neatly arranges all icons corresponding to minimized editing
windows at the bottom of the VEDIT desktop area.

Notes:

The minimized icons are not visible if the current window is zoomed to
full-size or if any window is otherwise overlaying the icons. You may have to
move windows to see them all.

Split
Split the current window into two horizontal or vertical custom-sized windows.

Keystroke Equivalent: (None)

Full Description:

This item splits the current window into two windows, each displaying the
same file. This lets you view and edit two regions of the file at the same time.
For example, you may want to refer to the definitions listed at the beginning
of a file while you are editing in the middle of the file.

The dialog box lets you specify the location of the new window in the top,
bottom, left or right half of the current window. You can also specify the
number of lines/columns in the new window. The default value of “0” splits
the window exactly in half.

Use {WINDOW, Next window} (<Ctrl-F6>) {WINDOW, Previous
window} (<Ctrl-F5>), {WINDOW, Switch} (<Alt-F5>) or the mouse to
switch to the new window. You can then examine or edit another part of the
same file. Each window on the same file can be scrolled independently. A
separate cursor position is maintained in each window.

Notes:

VEDIT always keeps all windows on the same file up to date. When the
windows display the same region of the file, you will notice your edit changes
occurring in both windows.

You can resize the windows after performing a vertical/horizontal split.

Window Menu Chapter 6 Menu Reference 325

VEDIT supports separate colors for each window. {VIEW, Color toggle}
toggles the current window through different colors.

{FILE, Open (More), Horizontal window} internally performs a “Horizontal
split” as it opens a new file for editing. Similarly, {FILE, Open (More),
Vertical window} performs a “Vertical split”.

VEDIT automatically assigns each new window the first unused ID number.
However, for routine editing it is not necessary to know a window’s ID number.

See Also:

“Windows” in Chapter 4.
{WINDOW, Switch}, {VIEW, Toggle Hex mode split}

Close
Close the current window and close the buffer (file) displayed in it.

Keystroke Equivalent:

<Ctrl-F4>, This is a keystroke macro.

Full Description:

This item closes the current window; it is the same as clicking the mouse on
the windows “close” button. If the window contains an altered file AND is the
only window displaying that file, it closes the file, same as {FILE, Close},
prompting whether the file should be saved or abandoned. Otherwise, it only
closes the window.

When a buffer (file) is displayed in two or more windows, this function closes
(deletes) the additional windows in which it is displayed.

Notes:

We recommend using this function, or (equivalent) clicking the mouse on the
windows “close” button, as the normal way to close files.

See Also:

“Editing Multiple Files - Closing Files” in Chapter 4.
{FILE, Close}

Close all (Windows version only)
Closes all windows and buffers (files).

Keystroke Equivalent: (None)

Full Description:

This item closes all windows and buffers; you can save or abandon each
modified file, similar to {FILE, Exit}.
It should immediately be followed by {FILE, Open} (or toolbar) to open
additional files. Until a window is opened, VEDIT will not respond to any
keystrokes.

326 Chapter 6 Menu Reference Window Menu

See Also:

{FILE, Exit}

Remove
Removes (deletes) the specified window.

Keystroke Equivalent: (None)

Full Description:

This item prompts for the ID number of the window to be removed. It only
closes the window; it does not close the associated buffer (file), if any. This is
sometimes referred to as “deleting” the window. Since windows and buffers
are independent in VEDIT, this function DOES NOT affect any files!

Its main purpose is to close multiple (extra) windows per file created with the
window split functions, or delete special “command mode” windows created
by a “command macro”.

If you remove the only window attached to a buffer (file), VEDIT automat-
ically creates a new window when you switch to that buffer. The current
window cannot be removed. (You may notice a flicker as the current window
is deleted, but then immediately recreated.)

Notes:

VEDIT for Windows users are unlikely to use this (unusual) function during
routine editing.

To remove all extra windows, select {View, Reset}.
It is usually easier to delete extra windows by simply clicking the mouse on
their “close” button.

See Also:

{VIEW, Reset}

Switch
Switch directly to another window.

Keystroke Equivalent:

<Alt-F5>, This is a keystroke macro.

Full Description:

“Switch” prompts for the ID number of the desired window and then switches
to the specified window. If the specified window does not exist, the command
is ignored. The window can also be selected via point and shoot.

If the new window contains a different file, it also switches to that file (buffer),
i.e. it also performs {FILE, Buffer switch}. If the new window contains the
same file, the editing position is moved to the cursor position in the new
window. This makes it easy to view and edit two or more regions of one file.

Window Menu Chapter 6 Menu Reference 327

Notes:

{WINDOW, Switch} is not the same as {FILE, Buffer switch}. It is primarily
used when one buffer (file) is being edited in two or more windows, e.g.
following {VIEW, Toggle hex mode split}.
You can also switch to a window by clicking the mouse anywhere in the desired
window. However, this function can be used to switch to another window when
windows are zoomed.

It is usually easier to switch to any desired window by toggling to it with
{WINDOW, Next window} (<Ctrl-F6>) or {WINDOW, Previous window}
(<Ctrl-F5>).

When switching to another window on the same file, there may be some delay
while VEDIT brings the new region of the file into memory.

See Also:

{FILE, Buffer switch}
{WINDOW, Next window}.

Next Window

Previous Window
Toggle round-robin style to the next/previous window and its file.

Keystroke Equivalent:

<Ctrl-F6>, This is a keystroke macro.

<Ctrl-F5>, This is a keystroke macro.

Full Description:

“Next window” switches, round-robin style, to the next existing window.
Similarly, “Previous window” switches to the previous window. If there is only
one window, they have no effect.

If the new window contains a different file, it also switches to that file (buffer),
i.e. it also performs {FILE, Buffer switch}. If the new window contains the
same file, the editing position is moved to the cursor position in the new
window. This makes it easy to view and edit two or more regions of one file.

Notes:

You can also switch directly to another window with {WINDOW, Switch}.
See the notes for {WINDOW, Switch}.

See Also:

{FILE, Next buffer}, {WINDOW, Switch}.

328 Chapter 6 Menu Reference Window Menu

Config Menu
Keystroke Equivalent:

<Alt-C>, This is a keystroke macro.

Introduction:

The {CONFIG} menu lets you tailor VEDIT to your applications and personal
preferences.

Parameters marked with “(*)” are buffer dependent - you can have a different
value for each buffer (file). See {CONFIG, Config all buffers} for details.

Notes:

When {CONFIG, Auto-save config} is enabled, all configuration changes
(except for the keyboard layout) are automatically saved for the next time you
run VEDIT. Experienced users may want to disable it so that configuration
changes are temporary unless you explicitly select {CONFIG, Save config}.
When restoring a previous edit session, all configuration settings are restored,
regardless of whether you made them permanent.

Some rarely-changed configuration options can only by changed by editing
the vedit.cfg file as described in Chapter 8.

The default settings for VEDIT are the result of years of experience. We
suggest that you at least try our settings before making numerous changes.

Config Menu Chapter 6 Menu Reference 329

Associate File Types (Windows Only)
Add VEDIT to the “Registry” and associate file types.

Keystroke Equivalent: (None)

Full Description:

This function associates file-types, i.e. filename extensions, with VEDIT. For
example, if “.txt” files are associated with VEDIT, then double-clicking a .txt
file in Explorer will open it in VEDIT. You can associate as many file-types
with VEDIT as desired.

While it is possible to use Explorer to associate file-types with programs, we
highly suggest using this function instead. In order to open additional files in
an existing instance (running copy) of VEDIT, a Windows mechanism called
“DDE” must be used. This function associates the file-types using “DDE”,
using Explorer to associate file-types typically does not set up DDE.

� To associate a file-type (filename extension) with VEDIT:
1. Select {CONFIG, Associate file-types}.

Assuming that VEDIT has already been added to the Windows registry,
e.g. during installation, the first dialog box gives an overview of this
function.

Note: Read the dialog boxes carefully. They depend upon your
version of Windows. We also regularly enhance this
function.

2. At the “Do you want to associate any other file-types with VEDIT”
prompt, select [Yes]. You will then see:

3. First, type the desired filename extension including the preceding period.
Then type a space and a description for the file-type; the description may
include several words. The description will appear in Explorer. Select
[Ok] when the full line has been entered.

4. The dialog box will repeat. You can associate another file-type, or select
[Cancel] if you have no more file-types to enter.

330 Chapter 6 Menu Reference Config Menu

Notes:

If VEDIT has not already been added to the Windows “Registry”, this function
adds it and associates .VDM files with VEDIT.

Save Config
Save current configuration settings in vedit.cfg or another file.

Keystroke Equivalent: (None)

Full Description:

This item saves all current configuration settings into the vedit.cfg file, or
other specified file. The default is vedit.cfg in the User Config Directory,
which is auto-loaded when VEDIT starts up. Therefore, this saves any con-
figuration changes.

� To make configurations changes permanent by saving into vedit.cfg:
1. Select {CONFIG, Save config}. You are prompted with:

Filename: c:\vedit\vedit.cfg

2. Assuming the default “vedit.cfg” filename is correct, press <Enter>.
Otherwise, edit the path and filename as needed.

Notes:

This function does not save the current keyboard layout. You must use
{CONFIG, Keyboard layout, Save layout} for this.

The User Config Directory is typically the same as the VEDIT Home Directory,
e.g. c:\vedit, or c:\program files\vedit, but they are different if
VEDIT was installed on a network server.

vedit.cfg is a command macro that contains all of the Config() commands
necessary to fully configure VEDIT. Experienced users may prefer to config-
ure VEDIT by directly editing this file as described in Chapter 8.

In the DOS version, you can also save the entire configuration and keyboard
layout into the VEDIT.EXE file with {CONFIG, Misc, Save into
VEDIT.EXE}.

See Also:

“STARTUP.VDM File” in Chapter 5
“Configuration” in Chapter 8.
{CONFIG, Keyboard layout, Save layout}

Config Menu Chapter 6 Menu Reference 331

Load Config
Configure VEDIT by loading a .CFG configuration file.

Keystroke Equivalent: (None)

Full Description:

You can re-configure VEDIT by loading a .cfg file. These files are usually
created with {CONFIG, Save config}.

Notes:

VEDIT automatically configures itself at startup by loading the vedit.cfg
file. Therefore, this function is rarely used.

This function does not load a new keyboard layout. You must use {CONFIG,
Keyboard layout, Load layout} for this.

See Also:

“VEDIT.CFG Config File” in Chapter 8
{CONFIG, Keyboard layout, Load layout}
{CONFIG, File-open configuration, Load filename config}

Auto-save Config
Set up VEDIT to automatically save all configuration changes.

Keystroke Equivalent: (None)

Full Description:

When enabled (default), all configuration changes are automatically saved so
that you will have the new configuration the next time you run VEDIT. The
configuration changes are saved by immediately updating the vedit.cfg
file in the User Config Directory, creating it if necessary.

However, experienced VEDIT users may wish to disable {CONFIG, Auto-
save config} so that you can make temporary configuration changes. To make
configuration changes permanent, you must then manually select {CONFIG,
Save config}.
Changes to the keyboard layout are not automatically saved; they can only be
saved with {CONFIG, Keyboard layout, Save layout}.

Notes:

When restoring a previous edit session, all configuration settings are restored,
regardless of whether you made them permanent.

See Also:

{CONFIG, Keyboard layout, Save layout}.

332 Chapter 6 Menu Reference Config Menu

Config All Buffers
Select whether changing any of the “edit buffer dependent” configuration
parameters affects all edit buffers or just the current and subsequently created
buffers.

Keystroke Equivalent: (None)

Full Description:

For maximum flexibility when editing multiple files, VEDIT maintains a
separate set of Tab stops and selected configuration parameters for each edit
buffer. For example, this lets you have word wrap enabled for one file being
edited, but not for another.

The edit buffer dependent configuration parameters are identified with a “(*)”
in their name. Included are many of the programming, word processing and
file handling parameters.

Changing any of these parameters always affects the current edit buffer. It also
sets the value that will be used for any newly opened buffers and the value that
will be saved by {CONFIG, Save config}. (See Notes: below for exceptions.)

When “Config all buffers” is enabled, changing any of these parameters also
affects all other edit buffers (files) that are currently open.

NOTE: This item is enabled by default because other editors do not have
this level of flexibility and new users might otherwise be confused.
It is very likely that you will want to disable it at times.

For example, if you are editing a program source code file and a documentation
file, you may want to have {CONFIG, Word processing, Word wrap}
enabled in the documentation file. However, since accidentally selecting
paragraph formatting would scramble your program, you only want to enable
“Word wrap” for the one file.

Notes:

Changing {CONFIG, File handling, File type} and {CONFIG, File
handling, Record header size} only affect the current edit buffer and not other
edit buffers, regardless of how {CONFIG, All buffers} is set. Also these
parameters are not saved into the vedit.cfg file.

Config Menu Chapter 6 Menu Reference 333

Tab and Filling

Tab stops (*) [Default = Every 8 columns]

If only one number is entered, it is considered a uniform tab interval. Since the
far left column is column number 1, the first tab stop will be at the interval plus
1. Therefore, the default value of “8” sets the tab stops at column 9, 17, 25, 33,
41, ..., etc.

If more than one number is entered, they are considered to be explicit tab stops.

If for some reason you only wanted a single tab stop, for example “20”, enter
it as “20 20”.

Any Tab characters in your file past the last explicit tab stop are displayed as
normal control characters.

You can set a separate set of tab stops for each edit buffer if you disable
{CONFIG, Config all buffers}.

Expand <Tab> key with spaces (*) [Default = No]

When enabled, the <Tab> key ([TAB CHARACTER] function) inserts
spaces up to the next tab stop into the file. Also, any left margin indentation is
created using only spaces.

When disabled, the <Tab> key inserts a Tab character (hex 09) into the file.
Also, any left margin indentation is created using the optimum number of Tab
characters and spaces.

Note: This option does not affect Tab characters already in your file.
Use {EDIT, Convert, Detab} to convert existing Tab characters
in your file to spaces.

334 Chapter 6 Menu Reference Config Menu

Retab after columnar operation (*) [Default = No]

When enabled, any whitespace in a columnar block that is being inserted,
copied or moved is re-tabbed to the optimal number of Tab characters. (Note:
this does not affect non-columnar block operations.)

When disabled, the whitespace is converted to just spaces.

Trim spaces after columnar operation (*) [Default = Yes]

When enabled, any trailing spaces are removed that resulted from inserting a
columnar block at the end of lines. This only trims spaces on those lines
involved in the insertion; it does not affect non-columnar block operations.

When disabled, any trailing spaces will remain in the file.

Block fill character (*) (0 - 255) [Default = 32]

This is the character used by {BLOCK, Fill block} and {BLOCK, Insert
empty columns} to fill/insert blocks. It is also used when selecting the []
Fill buffer text option with {BLOCK, Move to register}.
It is typically set to “Space” (value 32), but can be changed for special purposes.
For example, setting it to a “.” (value 46) lets you insert a column of periods
with {BLOCK, Insert empty columns}.
Note: Depending upon the setting of “Retab after block fill”, VEDIT may
convert spaces to the optimal number of Tabs and spaces.

Retab after block fill (*) [Default = No]

When enabled, a “block fill” with spaces will actually insert the optimal
number of Tab characters and spaces.

When disabled, a “block fill” with spaces will only insert spaces.

Config Menu Chapter 6 Menu Reference 335

Word Processing

Display lines with word wrap (*) [Default = No]

When enabled, long lines are word wrapped on the screen according to the
current right margin. The default margin is the window width.

This is a display-only function; the file is NOT altered; “newlines” (CR+LF)
are not inserted.

Notes: Changing this value only affects the current buffer (file) even if
{CONFIG, Config all buffers} is enabled.

This item is identical to {VIEW, Word wrap (display)}.

Enable word wrap and formatting (*) [Default = No]

Enables word wrap when entering new text and paragraph formatting with
{EDIT, Formatting, Format paragraph}. It should be disabled when editing
programs!

VEDIT only performs word wrap when entering text past the right margin.
Use {EDIT, Formatting, Format paragraph} to reformat existing text.

If {CONFIG, Config all buffers} is disabled, you can enable or disable word
wrap for each file being edited.

This item is identical to {EDIT, Formatting, Enable word wrap}.

Right margin (*) (0=Window, 1=HSM, 16 - 255) [Default = 0]

Sets the right margin used for word wrap, {EDIT, Formatting, Format
paragraph} and {EDIT, Center line}. The default value of “0” sets the right
margin to the current window width. “1” sets it to the same value as {CONFIG,
Display options, Horizontal scroll margin}. Any desired value between 16
and 255 can also be set.

336 Chapter 6 Menu Reference Config Menu

A value of “70” is good for printing text on an 80-column printer with
{CONFIG, Printer, Left margin} set to 10, which gives a one inch left
margin.

(The right margin is actually set to one less than the width of the window or
the horizontal scroll margin to leave room for the cursor.)

Left margin (*) (0 - 80) [Default = 0]

Sets the left margin used for formatting paragraphs. It can also be changed with
{EDIT, Formatting, Indent} (<F8>) and {EDIT, Formatting, Undent}
(<F7>).

Note: Don’t set a left margin to keep your text from printing on the left edge
of the paper. Instead use {CONFIG, Printer, Left margin} to position your
text on the printed paper.

Format from beginning of paragraph [Default = No]

When enabled, {EDIT, Formatting, Format paragraph} starts at the begin-
ning of the current paragraph. Otherwise, it only reformats the lines beginning
with the line the cursor is on.

It is often more convenient to have it enabled, but it is more flexible to have it
disabled. When disabled, you can skip over special lines which must not be
reformatted.

Format from left margin [Default = No]

When enabled, {EDIT, Formatting, Format paragraph} will reformat para-
graphs so that the left-most character is on the left margin, possibly changing
the paragraph's indentation.

When disabled, {EDIT, Formatting, Format paragraph} will maintain the
paragraph's indentation, if any.

Format paragraph options (0 - 7) [Default = 0]

Determines how {EDIT, Formatting, Format paragraph} deals with extra
spaces.

This option combines three options into one by having you add “mask” values
(setting bits) for each desired sub-option.

The base value of “0” trims trailing spaces, removes extra spaces from between
words and leaves only a single space following “.”, “!” and “?”.

Mask 1 Add a trailing space after each paragraph line except the last. This
extra space is allowed to exceed the right margin.

Mask 2 Allow extra spaces between words.

Mask 4 Allow two spaces after “.”, “!” and “?”. Use this if you like two
spaces between sentences.

For example, if you want trailing spaces after each line and two spaces between
sentences, configure this parameter to “5”.

Config Menu Chapter 6 Menu Reference 337

Justify paragraphs [Default = No]

When enabled, {EDIT, Formatting, Format paragraph} will also justify the
formatted paragraph by adding spaces between words to give an even right
margin.

Programming

Auto-Indent mode (*) [Default = No]

When enabled, the indent position (left margin) for a new line of text is initially
the same as for the previous line of text. This is convenient for programming
in ‘C’, Pascal, etc. It is sometimes desirable when editing word processing
documents.

The indent position can be changed with {EDIT, Formatting, Indent} (<F8>)
and {EDIT, Formatting, Undent} (<F7>).

Indent increment (*) (1 - 20) [Default = 4]

Controls how much the left margin is indented/undented for each {EDIT,
Formatting, Indent} and {EDIT, Formatting, Undent}.
Common values are “4” or the same value as the tab stop interval.

Lower/Upper case key conversion (*) (0 - 5) [Default = 0]

Determines whether lower case letters typed on the keyboard are converted
(inserted) as upper case letters. Upper case can also be converted to lower case.

Primarily for assembly language programming. It does not affect any existing
text; use {EDIT, Convert, Lower/Upper case} to convert existing text.

0 No conversion takes place.

1 All lower case letters are converted to upper case.

338 Chapter 6 Menu Reference Config Menu

2 Lower case letters are converted to upper case, unless the cursor is
past the “Key conversion character” (below). Primarily applicable to
assembly language programming, where it is desirable to have the
Label, Opcode and Operand in upper case and the comment in upper
and lower case.

3 Similar to (2) except that characters are reversed instead of being
forced to upper case.

4 All upper case letters are converted to lower case.

5 Similar to (2) except that upper case letters are conditionally con-
verted to lower case.

Key conversion character (*) (32 - 126) [Default = “;”]

Sets the conditional lower/upper case key conversion character used by
“Lower/upper case key conversion” (above). The default “;” is applicable to
assembly language programming.

Enable template editing (*) [Default = No]

When enabled, the template editing macro loaded for the current buffer (file)
is executed for each normal text character entered in Visual Mode. This macro
is often designed to perform shorthand expansion. Template editing can be
automatically loaded for some files by the “File-open configuration” feature,
or can be manually loaded with {MISC, Load template file}.
Selecting {MISC, Load template file} automatically enables this setting in
the current buffer (file).

Notes: The values of “Enable template editing” and “Enable syntax
highlighting” cannot be saved with {CONFIG, Save config}. The
supplied startup.vdm file disables them when VEDIT starts
up.

Template editing and syntax highlighting can be automatically
enabled by the file-open configuration according to filename
extension (also called “file-type”) or specific filenames. This is
set up with the {CONFIG, File-open config} sub-menu.

See also:

The topics “File-type Specific Configuration”, “Template Editing” and
“Syntax Highlighting” in Chapter 5.

Enable color syntax highlighting (*) [Default = No]

When enabled, the text is color highlighted according to the syntax definition
file (.SYN) loaded for the current buffer (file).

Selecting {MISC, Load syntax file} automatically enables this setting in the
current buffer (file).

See also “Syntax Highlighting” in Chapter 5.

Config Menu Chapter 6 Menu Reference 339

Display Options

Horizontal scroll margin (*) (0=Off, 1=Win, 40 - 2048] [Default = 0]

Determines whether lines longer than the window’s width simply extend past
the right edge (and are accessed via horizontal scrolling) or are wrapped onto
multiple screen lines, called continuation lines.
“1” sets the “scroll margin” to the window’s width; lines wrap at the window’s
right edge. Other scroll margins between 40 and 2048 can also be set; lines
wrap at the specified margin.

The default value of “0” disables screen wrapping; long lines extend indefi-
nitely to the right.

Alternatively, long lines can also be wrapped with {VIEW, Word wrap
(display)}.

Horizontal scroll increment (*) (1 - 100) [Default = 20]

Determines by how many columns the screen scrolls right or left when
[SCROLL RIGHT] and [SCROLL LEFT] are pressed or VEDIT scrolls
automatically.

Enable rulers [Default = No]

(Windows version only) When enabled, rulers are displayed for all editing
windows. The vertical ruler on the left displays line numbers, and the horizon-
tal ruler at the top displays column numbers.

You can also turn rulers on/off with {VIEW, Rulers}.

Enable Scroll Bars [Default = Yes]

(Windows version only) When enabled, scroll bars are displayed for all editing
windows. However, the vertical scroll bar is only displayed when the file

340 Chapter 6 Menu Reference Config Menu

(buffer) contains enough lines to require scrolling. Non-editing windows
created with the VEDIT macro language never have scroll bars.

You can also turn scroll bars on/off with {VIEW, Scroll bars}.
Select {CONFIG, Save config} to make the configuration change permanent.

Enable Tabbar [Default = Yes]

(Windows version only) When enabled, a tabbar is displayed near the top just
below the toolbar. The tabbar consists of a “tab” for each currently open file.
You can quickly switch to another file by clicking on the corresponding tab.

You can also turn Scroll bars on/off with {VIEW, Tabbar}.

Enable Toolbar [Default = Yes]

(Windows version only) When enabled, the VEDIT toolbar is displayed. The
toolbar is an easy way to access commonly used menu items with the mouse.
A VEDIT program size of about 720 pixels is needed to see all toolbar buttons.

You can also turn Scroll bars on/off with {VIEW, Toolbar}.
Select {CONFIG, Save config} to make the configuration change permanent.

Enable -MORE- operation [Default = Yes]

When enabled, the screen display will be paused with the “-MORE- ...” prompt
when any command macro attempts to display more than one “page” of text
between keystrokes. When set to “No”, text can scroll off the screen before it
can be read.

Highlight cursor column [Default = 0]

When enabled, the entire window column that the cursor is on is highlighted.
This makes it easier to find the cursor and line up columnar data. This option
can also be selected with {VIEW, Options, Highlight cursor column}.
The highlighting color can be selected with {CONFIG, Editing colors,
Cursor line}.

Highlight cursor line (0 - 2) [Default = 0]

Determines whether the line that the cursor is on is highlighted. This can help
you determine which line you are on.

0 The cursor line is not highlighted.

1 Full - The entire line (to the right edge) is highlighted.

2 Partial - Only text characters on the cursor line are highlighted. This
makes it easy to see extra spaces past the ends of lines.

By default, the highlighted line is displayed using “bright” characters. Or select
any desired color with {CONFIG, Editing colors, Cursor line}.
This option can also be selected with {VIEW, Options, Highlight cursor
line}.

Config Menu Chapter 6 Menu Reference 341

Window borders (1=Partial, 3=Scroll bars) [Default = 3]

(DOS version only) Determines the type of borders editing windows will have
and whether scroll bars are displayed.

0 No borders. It is difficult to tell one window from another unless each
window is in a different color.

1 Windows have minimal borders. When two or more windows are on
the screen, each window has a top border. When necessary, windows
also have a left-hand border.

2 Windows have full borders, but no scroll bars.

3 Windows have full borders with scroll bars. Scroll bars are only
displayed in editing windows. Non-editing windows created with the
VEDIT macro language will have full borders but no scroll bars.

Window name display style (0=Normal, 1, 2, 3) [Default = 0]

Determines how a window’s name is displayed on its title bar.

0 Both the ID number and the buffer number may be displayed;
however, in the usual case that they are the same, only the ID number
is displayed.

1 Only the window ID number is displayed, e.g. “<2>”.

2 Only the buffer number is displayed, e.g. “[1]” or “[1:2]”.

3 Both the window ID number and the buffer number are always
displayed.

Auto-create window style (1=Full, 2=Cascaded) [Default = 2]

Determines the size of windows that are auto-created for each additional file
(buffer) that is opened.

Set to “1”, a full-size overlapping window is created for each file. These
windows can be resized/moved, cascaded or tiled with the {WINDOW} menu.
{VIEW, Reset} initializes the screen and recreates one window for each file
(buffer).

Set to “2”, a smaller, cascaded window is created for each file.

The default is “Cascaded” because this is common with other editors and
programs. However, we suggest “Full-sized” so that more of the file can be
viewed without having to zoom all windows.

DOS version: A value of “0” allows a single window to be shared by all buffers.
See the on-line help for this item.

Windows zoomed on startup [Default = No]

When enabled, all editing windows will be zoomed (maximized) when VEDIT
starts up.

This only affects the windows within VEDIT; it does not maximize the overall
VEDIT program.

Select {CONFIG, Save config} to make the configuration change permanent.

342 Chapter 6 Menu Reference Config Menu

Characters / Cursors

Screen display mode (*) (0 - 7, 8, 16, 32, 64, 128) [Default = 0]

Determines how control and graphics characters are displayed. It can also
enable the Hexadecimal, Octal and Bit-wise editing modes, and the
ANSI/OEM and EBCDIC modes which translate characters as they are dis-
played and typed on the keyboard.

Changing this value changes the display mode for the current window and all
subsequently created windows; it does not affect other existing windows. The
new display mode will be used for all windows if you select {VIEW, Reset}.
This option combines several options into one by having you add “mask”
values (setting bits) for each desired sub-option.

The base value of “0” displays all characters literally, except <Tab>, <CR>
and <LF>.

Mask 1 Display control characters in the format ^x.

Mask 2 Display graphics character in the format <nnn>.

Mask 4 Display <Tab>, <Null>, <CR> and <LF> literally (when possi-
ble). Used in the ASCII window following {VIEW, Toggle Hex
mode split}.

Mask 8 Display all characters in hexadecimal. Used in the hex-mode
window following {VIEW, Toggle Hex mode split}.

Mask 16 Display all characters in octal.

Mask 32 Display all characters in bit-wise mode.

Mask 64 Display after translating between ANSI/OEM character sets.

Mask 128 Display all characters in EBCDIC, or according to the currently
loaded translate table. The file itself is not translated.

Config Menu Chapter 6 Menu Reference 343

Mask-8, Mask-16 and Mask-32 are mutually exclusive. Mask-128 is often
combined with Mask-4 so that translated control characters are displayed
literally.

{VIEW, Toggle display mode} toggles through the nine most useful values.

Normal ASCII files display as gibberish in EBCDIC mode.

Show newlines (CR/LF) (*) [Default = No]

When enabled, a “newline” character is displayed at the end of each text line
where the CR/LF is. This makes it easier to see any trailing spaces on a line.

The “newline” display character can be selected with “Newline display char-
acter” below.

Note: The “newline” character is only shown in those display modes
which doesn't explicitly display the CR and LF characters, e.g. it
is not shown in “hex” mode.

Newline display character (*) (0 - 254) [Default = 32]

Determines the character displayed at the end of each line where the “newline”
(<CR>+<LF> pair) normally is, when “Show newlines (CR/LF)” or {VIEW,
Word wrap (display)} is enabled.

The default “0” automatically selects a good value based on the current font
(ANSI or OEM character set). Or you can set an override value; use {MISC,
ASCII table} to see how other values would be displayed.

Note: The vedit.cfg file contains separate values of this parameter
for the Windows and non-Windows versions of VEDIT.

Tab display character (*) (0 - 254) [Default = 32]

Determines the “fill” character used to display Tab characters on the screen.
By default, “spaces” (value 32) are displayed to the next tab stop. If you need
a better indication of where Tab characters are, pick another display character
such as a “period” (value 46) or “183” (with an ANSI font) or “250” (with an
OEM font).

Notes: This character is only displayed when Mask-4 and Mask-8 of
“Screen display mode” are both reset, i.e. not in “hex” mode.

This character is only used for screen display; spaces are always
used when printing.

Use {EDIT, Convert, Detab} to convert tab characters in the file
to spaces.

Null display character (*) (0 - 254) [Default = 0]

Many fonts (other than VEDIT-Ansi and VEDIT-OEM) display the “Null”
character (value 00) as a space which is therefore indistinguishable from a real
space (value 32). To make the Null character stand out better, you can display
it as any other character. Value 149 is a reasonable choice with most Ansi fonts.
In the DOS version of VEDIT, values “4” and “7” are reasonable choices.

344 Chapter 6 Menu Reference Config Menu

Note: The Null display character is also used when printing because
most printers ignore Null characters. This makes it possible to see
Null characters in a printout.

Cursor type in overstrike mode (0 - 6) [Default = 2]

Cursor type in insert mode (0 - 6) [Default = 1]

Cursor type in virtual space mode (0 - 6) [Default = 0]

Determines how the cursor is displayed when the editor is in “Overstrike” or
“Insert” mode, or in “Virtual space mode” — the space past the last character
of a line.

Since the Windows and the DOS versions are different, please refer to the
on-line help for this item for the actual values.

Cursor blink rate (2 - 25) [Default = 8]

(DOS version only) Determines the cursor’s blink rate for the blinking cursor
types above. A smaller number causes the cursor to blink faster. (The unit is
1/18th of a second.)

Editing Colors

Windows Version:

The configurable colors are split into the two categories “Editing colors” and
“Syntax colors”; the latter are used only when Syntax highlighting is enabled.

All “Editing colors” can be set to “0” to use a default color, some of which are
set by the overall Windows color scheme. Alternatively, explicit “overriding”
colors can be selected.

Config Menu Chapter 6 Menu Reference 345

DOS Version:

All colors used by VEDIT can be configured, including the colors in the main
menu, the sub-menus and window borders.

{CONFIG, Colors} contains sub-menus to separate the many colors into
logical groups. A color chart is displayed when you enter these sub-menus;
however, the DOS color chart does not support “point and shoot” color
selection.

VEDIT has two sets of screen attributes; one for Color Displays and one for
Monochrome displays. {CONFIG, Colors, Enable monochrome} selects
which set is being used and configured.

The invocation option “-m” forces this setting to monochrome.

The “monochrome” attributes can be used as an alternate set of colors. For
example, you may prefer one set on your desktop computer and another set on
your laptop. A single vedit.cfg file could be configured for both comput-
ers. Use the “-m” invocation option when running on the laptop. (The
“VEDIT” environment variable can be used to make “-m” the default.)

Only the colors used in the Windows version are listed here. Refer to Chapter
8 or the on-line help in the {CONFIG, Colors} sub-menus for a description
of parameters not covered here.

Edited text

Sets the primary color for the text in windows. The color of individual windows
can subsequently be changed with {VIEW, Color Toggle} (<Alt-J>). The
initial value is set during installation.

Windows version: A value of “0” uses the default Windows color scheme.
However, we recommend setting an explicit value so that it can be coordinated
with the syntax highlighting colors. For example, white-on-blue (value 31) or
yellow-on-blue (value 30) are good editing colors.

DOS version: An explicit value must be set; do not use “0” because that results
in invisible text.

Window erase

Sets the color for those portions of a window where there is no text. The normal
setting of “0” uses the same color as for “Edited text”. Setting an overriding
color gives an unusual effect, but lets you clearly see trailing spaces at the ends
of lines.

Block highlighting

With the default value of “0”, highlighted blocks are displayed in reverse video.
Use this parameter to set an overriding color. For example, “71” displays
blocks as white text on a red background.

Cursor line

This parameter sets the color for the entire cursor (current) line when
{CONFIG, Display options, Highlight cursor line} is enabled. The default

346 Chapter 6 Menu Reference Config Menu

setting of “0” causes the line to be displayed with the IBM PC “intensity”
flipped.

Syntax Colors

The syntax highlighting colors are only used when {CONFIG, Programming,
Enable color syntax highlighting} is set.

The syntax highlighting definition file sets up pattern matching to recognize
different parts of the displayed text as “Reserved words”, “Symbols”,
“Comments”, “Strings” and “Numeric”. The matched text is then displayed in
the corresponding color.

These colors must be explicitly set; there is no default value. DO NOT use a
value of “0”, because that results in invisible text.

For the most pleasing visual effect, these colors should be coordinated with
the color for “Edited text”. For example, if the edited text is white-on-blue, all
of the syntax highlighting colors should also use a blue background.

Config Menu Chapter 6 Menu Reference 347

Emulation

Cursor positioning mode (0 - 4) [Default = 1]

Controls how the cursor moves on the screen where there is no text.

In general the cursor only moves to where there is text, avoiding empty parts
of the screen. For example, pressing [CURSOR RIGHT] with the cursor at
the end of a line moves to the beginning of the next line.

0 The cursor can never be positioned past the end of a line. For example,
if you move the cursor down from the end of a long line to a shorter
line, the cursor will also move left to the end of the shorter line.

1 The cursor can be moved straight up and down from a long line past
short lines to another long line. If any attempt is made to change the
text with the cursor past the end of a line, e.g. typing in new characters,
the cursor first moves left to its “correct” position.

2 The cursor “zig-zags” as it is moved up or down past the end of a
short line. This mode ensures that the cursor is always located over
real text yet preserves the horizontal position from which it started.

3 The cursor moves identically to mode 1. However, if the cursor is past
the end of a line and you type new text, spaces are automatically
inserted from the end of the line up to the newly entered text. This
mode is handy for filling out tables and other formatted text. Note
that using this mode may result in unwanted spaces being inserted
into the text, thus consuming additional memory and disk space.

4 Similar to mode 3 except that [CURSOR RIGHT] can move the
cursor past the end of a line; it does not move to the beginning of the
next line. Use this mode for free-form text layout.

348 Chapter 6 Menu Reference Config Menu

Modes 1 or 2 are recommended for programmers, modes 3 or 4 for word
processing. Other word processors generally operate in one of the modes listed
and you may want to pick one that you are already familiar with.

A little experimentation is best for understanding these modes and deciding
which you like best.

{CONFIG, Emulation, Special emulation modes} can be set to prevent
[CURSOR RIGHT] and [CURSOR LEFT] from wrapping to the next/pre-
vious line when they reach the end/beginning of the line.

[TAB CHARACTER] emulation mode (0 - 3) [Default = 3]

Controls how the [TAB CHARACTER] and [BACKTAB] functions operate.
These functions are almost always assigned to <Tab> and <Shft-Tab>.

0 [TAB CHARACTER] always inserts a Tab character (or spaces) to
the next tab stop.

1 [TAB CHARACTER] performs [NEXT TAB STOP] in “Over-
strike” mode and inserts a Tab character (or spaces) in “Insert” mode.

2 If the cursor is not in a highlighted block, [TAB CHARACTER]
inserts a Tab character (or spaces). If the cursor is in a highlighted
block, [TAB CHARACTER] and [BACKTAB] are equivalent to
{EDIT, Formatting, Indent} and {EDIT, Formatting, Undent} —
all lines in the block are re-indented.

3 Combines (1) and (2).

<Enter> key emulation mode (0 - 3) [Default = 1]

Controls how the <Enter> key ([RETURN] function) operates.

0 <Enter> always inserts a “newline” at the cursor position; this splits
the current line or adds a new one at the cursor position.

1 <Enter> only inserts a “newline” in “Insert” mode; in “Overstrike”
mode it is equivalent to [NEXT LINE] — it only moves the cursor
to the beginning of the next line.

2 <Enter> is always equivalent to [NEXT LINE]; it never inserts a
“newline”.

3 <Enter> inserts a “newline” following the current line (it opens a
new line).

[BACKSPACE] emulation mode (0 - 3) [Default = 0]

Sets the behavior of the [BACKSPACE] key.

0 [BACKSPACE] always deletes the preceding character. Pressed at
the beginning of a line, it deletes the preceding “newline”.

1 [BACKSPACE] only deletes in “Insert” mode. In “Overstrike” mode
it only moves the cursor left to the previous character.

2 [BACKSPACE] always deletes the preceding character, but stops at
the beginning of the line.

Config Menu Chapter 6 Menu Reference 349

3 [BACKSPACE] only deletes in “Insert” mode and stops at the
beginning of line.

[LINE BEGIN/END] emulation mode (0 - 5) [Default = 3]

Sets the behavior of [LINE BEGIN] and [LINE END] (normally the <Home>
and <End> keys).

0 [LINE BEGIN] and [LINE END] move the cursor only to the
first/last character currently displayed in the window. Since the
window is not horizontally scrolled, this may not be the first/last
character of the text line. Successively pressing [LINE BEGIN] or
[LINE END] has no effect. (This mode is only useful with slow CRT
terminals or remote operation.)

1 [LINE BEGIN] and [LINE END] move the cursor to the very
first/last character of the current text line. The window is horizontally
scrolled if necessary. Successive presses have no effect.

2 Move the cursor only to the first/last character displayed in the current
window without scrolling. However, pressing [LINE BEGIN] and
[LINE END] repeatedly moves the cursor to the preceding/next
window line.

3 Move the cursor to the very first/last character of the text line.
Pressing [LINE BEGIN] and [LINE END] repeatedly moves the
cursor to the preceding/next screen line.

4 Move the cursor only to the first/last character displayed in the current
window. Otherwise, same as “5”. (Probably of limited use.)

5 Move the cursor to the very first/last character of the text line.
Pressing [LINE BEGIN] a second time moves to the top of the
screen. Pressing [LINE BEGIN] a third time moves to the beginning
of the file. Similarly, pressing [LINE END] a second time moves to
the bottom of the screen. Pressing [LINE END] a third time moves
to the end of the file. (This emulates the old Brief (tm) editor.)

Special emulation modes (0 - 255) [Default = 0]

Enables special emulation modes. “0” disables the special modes.

This option combines six options into one by having you add “mask” values
(setting bits) for each desired sub-option.

Mask 1 [SCREEN BEGIN] and [SCREEN END] go to the first/last
column instead of remaining in the current column.

Mask 2 [SCROLL UP] and [SCROLL DOWN] leave the cursor in the
current screen line instead of in the current text line.

Mask 4 {SEARCH, Search} and {SEARCH, Replace} also perform
{SEARCH, Next}. You must first press [CANCEL] and then
{SEARCH, Search} to enter a new search string.

Mask 8 [CURSOR RIGHT] and [CURSOR LEFT] don’t wrap to the
next/previous line when they reach the end/beginning of the line.

350 Chapter 6 Menu Reference Config Menu

Mask 16 The last normal character, not the “newline” is the last accessible
character on the line.

Mask 32 [DELETE] doesn’t delete the “newline”.

Mask 64 [DELETE] doesn’t delete a highlighted block. Otherwise, it will
delete a highlighted block when both block markers are set and
the cursor is within the block. Blocks can always be deleted with
{BLOCK, Delete block}.

Mask 128 [DELETE] doesn’t delete a highlighted block if only 1 marker
set; both markers must be set.

Enable <Shift> block marking [Default = Yes]

Controls whether the <Shift> key can be used to mark blocks of text.

When enabled, a block can be marked (highlighted) by holding down the
<Shift> key and moving the cursor. This includes the “arrow”” keys, <Home>,
<End>, <PgUp>, <PgDn>, <Ctrl-End>, etc. In this mode, <Shift-Home>,
etc., cannot be used as function keys. Also, <Shift-F1> through <Shift-F12>
cannot be used as cursor movement functions, but can be used for other
functions.

When disabled, <Shift-Home>, etc., can be used as function keys with editing
operations and have keystroke macros assigned to them.

Enable persistent blocks

When persistent blocks are enabled, a block remains highlighted as you move
the cursor. This makes it easier to work with huge blocks. It also lets you
directly copy or move the block to another location with {BLOCK, Copy to
cursor} or {BLOCK, Move to cursor}.
When disabled, moving the cursor removes the highlighting from a block. This
is typical of most Windows programs.

You can also turn persistent blocks on/off with {BLOCK, Persistent blocks}.

Advance cursor past block insert [Default = Yes]

Determines whether the cursor advances following a block, scratchpad, text
register or clipboard insertion. It also determines the cursor position following
{EDIT, Insert, Insert file}.
No The cursor is not moved, and is left at the beginning of the inserted

block. Useful when you want to edit at the beginning of the inserted
block.

Yes The cursor is advanced past the inserted text.

Auto-replace block with new text (0 - 7) [Default = 3]

Determines whether a highlighted block of text at the cursor position is
automatically deleted if new text is typed or inserted from a text register or the
clipboard. This is the default and is typical for most Windows programs. See
NOTES below.

Config Menu Chapter 6 Menu Reference 351

For example, a search normally highlights the found text as a block. You can
then immediately type in replacement text without first deleting the block.

Hint: To insert new text without deleting the searched text, first press
<Cursor Right> and then <Cursor Left> to clear the block high-
lighting. Or double-tap <Ctrl>.

0 Off. A highlighted block is never automatically deleted.

1 Enabled only for new typed text. Largest block size is 1000 bytes.

2 Enabled only for inserting text registers or the clipboard.

3 Enabled for both new text and inserting a register or clipboard.

7 Enabled for both. Auto-delete blocks of any size.

Notes: As a safety feature, the largest block that can be auto-seleted is
normally 1000 bytes. For larger blocks, simply press first.

The value “7” bypasses the 1000 byte limit. Use with care!

We suggest turning this feature off if you edit files with critical
data.

Block marker emulation mode (0 - 6) [Default = 0]

Determines whether the new block of text is highlighted following a {BLOCK,
Copy to cursor} or {BLOCK, Move to cursor}.
0 The block markers are automatically cleared following a block copy

or move.

1 With {BLOCK, Copy to cursor} the original block remains high-
lighted; with {BLOCK, Move to cursor} the block is highlighted in
its new position. This emulates original WordStar.

2 With both “Copy to cursor” and “Move to cursor”, the block is
highlighted in its new position. This emulates the Borland editors
(emulation of WordStar).

3 Same as 2.

4 The original block remains highlighted after most block operations,
including copying/moving to the scratchpad or clipboard.

5 Similar to 1; however, the block remains highlighted after other block
operations.

6 Similar to 2; however, the block remains highlighted after other block
operations.

Note: Modes 1 and 2 simplify copying a block to several positions, but
require an extra step to clear the markers.

Mode 4 lets you edit within a block of text. E.g. you can copy the
block to the clipboard, paste the block into another program, edit
the block some more, and copy the block to the clipboard again
without having to re-highlight the block.

352 Chapter 6 Menu Reference Config Menu

File Handling

Auto-save interval [Default = 0]

VEDIT can optionally auto-save all modified files after a configurable number
of minutes. This option sets the time interval. A value of “0” disables this
feature. Although by default this feature is turned off, we recommend that you
enable it with a typical value of “15”.

Backup files (0=Off, 1=.BAK, 2=Backup Dir) [Default = 1]

Controls whether backup files are created so that you can refer back to the
original file if needed. We HIGHLY recommend that backup files be enabled.

0 Disabled. Backup files are not created.

1 Create backups by renaming the original file to have a “.BAK”
filename extension.

2 Create backups by moving the original file to the VEDIT Backup
Directory, typically c:\vedit\backup or c:\backup.

See also “Exiting VEDIT - Backup Files” in Chapter 4.

"Change Directory" options (0 - 15) [Default: 6]

Controls how VEDIT changes the “current directory” when files are opened
and the initial directory for the File-open dialog box.

This option combines several options by having you add “mask” values
(setting bits) for each desired sub-option. The base value of “0” disables all
options:

Mask 1 The “current directory” is changed to the directory of the first file
opened. Controls the DOS version.

Mask 2 The “current directory” is changed to the directory of the first file
opened. Controls the Windows version.

Config Menu Chapter 6 Menu Reference 353

Mask 4 The starting directory for the File-open dialog box is the directory
of the file in the current buffer. If the current buffer has no file
open, or this Mask is not set, it is the “current directory”.

Mask 8 The check-box “Change directory” in the File dialog is initially
enabled. When enabled, the “current directory” is changed to the
directory containing the next opened file.

See also “Starting (Default) Directory for File-Open” in Chapter 4.

Enable edit restore

If this option is enabled when exiting VEDIT, the entire status of VEDIT is
saved to disk so that the next time VEDIT is invoked without any specified
filenames, the edit session can be resumed as though you had never exited.

This item is identical to {FILE, Enable edit restore}.
To save this setting, either {CONFIG, Auto-save config} must be enabled, or
you must select {CONFIG, Save config}.
See also “Exiting VEDIT - Edit Session Restore” in Chapter 4.

Save session in current directory

When enabled, the edit session save/restore files veditsav.env and
veditsav.dat are saved in the current directory. This permits restoring the
last edit session you had in that directory.

Otherwise, veditsav.env and veditsav.dat are saved in the User
Config Directory, typically “C:\VEDIT”. When VEDIT is next invoked
(without filenames) from anywhere, you will be switched to the last directory
you were in and the files you were last editing.

See also “Exiting VEDIT - Edit Session Restore” in Chapter 4.

Use V-SWAP when entering DOS [Default = Yes]

(DOS version only) Determines whether VEDIT will use the V-SWAP pro-
gram (when already installed in memory) to swap itself out of memory when
entering DOS. No error is given if V-SWAP is not in memory.

Overwrite-only mode (*) [Default = 1]

Controls whether the current file is in overwrite-only mode. In this mode
deletions and insertions which would change the size of the file cannot be
made; however, character overstriking and block overwrites can be made.

0 Disabled. All editing changes can be made to any type of file. (DOS
VEDIT PLUS: Disk sector editing is always in overwrite mode).

1 Record mode. Overwrite-only mode is enabled if the “File type” is
set to “8” or greater for binary or fixed-length-record data files.

2 Enabled for all file types.

See also “Opening Files - Overwrite-Only Mode” in Chapter 4.

354 Chapter 6 Menu Reference Config Menu

Enable fast browse mode (*) [Default = Yes]

When VEDIT opens a file in “Read-only” mode, it does not always know the
current line number; the line number is then displayed as “?????”. For example
if you have opened a multi-megabyte file and select {GOTO, End of file},
VEDIT will instantly jump to the end of the file without counting the number
of lines in the file.

When disabled, browsing will be slower, but the correct line number will
always be displayed.

See also “Opening Files - Read-Only Mode” in Chapter 4.

Enable auto-file type (*) [Default = Yes]

When enabled, VEDIT automatically sets the most likely file type for each file
opened, i.e. as a “Window/DOS text”, “UNIX text”, “Mac text” or
“binary/data” file.

When disabled, VEDIT does not examine the file, and the file type is simply
set by {CONFIG, File handling, File type}.
Since you can easily override the file type, there is little reason to disable this
feature.

See also “File Types - Text and Binary/Data” in Chapter 4.

File type (*) (0=CR+LF, 1=LF, 2=CR, n=record size)

Determines the type of file VEDIT assumes it is editing. It controls the screen
display, what the “newline” character(s) is, and changes the behavior of some
editing operations.

VEDIT automatically determines the “most likely” file type of each opened
file if {CONFIG, File handling, Enable auto-file type} is enabled. You can
override this value if VEDIT sets it incorrectly for your needs.

0 = CR-LF Lines end in Carriage-Return and Line-Feed. Typical for
Windows/DOS. Lines ending in only a Line-Feed (without a
preceding Carriage-Return) are displayed with a “<LF>”. The
<Enter> key inserts both a Carriage-Return and a Line-Feed.

1 = LF Lines end in just a Line-Feed. Typical for UNIX. Carriage-
Return is no longer a special character and if it occurs in the
text it is displayed as “<CR>”. The <Enter> key inserts only
a Line-Feed.

2 = CR Lines end in just a Carriage-Return. Typical for Mac. Line-
Feed is no longer a special character and if it occurs in the text
it is displayed as “<LF>”. The <Enter> key inserts only a
Carriage-Return.

3 = CR+LF Each text line ends in both a Carriage-Return and Line-Feed.
Unlike type “0”, both the CR and LF must be present. This
special mode can be manually selected when editing binary
data files where each record ends in both a CR and LF. (Unlike
type “0”, a binary field with a lone LF will not split the
displayed line.)

Config Menu Chapter 6 Menu Reference 355

4 = 25 Hex Each EBCDIC text line ends in an EBCDIC “Line-Feed”
which has a hex value of 25. This special mode must be
manually selected.

n (8-65535) Instead of assuming that lines end in a “newline” character,
each line is treated as simply ‘n’ characters. The File-type
should be set to the record length of files with fixed-length
records. Values of “64” and “16” are useful for editing binary
files.

By default, “Overwrite-only” mode is selected; change it if
you need to delete or insert characters. Word processing
functions are not available in this mode.

Notes:

Windows version: You can set the correct file type or record length in the
File-open dialog box when you open the file. There is no absolute maximum
record length, although values over 256,000 will slow down VEDIT's opera-
tion.

You can temporarily toggle the file type to Binary-16 or Binary-64 with
{VIEW, Toggle binary/text mode}.
Changing this value only affects the current edit buffer even if {CONFIG,
Config all buffers} is enabled.

See also “File Types - Text and Binary/Data” in Chapter 4.

Record header size (*) (0 - 64K)

Some fixed-length-record data files begin with a header that is not the same
length as the records. By setting this value to the length of the header and the
file type to the length of the records, all records will be properly aligned within
VEDIT. xBASE .DBF files are an example.

When set, the header will be “Line 0” and the line number will display the
current record number.

Notes:

Changing this value only affects the current edit buffer even if {CONFIG,
Config all buffers} is enabled.

See also “File Types - Data (Database) Files with Headers” in Chapter 4.

356 Chapter 6 Menu Reference Config Menu

Printer

Paper length (0=Auto, 5 - 100)

When set to “0=Auto” (Windows version only), the number of lines per page
is automatically determined by the size of the current printer font, the printing
orientation (portrait or landscape), and the paper size.

Otherwise, this value should be set to the length of the paper in lines. This is
typically 66 for dot-matrix printers and between 58 and 62 for laser printers.

If this value is set too large, every other printed page will have just a few lines
on it. If in doubt, set it to 58 or 60. You may want to change it when printing
labels or short forms.

The number of lines of text printed per page is equal to the “Page length” minus
“Top margin” minus “Bottom margin”.

Notes:

Many laser printers have a default setting of 60 lines per page. This will work
properly with a “Paper length” of 66 as long as {PRINT, Config, Form-Feed}
is enabled and the top/bottom margins are each set to 3 or more.

Top margin (0 - 60) [Default = 3]

This value determines how many lines are left blank at the top of each page.
A value of “0” causes text to print on the very first line.

See also “Printing - Printer Margins” in Chapter 4.

Bottom margin (0 - 60) [Default = 3]

This value determines how many lines are left blank at the bottom of each page.

Config Menu Chapter 6 Menu Reference 357

Left margin (0 - 100) [Default = 5]

This value is set to avoid printing at the very left edge of the paper. Setting this
value has no effect on editing; it has the same effect as adjusting the paper
sideways in the printer.

With laser printers, a value of “5” typically gives a one inch left margin because
the printer adds its own 1/4" - 1/2" margin. A value of “10” typically gives a
one inch left margin on a dot-matrix printer.

Notes:

This “Left margin” is added to any left margin in your text. For example, if
your text was written using a left margin of 8 characters and you print this
document with a left margin for the printer of 10 characters, total space to the
left of each line will be 18 characters (plus the margin most printers add).

Right margin (0=Off, 1=Win, 2=HSM, 3=RM, 40-255) [Default = 0]

Lines longer than this optional margin are wrapped onto multiple printed lines.
This is useful when printing long lines because most printers otherwise truncate
long lines. Values are:

0 Right margin feature is turned off.

1 Right margin is automatically set according to the current window
width.

2 Right margin is set to the same value as {CONFIG, Display options,
Horiz. scroll margin}.

3 Right margin is set to the same value as {CONFIG, Word
processing, Right margin}.

40 - 255 Usually set to the number of characters your printer can print per line,
typically 80, 96 or 132.

Line spacing (1 - 4) [Default = 1]

Determines whether the text is printed single spaced (1), double spaced (2) or
triple spaced (3). For example, a value of “2” leaves a blank line between every
printed line.

Print mode (0=Win, 2=Normal, 274=Safe, 1024=Raw)

Determines if control and graphic characters are sent “as-is” to the printer, or
are first expanded. Also permits printing in hexadecimal, or printing an
EBCDIC file on an ASCII printer. The most common values are:

0 Characters are printed in the same mode as they are displayed; the
display mode is changed with {VIEW, toggle display mode} or
{CONFIG, Characters/Cursors, Screen display mode}.

2 Tabs are expanded to spaces, all other control/graphics characters are
sent as-is to the printer.

274 “Safe” mode. All control character are converted to the ^x format so
that they don’t control the printer. It is a combination of Masks 256,
16 and 2.

358 Chapter 6 Menu Reference Config Menu

1024 All control characters including Tabs are sent as-is to the printer.

Other print modes are selected by adding “mask” values (setting bits) for each
desired characteristic. The on-line help for this dialog box lists all possible
values. (Press <F1>).

Notes:

When printing in hexadecimal or EBCDIC, you may need to set the “Right
margin” so that long lines are wrapped onto multiple printed lines.

See also “Printing - Print Display Mode” in Chapter 4.

Enable print job strings (0=Off, 3=Both) [Default = 0]

Determines whether the “Print job start string” and “Print job finish string” are
sent. The start string can be used to select a font; the finish string to reset the
printer to its default font. Values are:

0 Don’t send either string.

1 Send only the print job start (init) string.

2 Send only the print job finish (reset) string.

3 Send both strings.

The strings are set by editing the vedit.cfg file.

Windows Version: These strings are of limited use because Windows uses its
own strings according to the type of printer. The “Print job finish string” is
probably never needed.

DOS Version: You can override the default setting in the Printing dialog box.
The strings can also be set in {CONFIG, Printer}.
See also “Printing - Print Jobs and [Finish/Eject]” in Chapter 4.

Paper orientation [Default = 0] (Windows Only)

Printing is normally in portrait or landscape mode, depending upon the default
settings for the printer. Alternatively, this parameter can force the printer into
portrait or landscape mode.

0 Use default settings for the printer.

1 Forces the printer into Portrait mode.

2 Forces the printer into Landscape mode.

You can override these values for individual print jobs by changing the
“Settings” in the Print dialog box.

Enable Form-Feed [Default = Yes]

When enabled, a single “Form-Feed” character is used to advance to the top
of a new page; nearly all printers can be advanced this way. Otherwise, it uses
the correct number of “Line-Feeds” to advance to the next page. A Form-Feed
character in the file also signals VEDIT to start a new page.

When possible, it is better to enable this parameter; the “Paper length” value
is then not so critical.

Config Menu Chapter 6 Menu Reference 359

Printer Font (Windows Only)

The text can be printed in any desired font and size. The editing (display) font
and the printing font can be completely different. Unlike WYSIWYG Word
Processors, with VEDIT you can edit in an easy-to-read screen font and print
the text in a different font.

Page eject on Finish/Eject [Default = Yes] (DOS only)

Determines whether a page eject is included at the end of each print-job, i.e.
with printing dialog box items () All and [Finish/Eject].
However, on some network printers, you may need to set this parameter to
“No” to prevent blank pages after each print job.

Printer (0=Default ... 7=file) [Default = 0] (DOS only)

This parameter determines to which parallel or serial port VEDIT prints. You
can also print to a file.

When set to “0”, it prints to the default printer as set by {PRINT, Config,
Change default printer}, typically “PRN”. “PRN” is normally the same as
“LPT1”; however, you can use the DOS ”MODE” command to reroute it to
another parallel or serial port.

You can also print directly to a parallel or serial port, or a file:

1
2
3
4
5
6
7

LPT1
LPT2
LPT3
COM1
COM2
COM3
file

When set to “7”, VEDIT prints to a file. For each print job, it will prompt you
for the name of the file. You can also print to the same file each time by setting
this parameter to “0” and changing the “default” print device to be a filename.

Change default printer [Default = “PRN”] (DOS only)

Selects the “default” device to which VEDIT prints. Under DOS, this is
initially “PRN”. This device can also be changed to a filename such as
“veditprn.prn”, However, each new print-job will then overwrite the previous
one, unless you change the filename.

360 Chapter 6 Menu Reference Config Menu

Search Options

Default case-sensitive option [Default = No]

When enabled, the search option [] Case is selected by default in the Search
and Replace dialog boxes. This makes the search case sensitive. Otherwise,
the search is not case sensitive, e.g. the search string “this” will also locate
“This” and “THIS”.

If you want {SEARCH, Incremental search} or {SEARCH, Compare
buffers} to be case sensitive, you must set this parameter.

Default search mode (0=Simple,1=Pat,2=RE,3=RE-Max) [Default = 1]

Sets the default search mode for the Search and Replace dialog boxes. Users
not familiar with regular expressions should leave this set to “1”. With regular
expressions, many normal characters have a special meaning and cannot be
searched “as-is”.

0 Simple. No pattern matching or regular expressions are used.

1 (Default) Pattern matching is used. All pattern matching codes begin
with “|”; enter “||” to search for a single “|” in the file. (Note: “|” is
the “pipe” character, which is <Shift>-\ on the keyboard.)

2 Regular expressions are used. Most punctuation characters have a
special meaning. Closely follows the UNIX standards.

3 “Maximized” regular expressions are used. Consider the regular
expression search string “a.+b” and the text “12a3456b7890b”. When
maximized, it will match “a3456b7890b”; otherwise, it will only
match “a3456b”.

See Also:

“Search and Replace” in Chapter 4.
{SEARCH, Search}, {SEARCH, Replace}

Config Menu Chapter 6 Menu Reference 361

Restore edit position on error (0 - 2) [Default = 1]

Determines the position of the cursor following an unsuccessful search.

0 Positions the cursor as close to the pre-search position as possible, but
without performing any file buffering.

1 Restores the cursor to the pre-search position.

2 Positions the cursor at the End-of-file. (Beginning-of-file for reverse
searches).

Normally “1” is nice, but in huge files, “0” or “2” should be used to save time
— it takes a noticeable amount of time to restore the edit position in multi-
megabyte files.

Support non-English characters (0=Off, 1=ANSI, 2=On)

Determines whether the pattern matching codes “|A”, “|U” and “|V” will match
non-English letters in the extended character set with decimal value 128 - 255.

It also determines whether {EDIT, Convert, Upper/Lower/Switch case}
recognizes non-English letters.

0 Off. None of the extended characters (128-255) are recognized as letters.
This works best with English.

1 When an ANSI font is displayed, non-English letters in the extended ANSI
character set are recognized. When an OEM font is displayed, non-English
letters are not recognized.

2 non-English letters are recognized, depending upon the font. When an
ANSI font is displayed, non-English letters in the extended ANSI charac-
ter set are recognized. For example, decimal value 252 which is an umlaut
“u” is treated as a lower case letter.

When an OEM font is displayed, non-English letters in the extended
IBM-PC (OEM) character set are recognized. For example, decimal value
129 which is an umlaut “u” is treated as a lower case letter.

Note:
(Technical) VEDIT queries Windows for information about ANSI non-Eng-
lish letters. Therefore, if you notice any inconsistencies, be sure that Windows
has been set to the correct language (code page).

362 Chapter 6 Menu Reference Config Menu

Misc

NOTE: The DOS version contains additional items in this sub-menu. Refer
to the on-line help for this sub-menu for a complete description.

Enable USTARTUP.VDM on startup [Default: No]

When enabled, the default startup.vdm file will process the
ustartup.vdm file which typically contains configuration settings and
keyboard layout changes that the user wants to force each time VEDIT is
started. These settings will override the vedit.cfg and vedit.key files.

Notes:

As initially supplied, ustartup.vdm does absolutely nothing, even if
enabled. All example commands in it are disabled. Therefore, the
ustartup.vdm file only configures those items that you explicitly select by
editing the file.

If VEDIT is started without any filenames and “Edit session restore” is enabled,
all configuration settings will be restored to the same state as when you last
ran VEDIT, ignoring any vedit.cfg, vedit.key and ustartup.vdm
files.

{TOOLS} menu on startup

Determines which {TOOLS} menu is loaded on startup. This function requires
the default startup.vdm file.

0 Does not load any {TOOLS} menu.

1 (Default) Loads the Compiler support menu from compile.mnu. How-
ever, if VEDIT is running as a trial version, it instead loads the file
tutor.mnu and renames the menu to {TUTORIAL}.

2 Loads the Compiler support menu from compile.mnu.

Config Menu Chapter 6 Menu Reference 363

3 Loads the Java support menu from java.mnu.

4 Loads a user defined {TOOLS} menu from tools.mnu.

You can load a different {TOOLS} menu with {MISC, Load Tools menu}.

Instance control [Default: 0]

Determines whether additional files opened from Explorer or the DOS/NT
command prompt are opened in an existing instance (running copy) of VEDIT,
or in another instance of VEDIT

0 Files opened from Explorer that have been associated with VEDIT via
{CONFIG, Associate file types} (technically, using “DDE”) will try to
open in an existing instance of VEDIT. Files opened from a DOS/NT
command prompt with the “-s” invocation option will also try to open in
an existing instance. All other files will open in a new instance of VEDIT.

1 Files opened from Explorer or the DOS/NT command prompt will try to
open in an existing instance of VEDIT. However, files opened from a
DOS/NT command prompt with the “-s0” or “-s2” invocation option will
open in a new instance of VEDIT.

2 Files opened from Explorer or the DOS/NT command prompt will always
open in a new instance of VEDIT. (Technically, “DDE” is turned off and
this instance therefore cannot accept any filenames to open.)

Note that the “-s” invocation option overrides this configuration value.

See also “Opening Files - Opening Multiple Instances of VEDIT” in Chapter
4.

Beep level (0 - 5) [Default = 2]

Controls under what conditions VEDIT produces a beep on the speaker.

0 VEDIT never beeps the speaker.

1 Only beeps under control of the macro language Alert() command.

2 Also beeps for error messages and when answering prompts with
invalid responses.

3 Also beeps when pressing invalid keys in the menus.

4 Also beeps when pressing unassigned control and function keys.

5 Also beeps when attempting to scroll past beginning/end of the
buffer, or attempting to undo/redo when there is nothing more.

Help level (0 - 1) [Default = 1]

When set to “1”, a help line is displayed on the bottom of the screen whenever
you are in the menu system, during point and shoot file selection and for
selected other prompts. “0” turns this help line off.

Box drawing style (1 - 4) [Default = 1]

Determines the style used by {MISC, Box drawing mode} for drawing the
vertical and horizontal lines with <Shift+Cursor>. Note that <Ctrl+Cursor>
draws a different, complementary type of line.

364 Chapter 6 Menu Reference Config Menu

Maximum [REPEAT] count (1 - 65535) [Default = 256]

Determines the maximum repeat count that can be entered for [REPEAT] and
{EDIT, Repeat}.
The default maximum of “256” is used to prevent novice users from inadver-
tently entering a huge count for an edit operation that might corrupt their file
or take a long time to perform. Values larger than 256 are often desirable, but
can exceed VEDIT’s ability to undo them. Experienced users may prefer a
larger value.

Keyboard input options (0 - 31) [Default = 17]

Controls processing of keyboard characters. You will only need to change this
value for special applications.

This option combines five options into one by having you add “mask” values
(setting bits) for each desired sub-option.

The base value of “0” strips 8 bit characters, discards unassigned control keys
and preserves the case of letters.

Mask 1 Enable 8 bit keyboard characters; you always want this enabled
on an IBM PC.

Mask 2 Treat 8 bit (graphics) characters as function keys. This is useful
on some CRT terminals, but should be disabled on an IBM PC.

Mask 4 Enter unassigned function/control keys into the text. Almost
everyone will want this disabled.

Mask 8 Reverse the case of all letters, e.g. typing “a” gives you “A” and
typing “A” gives you “a”. (We are not exactly sure why you would
want this, but a few users have asked for it.)

Mask 16 In a multi-character control sequence, convert the 2nd and follow-
ing <Ctrl> characters to equivalent letters. This is useful for the
WordStar layout so that, for example, ^K ^V is equivalent to
^K V. This is enabled by default because it does not interfere with
other layouts.

The recommended values are “1” and “17”.

Numpad function mode (0=No, 1=Auto, 2=On) (Default: 1)

Controls whether the numeric keypad keys “/”, “*”, “-”, “+” and “Enter” work
as function keys or normal keypad keys.

0 Keys always work as normal keypad keys.

1 The keys work as normal keypad keys when “NumLock” is on; they work
as function keys when “NumLock” is off.

2 The keys always work as function keys. (As in VEDIT version 5.1 and
older.)

See also “Block Operations - Scratchpad Text Register” in Chapter 4.

Config Menu Chapter 6 Menu Reference 365

Alt/Ctrl/Shift key shortcut modes (0 - 15) [Default = 7]

Determines if tapping the <Alt>, <Ctrl> and <Shift> keys perform shortcut
functions. This option combines six options into one by having you add “mask”
values (setting bits) for each desired sub-option.

The base value of “0” disables all shortcuts.

Mask 1 Tapping <Alt> performs [MENU]; tapping it again removes the
menus. Note: this is always enabled in the Windows version.

Mask 2 Double-tapping <Ctrl> performs [CANCEL]; this is an easy way
to clear block markers.

Mask 4 Double-tapping <Shift> performs {BLOCK, Set stream
marker}; this is an easy way to set block markers.

Mask 8 <Ctrl+Shift> performs [ERASE LINE]; this is an easy way to
delete lines. (This is not the default because it requires some care;
if you need both keys down for “<Shift> block marking”, press
<Shift> first.)

366 Chapter 6 Menu Reference Config Menu

Keyboard Layout (Sub-menu)
Keystroke Equivalent: (None)

Introduction:

VEDIT’s keyboard layout is completely configurable. Each basic edit function
can be assigned to any key or alternate keys. As many keystroke macros and
“hot-keys” as desired can be added to the layout.

This sub-menu lets you record or add new keystroke macros and view/edit the
entire keyboard layout as a normal text file. While editing, you can also print
the layout if desired.

To make changes to the keyboard layout permanent, they must be saved to the
vedit.key file. Entire keyboard layouts can also be loaded “on the fly”.

Notes:

Experienced VEDIT users will probably prefer to make changes to the key-
board layout and add new keystroke macros by directly editing the
vedit.key file. This is described in Chapter 8 (Configuration).

Refer to the topics “Keystroke Macros” and “Editing the Keyboard Layout”
in Chapter 4 for additional information.

VEDIT’s normal keyboard layout includes many pre-defined keystroke mac-
ros for selecting menu items; these are often called “hot-keys”. VEDIT’s
menus display all assigned “hot-keys”.

The key to which a keystroke macro is assigned can actually be a sequence of
up to 16 keys (often called an “Escape Sequence”). This lets you define more
keystroke macros than there are function and control keys. For example, you
might use <F12> as the “lead-in” to an entire group of keystroke macros.
Pressing <F12> and then “A” could play back one keystroke macro, pressing
<F12> and then “B” could play back another, and so on.

Technically, VEDIT does not distinguish between the basic keyboard layout
(keys assigned to the edit functions) and keystroke macros; VEDIT’s keyboard
layout simply lists the key or keys you press and the editing function or
function(s) to be performed. For the user’s benefit, key(s) that perform a single
edit function are considered part of the basic keyboard layout as displayed by
{HELP, Keyboard layout}; everything else is considered a keystroke macro.

Keyboard Layout (Sub-menu) Chapter 6 Menu Reference 367

Add Keystroke Macro
Define a new keystroke macro or change an existing one.

Keystroke Equivalent:

<Alt-A>, This is a keystroke macro.

Full Description:

This item adds a new keystroke macro or changes an existing one. Compared
to {CONFIG, Keyboard layout, Record keystroke macro}, this item has the
advantage of letting you edit the macro as you enter it. It should also be used
for macros that access the VEDIT macro language.

� To add (define) a new keystroke macro:
1. Select {CONFIG, Keyboard layout, Add keystroke macro}.
2. At the “Assigned hot-key” prompt, press the function or control key(s) to

which this keystroke macro should be assigned. This is the “hot-key” you
you will later press to play back the macro. Typically a keystroke macro
is assigned to a key, such as <F12>, <Shift-F10> or <Ctrl-T>, which is
currently unused or whose current assignment you want to overwrite.

If necessary, you can edit the “Assigned hot-key” with [BACKSPACE].
3. When “Assigned hot-key” is correct, press <Tab>. (DOS version: press

<Enter>.)

If the “Assigned hot-key” is already in use, you will be prompted for
confirmation to overwrite the existing assignment.

4. For “Edit sequence:”, press the exact sequence of keystrokes you want the
macro to play back each time its hot-key is pressed.

If necessary, you can edit the “Edit sequence” with [BACKSPACE].
5. When the “Edit sequence” is correct, press <Enter>.

The keystroke macro is now defined and ready for use. It will be available until
you exit VEDIT (or overwrite it). To make it permanent, select {CONFIG,
Keyboard layout, Save layout}.

Notes:

To use <Esc>, <Enter> or <Backspace> as part of the “Assigned hot-key” or
“Edit sequence”, you must precede that key with [ENTER CTRL] (default:
<Ctrl-Q>). If it contains [ENTER CTRL], press it twice.

The [REPEAT] function can be used with keystroke macros to repeat the
macro a number of times. A [REPEAT] can also be part of the assigned “Edit
Sequence”.

See Also:

“Keystroke Macros” in Chapter 4 for a step-by-step example.
Notes for {CONFIG, Keyboard layout} above.
{CONFIG, Keyboard layout, Record keystroke macro},
{CONFIG, Keyboard layout, Edit/view layout}

368 Chapter 6 Menu Reference Keyboard Layout (Sub-menu)

Record Keystroke Macro
Define a keystroke macro by recording your editing operations.

Keystroke Equivalent:

<Alt-K>, This is a keystroke macro.

Full Description:

This item records a new keystroke macro while you are editing. This makes it
easy to record a sequence of editing steps that you are going to use over and
over again.

This is an alternative to {CONFIG, Keyboard layout, Add keystroke
macro} and has the advantage of letting you see the editing operations as you
make them. However, “Add Keystroke Macro” has the advantage of letting
you edit the macro as you enter it.

You can define most keystroke macros using either “Add Keystroke Macro”
or “Record Keystroke Macro” according to your preference. New users will
tend to prefer the latter, experienced users the former. However, “Add Key-
stroke Macro” is required for macros that access the VEDIT macro language.

� To record a new keystroke macro:
1. Select {CONFIG, Keyboard layout, Record macro}.
2. At the “Assigned hot-key” prompt, press the function or control key(s) to

which the recorded keystroke macro should be assigned. This is the
“hot-key” you will later press to play back the macro. Typically a key-
stroke macro is assigned to a key that is currently unused or whose current
assignment you want to overwrite.

If necessary, you can edit the “Assigned hot-key” sequence with
[BACKSPACE].

3. When “Assigned hot-key” is correct, press <Tab>. (DOS version: press
<Enter>.)

If the “Assigned hot-key” is already in use, you will be prompted for
confirmation to overwrite the existing assignment.

4. VEDIT is now in “Record mode” — this is indicated on the status line.
Everything you now type becomes part of the recorded keystroke macro.

5. To finish recording the new keystroke macro, press the “Stop Record” key
which is displayed on the left hand side of the status line.

The “hot-key” for this menu item (default <Alt-K>) is the “Stop Record” key.
When no “hot-key” is defined, the “Stop Record” key is <Ctrl-]> which is
available on all keyboards.

See Also:

For the most part, all commentary and notes for {CONFIG, Keyboard layout,
Add keystroke macro} apply here too.

Keyboard Layout (Sub-menu) Chapter 6 Menu Reference 369

Edit/view layout
Edit, view or print the keyboard layout.

Keystroke Equivalent: (None)

Full Description:

This item lets you view or edit the entire keyboard layout as a normal text file.
You can also print the layout and “cut and paste” between different layouts.

When done, the new layout is automatically loaded, and can optionally be made
permanent by saving it as the vedit.key file.

Notes:

The topic “Editing the Keyboard Layout” in Chapter 4 describes editing the
keyboard layout in more detail.

This function is implemented by thekeyedit.vdmmacro which completely
controls its operation.

See Also:

“VEDIT.KEY Layout File” in Chapter 8.
{CONFIG, Keyboard layout, Load layout}

Display unused keys
Display a list of unused (unassigned) keys.

Keystroke Equivalent: (None)

Full Description:

This item displays a list of keys that are currently unused — not assigned to
an edit function or keystroke macro.

These keys are therefore available for use as “hot-keys” that can be assigned
to menu items or other keystroke macros. These keys can be assigned with
{CONFIG, Keyboard layout, Add keystroke macro}, {CONFIG,
Keyboard layout, Record keystroke macro}, or by editing the keyboard
layout with {CONFIG, Keyboard layout, Edit/view layout}, or by directly
editing the vedit.key file.

Notes:

The dialog boxes for “Add keystroke macro” and “Record keystroke macro”
also let you view the list of unused keys.

See Also:

{CONFIG, Keyboard layout, Add keystroke macro},
{CONFIG, Keyboard layout, Record keystroke macro}
“Keystroke Macros” and “Editing the Keyboard Layout” in Chapter 4.
“VEDIT.KEY Layout File” in Chapter 8.

370 Chapter 6 Menu Reference Keyboard Layout (Sub-menu)

Save Layout to a File
Save entire keyboard layout in vedit.key or another file.

Keystroke Equivalent: (None)

Full Description:

This item saves the entire keyboard layout, including any new keystroke
macros, into the vedit.key file or other specified file. By saving into
vedit.key, any layout changes will be permanent (or until changed again).

When VEDIT starts up, it loads the keyboard layout from the vedit.key
file.

� To save the current keyboard layout:
1. Select {CONFIG, Keyboard layout, Save layout}. You are prompted

with:
Filename: c:\vedit.vedit.key

2. If the default “vedit.key” filename is correct, press <Enter>. Otherwise,
edit the path and filename as needed, or enter “*.key” for “point and shoot”
file selection.

Since vedit.key normally already exists, you will be prompted for confir-
mation to overwrite it.

Notes:

The topic “VEDIT.KEY Layout File” in Chapter 8 describes how to edit the
vedit.key file.

This functions does not save any comments and Config() commands that you
may have added to the vedit.key file.

See Also:

“VEDIT.KEY Layout File” in Chapter 8.
{CONFIG, Keyboard layout, Edit/view layout},
{CONFIG, Keyboard layout, Load layout}

Keyboard Layout (Sub-menu) Chapter 6 Menu Reference 371

Load Layout from a File
Load an entire keyboard layout from a .KEY file.

Keystroke Equivalent: (None)

Full Description:

This item loads an entire new keyboard layout from a .key file supplied by
us or previously created with {CONFIG, Keyboard layout, Save layout}.
This lets you change the entire keyboard layout “on the fly” and load different
sets of keystroke macros for different editing tasks.

� To load an entire new keyboard layout file:
1. Select {CONFIG, Keyboard layout, Load layout}.
2. The default filename is “vedit.key”. You can either select this name by

pressing <Enter>, enter the desired filename, or enter “*.key” for point
& shoot file selection. The new keyboard layout table will be loaded.

Notes:

Loading a .key file overwrites any previous keyboard layout and keystroke
macros. If you have created any keystroke macros that you want to keep, you
must first save them with {CONFIG, Keyboard layout, Save layout} (But
don’t overwrite the file you are about to load.)

Before VEDIT loads the .key file, it scans it for validity. If an error is
detected, it displays an error message including the line number on which the
error occurred. Typical errors are misspelling the name of a key or edit
function.

See Also:

{CONFIG, Keyboard layout, Edit/view layout},
{CONFIG, Keyboard layout, Save layout}

372 Chapter 6 Menu Reference Keyboard Layout (Sub-menu)

File-open Config (Sub-menu)
Keystroke Equivalent: (None)

Introduction:

VEDIT can automatically configure itself according to the filename extension
of each file opened, or according to specific filenames. This is typically used
to enable color syntax highlighting and other programming language-specific
configuration settings.

After configuring all the “Buffer dependent” parameters in the {CONFIG}
menu and, perhaps, setting up Syntax highlighting and Template editing, you
can save these settings for either a particular filename extension, or even a
specific filename.

See Also:

The topic “File-open Configuration” in Chapter 5 describes this in detail.

Enable File-open Configuration
Enables the file-open configuration feature.

Keystroke Equivalent: (None)

Full Description:

When enabled, VEDIT will attempt to auto-configure itself according to the
specific filename or filename extension of each file opened. This can enable
color syntax highlighting, template editing, auto-indenting, tab-stops, word
processing, etc.

Notes:

You can override this setting when opening individual files from the File-open
dialog box with the with the [] Enable file-open config option.

To save this setting, either {CONFIG, Auto-save config} must be enabled, or
you must select {CONFIG, Save config}.

See Also:

The topic “File-open Configuration” in Chapter 5.

File-open Config (Sub-menu) Chapter 6 Menu Reference 373

Save Filename Extension Config
Save the file-open configuration settings for a filename extension.

Keystroke Equivalent: (None)

Full Description:

This item saves the “buffer dependent” configuration parameters according to
the current file's filename extension. All future files that you open with the
same filename extension will be auto-configured the same as the current file.

For example, if the current file you are editing is main.pas, the current
configuration will be saved in pas.cft in the vedit\file-cfg directory. It will
be used for all .PAS files that you open in the future.

Notes:

File-open configuration only occurs when {CONFIG, File-open config,
Enable file-open configuration} is enabled.

You can directly edit the .CFT and .CFN files in the vedit\file-cfg directory;
they consist of just Config() commands. However, remember that selecting
this function will overwrite any hand-edited changes.

Each .CFT and .CFN file is basically a small subset of the vedit.cfg file.

Save Filename Specific Config
Save the file-open configuration settings for a specific filename.

Keystroke Equivalent: (None)

Full Description:

This item saves the “buffer dependent” configuration parameters according to
the current file's specific filename. When you open this file in the future, it will
be auto-configured the same as it is now.

For example, if the current file you are editing ismyreport.txt, the current
configuration will be saved in myreport.txt.cfn in the vedit\file-cfg
directory. It will be used whenever you edit this specific file.

Notes:

See the Notes above for “Save Filename Extension Config”.

One subtle difference between the .CFT and .CFN files is that the .CFN files
also save the values for {CONFIG, File handling, File type} and {CONFIG,
File handling, Record header size}.

374 Chapter 6 Menu Reference File-open Config (Sub-menu)

Load Filename Config
Load file-open configuration settings (for testing).

Keystroke Equivalent: (None)

Full Description:

The file-open configuration files are stored as .CFT and .CFN files in the
vedit\file-cfg directory. This function lets you manually load any of them and
configure the current buffer (file) accordingly.

For example, if you have opened a “C” file with the unusual filename extension
of .PRG, you could load the c.cft file to config it as a normal .C file.

File-open Config (Sub-menu) Chapter 6 Menu Reference 375

Help Menu
Keystroke Equivalent:

<Alt-H>, This is a keystroke macro.

Introduction:

The Help menu provides access to the on-line help “Table of Contents”, the
basic keyboard layout, information about the text registers, and information
related to the current status of VEDIT.

Contents (Topics)
Activate VEDIT’s on-line help system; displaying the Table of Contents.

Keystroke Equivalent:

<F1>, this is the [HELP] function.

Full Description:

VEDIT provides an extensive on-line help system. This item enters the on-line
help and starts at the “Table of Contents”.

You can then select any desired topic and navigate through the on-line help in
the usual manner. You can click the “<<” and “>>” buttons to navigate to the
previous and next topics.

376 Chapter 6 Menu Reference Help Menu

SECRET: As an alternative to clicking the “<<” and “>>” buttons, you
can type “,” (comma) and “.” (period) to navigate to the
previous and next topics. This works in other Windows
programs too.

DOS Version:

The non-Windows versions have an on-line help system that is unique to
VEDIT.

� To access help on using the on-line help:
1. Select {HELP, Contents} (default: <F1>).

2. Press [HELP] (default: <F1>).

See Also:

“Context Sensitive Help” in Chapter 3.

Help on Help
General help on using Windows on-line help.

Keystroke Equivalent: (None)

Full Description:

This item starts up the general help topic on how to use a Windows program’s
on-line help. This is the same information displayed by other programs that
have a “Help on help”.

In other words, this feature is built into Windows; we have no control over it.

Keyboard layout
Display the basic keyboard layout.

Keystroke Equivalent:

<Alt-F1>, This is a keystroke macro.

Full Description:

This item displays the basic keyboard layout. Each edit function is shown along
with the keys assigned to it.

The basic edit functions are described in Chapter 7.

The keyboard layout can be changed with {CONFIG, Keyboard layout,
Edit/view layout} or by editing the vedit.key file directly as described in
Chapter 8.

DOS Version:

From the keyboard layout display, you can obtain additional information on a
particular edit function by simply pressing the key(s) assigned to that function.

The display of the built-in keystroke macros is only applicable to the “Normal”
keyboard layout. If you are using a different layout, you can edit the topic

Help Menu Chapter 6 Menu Reference 377

“NORMALK” in the on-line help file. Modifying the on-line help file is
described in the on-line help topic “ONLINE”.

This item is equivalent to entering the on-line help system and selecting
[K]ey-layout.

Text Registers
Display active text registers: their name, size and contents.

Keystroke Equivalent: (None)

Full Description:

This item displays the names of non-empty text registers, their size and up to
the first 60 bytes of their contents.

See Also:

“Block Operations - Text Registers” in Chapter 4.

Status Display
Display VEDIT’s version, release date and status information.

Keystroke Equivalent:

<Alt-Enter>, This is a keystroke macro.

Full Description:

The VEDIT Status Display provides important information about the copy of
VEDIT you are using and its present state. Here is an example:

The following information is displayed:

Product name,
version and
release date.

You will need this information when you contact Green-
view Data, Inc. for technical support or upgrade assis-
tance. It describes exactly which product you are using,
the revision number and the date this revision was first
released.

Current
directory

This is the default directory for all file operations. It can
be changed by selecting [] Change directory in any file
selection dialog box.

Input file The file VEDIT last opened for editing. It is the same as
the “Output File” unless you selected {FILE, Save as} to
save the file under a different name.

Output file The file into which VEDIT will save the editing changes.

Output file size This would be the size of the output file if you saved it
right now.

Syntax file The name of the .SYN color syntax file, if any, associated
with the current buffer.

378 Chapter 6 Menu Reference Help Menu

Template file The name of the .VTM template editing file, if any,
associated with the current buffer.

Used in T-Regs This is the number of characters that are currently stored
in all text registers. The maximum value is currently about
250,000 characters. (DOS version: it is about 60,000 char-
acters, but may be less if memory is limited.) You may
want to empty any large, unneeded text registers.

Date The current date as reported by your computer. If this is
not correct, refer to your computer system documentation
for information on how to set the current date.

Time The current time as reported by your computer.

VEDIT Website

On-line FAQ

On-line support
Quickly access the VEDIT Web site.

Keystroke Equivalent: (None)

Full Description:

These items start your Internet Web browser and connect to the extensive
VEDIT Website. The Home page lists the most current version of VEDIT.

Note:

These functions only work under Windows and require that Web addresses are
associated with your Web browser, as is typical with Netscape (tm) and Internet
Explorer (tm).

You can also receive support by sending e-mail to support@vedit.com.

Register VEDIT
Display the serial-registration number and enter a new one.

Keystroke Equivalent: (None)

Full Description:

The serial-registration number determines whether VEDIT runs as a trial
version or as a full product. For the full product, it also determines how long
your support period runs, during which you can download and install newer
versions of VEDIT.

If you have VEDIT running as a trial version and purchase a license, you will
be sent (e.g. emailed) a serial-registration number which you can enter here.
If you purchase an update or the Software Subscription Plan, enter the new
serial-registration number here.

Help Menu Chapter 6 Menu Reference 379

After entering a new number, select this item or {HELP, About} to double-
check that the support period is correct.

Notes:

The first 5 to 6-digit group of the serial-registration number is your “serial”
number; that is all we need when you contact us for support.

About
Display the VEDIT version and serial numbers, support period and technical
support telephone number.

Keystroke Equivalent: (None)

Full Description:

This item displays the VEDIT version number and release date. It also displays
your serial number and when your support period expires. You will need this
information when contacting Greenview Data, Inc. for technical support or
upgrade assistance. It describes exactly which product and version you are
using.

This item also displays the current technical support telephone number for
VEDIT and our Internet addresses.

Note:

The support period indicates through what month and year you can receive
technical support and download updates from our Website. For example:

Support expires at end of 10-2002

This indicates that you can download and install a new VEDIT dated, for
example, 15-Oct-2002. However, you would need to purchase an update to a
VEDIT dated 10-Nov-2002. Our Website always lists the current VEDIT
version number and release date.

See Also:

{HELP, Register VEDIT}

380 Chapter 6 Menu Reference Help Menu

Escape Menu
Keystroke Equivalent:

<Esc>, This is the edit function [ESCAPE]

Introduction:

The {ESCAPE} menu provides quick access to several commonly used
functions. These items represent a logical use of the <Esc> key; that is, they
let you exit, or “escape” from a particular common situation.

To select the {ESCAPE} menu, press <Esc>. Since this key is also used to
exit, or “escape from” the menu system, dialog boxes and other prompts, it
will only bring up the {ESCAPE} when no menu or dialog box is displayed.
Press <Esc> again to escape from the {ESCAPE} menu.

Command Mode (Exit)

Command Mode (Escape)
Exits or “escapes” Visual Mode to the Command Mode and possibly the
“COMMAND:” prompt.

Keystroke Equivalent:

<Ctrl-E>, This is identical to the edit function [VISUAL EXIT]
<Alt-F10>, This is identical to the edit function [VISUAL ESCAPE]

Full Description:

“Command Mode (Exit)” exits Visual Mode and enters Command Mode. Any
command macro which is currently running will continue to run. If no
command macro is running, you will receive the “COMMAND: ” prompt.

“Command Mode (Escape)” exits Visual Mode and aborts any command
macro which is running. It will normally give you the “COMMAND:” prompt.
However, if a “locked-in” command macro is running, it will restart that macro.

If the special “<$>” Command Mode window exists, VEDIT will switch to
this window to display the “COMMAND:” prompt. Otherwise, the prompt
will be displayed at the bottom of the current window.

See “Basics - Entering Command Mode” in Chapter 2 of the VEDIT Macro
Language Reference Manual for a detailed description..

Escape Menu Chapter 6 Menu Reference 381

Command Mode Window
Create the special Command Mode window and switch to it.

Keystroke Equivalent:

<Alt-/>, This is a keystroke macro.

Full Description:

This function creates the special Command Mode window “$” as a 5-line
reserved window at the bottom of the screen and then performs a “Command
mode (Escape)”. Unless a “locked-in” macro is running, you will get the
“COMMAND:” prompt.

Pressing this function’s hot-key (default: <Alt-/>) at the COMMAND: prompt
deletes the Command Mode window and returns to Visual Mode.

HINT: This hot-key (default: <Alt-/>) is a convenient way to toggle be-
tween the Visual Mode and the Command Mode.

See Also:

Chapter 2 in the VEDIT Macro Language Reference Manual.
On-line help topic “Command Mode Basics” (DOS: “CMD”).

Clear Block Markers
Clear any existing block markers.

Keystroke Equivalent:

<Shft-F9>, this is a keystroke macro.

Brief Description:

Clears any block markers that are currently set; clears any block highlighting.

This is identical to {EDIT, Clear markers} and {BLOCK, Clear markers}.

Notes:

It is usually easier to clear the block markers by double-tapping the <Ctrl>
key, by pressing [CANCEL] (<Ctrl-\>) or <Ctrl-Break>. To clear the block
markers with a mouse, simultaneously press both mouse buttons.

Exit (save/abandon)
Keystroke Equivalent:

<Alt-F4>, This is a keystroke macro.

Brief Description:

Save the current file and exit VEDIT.

This is identical to {FILE, Exit}.

382 Chapter 6 Menu Reference Escape Menu

Mouse Right-Click Menu
Introduction:

When you press the right mouse button during normal
editing, the Right-Click menu is displayed at the
mouse position. It simply duplicates some of the more
commonly used functions in the main menu.

Most of the Right-Click menu items also have
equivalent “hot-keys” and are duplicated on the
toolbar. Therefore, it is simply an alternative way of
accessing these items. It is probably more useful
when the toolbar is not displayed.

... Clipboard This duplicates the clipboard functions found in the
{EDIT} menu.

... Scratchpad This dupicates the scratchpad functions found in the
{EDIT, Scratchpad} menu.

Clear Markers Clear any blocks markers. Same as {EDIT, Clear
makers} and {BLOCK, Clear markers}.

Search Start a new search. Same as {SEARCH, Search}.

Replace Start a new search and replace. Same as {SEARCH,
Replace}.

Next Search or search-and-replace the next occurrence.
Same as {SEARCH, Next}.

Delete (Char/Block) Delete the current character or highlighted block.
Same as {EDIT, Delete, Delete (char/block)} or
[DELETE].

Erase Line Delete the current line. Same as {EDIT, Delete, Erase
line} or [ERASE LINE].

Undo Edit Undo the last editing keystroke. Same as {EDIT,
Undo, Edit}.

Mouse Right-Click Menu Chapter 6 Menu Reference 383

This page is intentionally blank.

384 Chapter 6 Menu Reference Mouse Right-Click Menu

Chapter 7

Edit Function Reference

Edit functions are the basic building blocks of VEDIT’s operation. Each edit
function is assigned to a specific key or key combination. Edit functions can
also be assigned to several (duplicate) keys. For example, the “Normal” layout
assigns [T-REG INSERT] to both <Numpad*> and <F11>.

Many basic editing functions, such as cursor movements, are also available in
dialog boxes.

For more information on assigning keys to edit functions see {CONFIG,
Keyboard layout} in Chapter 6 (Menu Reference) and Chapter 8 (Configura-
tion).

You can display which key or keys are assigned to each edit function by
selecting {HELP, Keyboard layout}.

[BACKSPACE] Deletes the character to the left of the cursor. At the
beginning of a line, it deletes the preceding “newline”
character, effectively merging the lines together.

This function’s behavior is configurable with
{CONFIG, Emulation, [BACKSPACE] emulation
mode}.
In dialog boxes, it permits editing the current entry.

In Window’s dialog boxes, this function is always
<Backspace>.

[BACKTAB] Moves the cursor to the character at the previous tab
stop. It stops at the beginning of a line.

If the cursor is in a highlighted block, it undents all
lines in the block, same as {EDIT, Undent}. This
behavior can be changed with {CONFIG, Emulation,
[TAB CHARACTER] emulation mode}.
In dialog boxes, it always moves to the previous item.

Chapter 7 Edit Function Reference 385

[CANCEL] During normal editing (no prompts) it removes any
block markers that are set. Also stops any [REPEAT]
operation.

DOS, UNIX, QNX versions: It also cancels the menu
system and any dialog box. In Windows/DOS, press-
ing <Ctrl-Break> performs [CANCEL].
It is assigned to <Ctrl-\> in most keyboard layouts.

See also: {BLOCK, Remove markers} in Chapter 6.

[CURSOR UP] Moves the cursor up one line, to the same horizontal
position. The setting for {CONFIG, Emulation,
Cursor positioning mode} determines whether the
cursor can be positioned past shorter lines.

In dialog boxes, it recalls previous entries.

[CURSOR DOWN] Moves the cursor down one line, to the same horizontal
position. The cursor cannot be moved past the last line
in the file.

[CURSOR RIGHT] Moves the cursor to the next character. At the end of
the line, it moves to the beginning of the next line. Its
behavior at the end of a line is configurable with
{CONFIG, Emulation, Cursor positioning mode}.
Set to “4”, the cursor can move past the end of a line.

In dialog boxes, it permits editing the current entry.

[CURSOR LEFT] Moves the cursor to the previous character. At the
beginning of a line, it moves to the end of the previous
line; this behavior is configurable with {CONFIG,
Emulation, Special emulation modes}.

[DELETE] Deletes the character at the cursor. At the end of a line,
it deletes the “newline”. (The Windows/DOS
“newline”consists of the Carriage-Return and Line-
Feed characters.)

If a block is currently highlighted and the cursor is
within the block (or immediately past it), it deletes the
block, same as {BLOCK, Edit/Translate, Block
delete}.
This function’s behavior with respect to “newlines”
and blocks is configurable with {CONFIG,
Emulation, Special emulation modes}.
See also: {EDIT, Delete, Delete} in Chapter 6.

[DEL PREV WORD] Deletes the word, or portion of a word, or whitespace
to the left of the cursor. Pressing it again deletes the
next whitespace or word.

386 Chapter 7 Edit Function Reference

[DEL NEXT WORD] Delete the word, or portion of a word, to the right of
the cursor.

[ENTER CTRL] Enters the next keystroke literally into the text, includ-
ing control and graphics characters. Also used to enter
control characters into search/replace strings.

It is assigned to <Ctrl-Shift-^> in most keyboard
layouts. Windows and DOS versions: it is also as-
signed to <Ctrl-Q>.

See also: “Keyboard Characters and Screen Display”
in Chapter 4; {EDIT, Enter CTRL char} and {MISC,
ASCII table} in Chapter 6.

[ERASE BOL] Erases (deletes) all characters from the beginning of
the line up to the cursor.

See also:{EDIT, Delete, Erase BOL} in Chapter 6.

[ERASE EOL] Erases (deletes) all text from the cursor to the end of
the current line.

See also:{EDIT, Delete, Erase EOL} in Chapter 6.

[ERASE LINE] Erases (deletes) the entire current line.

See also:{EDIT, Delete, Erase line} in Chapter 6.

[ESCAPE] “Escapes” from the current prompt or menu level. If
there is no prompt or menu, it pops up the {ESCAPE}
menu.

See also: {ESCAPE} Menu in Chapter 6.

[HELP] Displays context sensitive help relevant to the current
menu or prompt. If there is no prompt or menu, it starts
up the on-line help at the Table-Of-Contents, same as
{HELP, Topics}. When the menu system or a prompt
is on the screen, [HELP] directly access the topic
relevant to the currently displayed menu or prompt.

See also: {HELP, Topics/Contents} in Chapter 6.

[INSERT TOGGLE] Toggles between “Insert” and “Overstrike” modes.

See also: {EDIT, Delete, Insert mode} in Chapter 6.

[LINE BEGIN] Moves the cursor to the first character of the screen
line or, if already there, to the first character of the
previous screen line. This function’s behavior is con-
figurable with {CONFIG, Emulation, [LINE
BEGIN/END] emulation mode}.

Chapter 7 Edit Function Reference 387

[LINE END] Moves the cursor to the end of the current screen line.
If already there, it moves the cursor to the end of the
next screen line. This function’s behavior is configur-
able with {CONFIG, Emulation, [LINE
BEGIN/END] emulation mode}.

[MENU] Starts the pull-down menu system. The menu system
is accessed in the usual manner using the cursor keys
and <Enter>. Pressing [ESCAPE] backs out of the
menu system, one level at a time. Pressing [CANCEL]
cancels any prompts and removes the menu system.

In the Windows and DOS versions, this function is also
activated by just tapping the <Alt> key.

[NEXT LINE] Moves the cursor to the beginning of the next text line.

[NEXT PARAGRAPH] Moves the cursor to the beginning of the next para-
graph.

[NEXT TAB STOP] Moves the cursor to the next tab stop.

See also: {CONFIG, Tab stops} in Chapter 6.

[NEXT WORD] Moves the cursor to the beginning of the next word.

[PAGE UP] Moves the cursor to the previous screen “page” —
similar to pressing [CURSOR UP] for 3/4 screen
lines. The amount of screen overlap is configurable
with Config(S_PG_OVERLAP) - see Chapter 8.

[PAGE DOWN] Moves the cursor to the next screen “page” — similar
to pressing [CURSOR DOWN] for 3/4 screen lines.

[PREV PARAGRAPH] Moves the cursor to the beginning of the current para-
graph. If already at the beginning of a paragraph,
moves the cursor to the beginning of the previous
paragraph.

See also: “Word Processing Function - Definition of
Paragraph” in Chapter 4.

[PREV WORD] Moves the cursor to the beginning of the current word.
If already at the beginning of a word, moves the cursor
to the beginning of the previous word.

[REPEAT] This function is identical to {EDIT, Repeat}.

[REPEAT LAST] Repeats the last typed character, edit function, menu
selection or keystroke macro.

[REPEAT LAST] is often used to repeat menu
selections for which there is no hot-key.

See also: {EDIT, Repeat} in Chapter 6.

388 Chapter 7 Edit Function Reference

[RETURN] Is always assigned to the <Enter> key. In overstrike
mode, it moves the cursor to the next line, same as
[NEXT LINE]. In insert mode, or at the end of the file,
it opens up a new line by inserting a “newline” char-
acter (<CR><LF> pair). Pressed in the middle of a
line, it splits the line. Its behavior can be changed with
{CONFIG, Emulation, <Enter> key emulation
mode}.

[SCREEN BEGIN] Moves the cursor to the beginning of a line at or near
the top of the current window (screen). This function’s
behavior is configurable with {CONFIG, Emulation,
Special emulation modes}.

[SCREEN END] Moves the cursor to the end of a line at or near the end
of the current window (screen). This function’s behav-
ior is configurable with {CONFIG, Emulation,
Special emulation modes}.

[SCROLL UP] Scrolls the screen to show the next previous line at the
top of the screen. Moves the cursor, if required, to keep
it on-screen. Its behavior can be changed with
{CONFIG, Emulation, Special emulation modes}.
See also: “Scrolling the Screen” in Chapter 4.

[SCROLL DOWN] Scrolls the screen to show the next line at the bottom
of the screen. Moves the cursor, if required, to keep it
on-screen.

[SCROLL RIGHT] Scrolls the screen to view long lines going off the right
side of the screen. Moves the cursor, if required, to
keep it on-screen. It scrolls by the number of columns
defined by {CONFIG, Display options, Horizontal
scroll increment}.

[SCROLL LEFT] Scroll the screen to view the beginning portions of long
lines. Moves the cursor, if required, to keep it on-
screen.

[TAB CHARACTER] In insert mode or at the end of a line, it inserts a Tab
character (or optionally spaces to the next tab position)
into the text. In overstrike mode, it moves the cursor to
the next tab position. Its behavior is configurable with
{CONFIG, Emulation, [TAB CHARACTER]
emulation mode}.
If the cursor is in a highlighted block, it indents all lines
in the block, same as {EDIT, Indent}.
In dialog boxes, it always moves to the next item.

See also: “The <Tab> Key and Tab Characters” in
Chapter 4; {CONFIG, Tab/Fill, Expand <Tab> with
spaces} in Chapter 6.

Chapter 7 Edit Function Reference 389

[T-REG COPY]
[T-REG MOVE]
[T-REG INSERT]

These functions are identical to {BLOCK, Copy to
register}, {BLOCK, Move to register} and
{BLOCK, Insert register}.
At the “COMMAND:” prompt, [T-REG INSERT]
inserts the contents of the scratchpad (text register 0).

[VISUAL ESCAPE] Exits the “Visual Mode” and aborts any command
macro, such as WILDFILE.VDM, that is currently
running.

This function is normally used to enter the “Command
Mode”. It is identical to {ESCAPE, Command Mode
(Escape)}.

[VISUAL EXIT] This edit function is used inside keystroke macros that
access the VEDIT macro language.

It also permits exiting the “Visual Mode” so that a
command macro, such as WILDFILE.VDM, can con-
tinue running.

It enters the “Command Mode” when no macro is
currently running. It is identical to {ESCAPE,
Command Mode (Exit)}.

390 Chapter 7 Edit Function Reference

Chapter 8

Configuration

VEDIT is completely configurable — over 200 parameters and the entire
keyboard layout can be configured to your needs and personal preferences.

NOTES: Please don’t make major changes to VEDIT’s configuration until
you are familiar with it and understand what you are changing.
Otherwise, you will change VEDIT so much that it no longer works
as described in the manual and on-line help.

The DOS version configuration is slightly different. Refer to the
on-line help topic “CFG” for details.

All common configuration changes can be made with the {CONFIG} menu.
The keyboard layout can be changed and new keystroke macros added with
the {CONFIG, Keyboard layout} sub-menu.

These changes can either be temporary or permanent. Temporary means that
the changes are lost when you exit VEDIT. Permanent means that the changes
will be there the next time you run VEDIT. (We call it permanent, but of course
you can change them again.)

To make configuration and keyboard changes permanent, they must be saved
into the vedit.cfg and vedit.key files. VEDIT automatically loads
these files on startup and thereby configures itself.

As you become more familiar with VEDIT, you may prefer to make configu-
ration and keyboard layout changes by editing the vedit.cfg and
vedit.key files directly. Some additional (rarely used) configurations can
only be made by editing the vedit.cfg file.

SUGGESTION: You may want to save a copy of your vedit.cfg and
vedit.key files in another directory, e.g.
c:\vedit\save\vedit.cfg. Your preferred VEDIT
configuration and keyboard layout can then be restored if
you, or someone else, makes unwanted changes to it.

Chapter 8 Configuration 391

Basic Configuration
Most configuration changes are made by selecting items in the {CONFIG}
menu. To save the changes, you must also select {CONFIG, Save config} and
choose the default filename of “vedit.cfg” in the User Config Directory,
typically c:\vedit\save\vedit.cfg.

Alternatively, if {CONFIG, Auto-save config} is enabled, VEDIT automat-
ically saves configuration changes as you make them. VEDIT is supplied with
“Auto-save config” enabled, but after you are familiar with VEDIT, you may
decide that you don’t want to automatically save every configuration change.

Similarly, the keyboard layout can be changed and new keystroke macros
added with the {CONFIG, Keyboard layout} sub-menu. To save the changes,
you must also select {CONFIG, Keyboard layout, Save layout} and choose
the default filename, typically c:\vedit\save\vedit.key.

NOTES: VEDIT does not automatically save changes to the keyboard
layout. You must select {CONFIG, Keyboard layout, Save
layout}.

DOS Version: The basic configuration described in the manual and
on-line help assume that {CONFIG, Misc, Auto-load config} is set
to “3”.

How VEDIT Configures Itself
To fully understand (and possibly troubleshoot) VEDIT’s configuration, you
need to know exactly how VEDIT configures itself at startup.

Note: The DOS version configuration is somewhat different. Refer to the
on-line help topic “CFG” for details.

1. The executable VEDIT file (e.g. vpw.exe) contains the complete “de-
fault” configuration and the “normal” keyboard layout.

DOS version: You can change this built-in configuration by selecting
{CONFIG, Misc, Save into VEDIT.EXE}.
If no other configuration files are found, or the “-ixxx -g ” invocation
options are specified, this determines the startup configuration.

2. VEDIT opens the vedit.ini file which it expects to find in the same
directory as the executable vpw.exe file. This is usually the directory
into which you installed VEDIT.

The entries “HomeDir” and “UserCfgDir” determine the VEDIT Home
Directory and User Config Directory which are used to locate other files.

For most installations, the location of the vpw.exe and vedit.ini
files, the VEDIT Home Directory and the User Config Directory will all
be the same, e.g. c:\vedit. However, for shared network installations,
they might be different. (See the Chapter 2 or the on-line help topic
“Network Installation” for details.)

392 Chapter 8 Configuration

Details: VEDIT first opens the vedit.ini file in the same directory as
the executablevpw.exe. It then reads the “UserCfgDir” value and opens
the vedit.ini file in the User Config Directory as the working
“vedit.ini” file. For most installation, there is only one vedit.ini file.
However, for shared network installations, they are two vedit.ini
files; the vedit.ini file on the network server uses “UserCfgDir” to
specify the location of the user’s vedit.ini file.

3. VEDIT searches the current directory and then the User Config Directory
(typically c:\vedit) for the configuration files vedit.cfg and
vedit.key. If found, they override the configuration and keyboard
layout built into vpw.exe. No error is given if these files are not found.

If the “-g” invocation option was specified, this step is skipped.

Note that vedit.key must contain the complete keyboard layout.
However, you could manually edit vedit.cfg to have only a few
configuration parameters; the other parameters would come from
vpw.exe.

4. VEDIT searches first the current directory, then the User Config Directory
and finally the VEDIT Home Directory for the startup.vdm file. This
is a macro (written in the VEDIT macro language) that further configures
VEDIT on startup.

startup.vdm is primarily used to set up the {TOOLS} and {USER}
menu, file-type specific configuration, color syntax highlighting and
template editing.

The supplied startup.vdm file does not override any configuration
settings or change the keyboard layout. However, it documents how you
can override any configuration settings and add some useful keystroke
macros to the keyboard layout.

Note: The name “startup.vdm” is actually specified by the
“Startup” entry in the vedit.ini file. Advanced users
could change it, but all VEDIT documentation uses the
name “startup.vdm”.

5. VEDIT can optionally configure itself according to the filename extension
of each file being edited. For example. “.txt” files can have word process-
ing features enabled, while “.c” files have programming features and color
syntax highlighting enabled.

The supplied startup.vdm sets up this file-type specific configuration
feature, but does not enable it. You must enable it with {CONFIG, File
handling, File-type specific configuration} and then select {CONFIG,
Save config}. Alternatively, it can be enabled by editingstartup.vdm.

This feature typically changes the tabs stops and the settings in the
{CONFIG, Word processing} and {CONFIG, Programming} sub-
menus according to the file type.

Chapter 8 Configuration 393

Troubleshooting
If your configuration changes are lost the next time you run VEDIT, these
troubleshooting steps can help you solve the problem:

1. Make sure that you really did save your configuration changes by selecting
{CONFIG, Save config}. This step is usually not needed if {CONFIG,
Auto-save config} is enabled, but you may want to select {CONFIG,
Save config} just to be sure that configuration changes are saved into the
vedit.cfg file.

Changes to the keyboard layout must be saved with {CONFIG,
Keyboard layout, Save layout}; they are not automatically saved.

To verify that the configuration changes were saved, you can open and
examine the files vedit.cfg and vedit.key in the User Config
Directory, e.g. c:\vedit or c:\program files\vedit. If de-
sired, you can directly edit these files.

2. Make sure you are not getting confused by the “edit session restore”
feature. This restores VEDIT to the same state as it was when you last
exited VEDIT, including all previous configuration settings. It therefore
does not load the vedit.cfg and vedit.key files.

To verify that edit-session-restore is not interfering, disable {FILE,
Enable edit restore}, exit VEDIT and restart VEDIT. Check if your
configuration settings are now correct.

Alternatively, you can disable edit-session-restore on startup with the “-e”
invocation option:

vpw -e

3. Make sure you are not getting confused by the “file-open configuration”
feature. This auto-configures about 25 configuration parameters accord-
ing to the filename extension or specific filename of each opened file. In
particular it configures the “buffer dependent” parameters which are
indicated in the {CONFIG} menu with a “*” (asterisk) after their name.
This includes the tab-stops and many of the programming and word
processing parameters.

To verify that file-open configuration is not interfering, disable
{CONFIG, File-open config, Enable file-open configuration}, open
another file, and check if your configuration settings are now correct.

4. If you (or another user) has enabled and modified the ustartup.vdm
file, any settings in it can override the vedit.cfg and vedit.key
files. In this case it will appear that you cannot save some changes in the
{CONFIG} menu.

To verify that the ustartup.vdm file is not interfering, disable
{CONFIG, Misc, Enable USTARTUP.VDM file}. Select {CONFIG,
Save config} to make sure this setting is saved into the vedit.cfg file.
Then exit VEDIT and restart VEDIT. Check if your configuration settings
are now correct.

394 Chapter 8 Configuration Troubleshooting

5. Make sure that VEDIT was installed into the correct directory and that the
vedit.ini file is configured for the installation directory.

Open thevedit.ini file in the User Config Directory. For non-network
installations, this is the directory into which you installed VEDIT; e.g.
c:\vedit or c:\program files\vedit.

The vedit.ini file should be fully documented. The first line should
read something like:
; VEDIT.INI - Windows information file for VEDIT.

If the file is not documented, e.g. the first line reads “[VEDIT]”, this
indicates that VEDIT did not find a complete vedit.ini file and
therefore auto-created one. However, the auto-createdvedit.ini is not
complete and likely to cause problems. In this case you should copy the
vedit.ini file from the original VEDIT disk or downloaded .ZIP file
to your VEDIT directory. Or re-install VEDIT.

As described below, be sure that “HomeDir” and “UserCfgDir” specify
the correct VEDIT Home Directory and User Config Directory.

Also be sure that the entry “Startup” is set to the filename “startup.vdm”.

6. Make sure that the “UserCfgDir” entry in the vedit.ini file specifies
the correct User Config Directory; it is typically c:\vedit or
c:\program files\vedit.

Then check that this directory contains the files startup.vdm
vedit.cfg and vedit.key. Remember, {CONFIG, Save config}
creates the vedit.cfg file, and {CONFIG, Keyboard layout, Save
layout} creates the vedit.key file.

7. Make sure that the “HomeDir” entry in the vedit.ini file specifies the
correct VEDIT Home Directory; it is typically also c:\vedit. or
c:\program files\vedit.

For most installations, the VEDIT Home Directory and User Config
Directory are set the same, e.g. c:\vedit. However, if VEDIT is
installed on a shared network server for multiple licensed users, the VEDIT
Home Directory is typically set to the network server, e.g. “h:\apps\vedit”
and the User Config Directory is typically set to a local hard disk, e.g.
“c:\vedit”.

If the User Config Directory is inadvertently set to the network server,
then your startup configuration will be the configuration saved by the last
VEDIT user.

8. Make sure that VEDIT is running from it's installation directory. I.e., make
sure your “VEDIT icon” isn't running an older version of VEDIT.

Select {ESCAPE, Command mode (Exit)} to enter the Command mode;
you should get a “COMMAND:” prompt. Enter the Config_String()
command or its abbreviation "cfs":

config_string or cfs

Make sure the entry “VEDIT_INI” is set to the location of the
vedit.ini file which you checked in step 5. above. If it is different,

Troubleshooting Chapter 8 Configuration 395

you probably have multiple copies of vpw.exe and vedit.ini on
your computer which are confusing things.

You will also see a listing of all the directories for which VEDIT is
configured. They should agree with the values in the vedit.ini file.
Unless you performed a "Network installation", the “HOME” and
“USER_CFG” directories should be the same and should be the directory
into which you installed VEDIT.

For example, if you installed VEDIT into “d:\vedit”, but your “HOME”
directory is set to “c:\vedit”, this will prevent VEDIT from configuring
and operating correctly. Experienced users can use edit the vedit.ini
file to try and correct the problem. Less experienced users may just want
to re-install VEDIT.

NOTE: Enter the command “visual” or its abbreviation “v” to go back to the
normal Visual mode of VEDIT.

The troubleshooting steps above should cover the most common configuration
problems with VEDIT. The following steps assume you have some knowledge
of the VEDIT macro language.

9. The default startup.vdm file controls the startup configuration. It
must be located in the User Config Directory, e.g.c:\veditThe default
file contains extensive documentation and clearly states what version of
VEDIT it is for.

If you do not have a startup.vdm file, or you have an older version,
or it has been modified, VEDIT may not start up correctly.

We supply a copy of the default startup.vdm file as startup.org.
If desired you can copy STARTUP.ORG to STARTUP.VDM to restore
the default file.

NOTE: Unlike older versions of VEDIT, it is unlikely that you would ever
need to modify startup.vdm.

10. The User Config Directory normally also contains the vedit.cfg and
vedit.key files. These files are loaded by startup.vdm.

See also: The topic “Startup.vdm File” in Chapter 5.

11. One of the startup functions performed by startup.vdm, e.g. edit-ses-
sion-restore, loading the ustartup.vdm file, or file-open-configura-
tion, may be overriding the configuration saved into vedit.cfg and
vedit.key.

Try starting VEDIT without the startup.vdm file by using the invo-
cation option:

vpw -ixxx

The “-ixxx” attempts to load the file “xxx”, which presumably does not
exist, in place of the startup.vdm file.

In this case, VEDIT will load the vedit.cfg and vedit.key files in
place of the startup.vdm file.

396 Chapter 8 Configuration Troubleshooting

If your configuration changes are still lost, open the file vedit.cfg in
the User Config Directory and verify your configuration. If desired, you
can directly edit this file.

If your configuration changes are now restored, one of the issues covered
in steps 2, 3 or 4 above is causing your problem.

12. If you want to start VEDIT with the default built-in configuration and
keyboard layout, start VEDIT with these invocation options:

vpw -g -ixxx

The “-g” disables loading the vedit.cfg and vedit.key files.
“-ixxx” disables the startup.vdm file.

13. If you are not sure which of the startup.vdm, vedit.cfg and
ustartup.vdm files loaded on startup, you can place the following
commands into the corresponding files:

Get_Key("This is the STARTUP.VDM file...")

Get_Key("This is the VEDIT.CFG file...")

Get_Key("This is the USTARTUP.VDM file...")

These commands will cause VEDIT to pause and display the correspond-
ing message as each file is loaded.

14. This step is only applicable if VEDIT was installed on a Network server.

For most single-license installations, the VEDIT Home Directory and User
Config Directory are set the same, e.g. to “c:\vedit”. However, if VEDIT
is installed on a shared network server for multiple licensed users, the
VEDIT Home Directory is typically set to the network server, e.g.
“h:\apps\vedit” and the User Config Directory is typically set to a local
hard disk, e.g. “c:\vedit”.

If the User Config Directory is inadvertently set to the network server,
then your startup configuration will be the configuration saved by the last
VEDIT user.

See also:

The topic “Startup.vdm File” in Chapter 5.

The topic “Network Installation” in Chapter 2.

Troubleshooting Chapter 8 Configuration 397

VEDIT.KEY Layout File
The keyboard layout can be changed by editing the vedit.key file directly
or by selecting {CONFIG, Keyboard layout, Edit/view layout}. The latter
gives you the choice of making the layout changes temporary or saving them
into vedit.key.

There are several reasons for always editing the vedit.key file directly and
never saving it with {CONFIG, Keyboard layout, Edit/view layout} or
{CONFIG, Keyboard layout, Save layout}:
� You can add comments to the layout for future reference. (Comments are

lost if {CONFIG, Keyboard layout} saves the layout.)

� You can add Config() commands to the vedit.key file to force any
configuration changes needed to make the keyboard layout work properly.
(Config() commands are lost if {CONFIG, Keyboard layout} saves the
layout.)

After creating a custom keyboard layout, you may want to save it not only as
vedit.key, but use {FILE, Save as} to save it under an additional name,
such as “bobs.key”.

A new keyboard layout can be loaded at any time by selecting {CONFIG,
Keyboard layout, Load layout}. Any supplied “.key” file such as
normal.key, brief.key or wordstar.key can be loaded. A custom
file, such as “bobs.key” can also be loaded.

NOTE: After carefully personalizing and commenting avedit.key file, be
sure to save a copy under another name or in another directory. In
particular, don’t overwrite it with {CONFIG, Keyboard layout, Save
layout}, because any comments and Config() commands will then
be lost.

� To edit the vedit.key file:
1. Select {FILE, Open} (default: <Ctrl-O>) and select the file in the User

Config Directory, typically c:\vedit\vedit\vedit.key.

2. Change the layout as described below.

3. Save your changes, e.g. with {FILE, Save and continue} or {WINDOW,
Close}.

4. Select {CONFIG, Keyboard layout, Load layout} to load the new
vedit.key file and verify that the layout is correct.

The next time VEDIT is started, it should have the new layout. If it does
not, see “Troubleshooting” above; most likely, the startup macro
startup.vdm is overriding the layout.

398 Chapter 8 Configuration VEDIT.KEY Layout File

Modifying the VEDIT.KEY file
Follow these guidelines when editing the keyboard layout, either by editing
the vedit.key file directly or by selecting {CONFIG, Keyboard layout,
Edit/view layout}.
1. Normally, leave the first line alone. It assigns the <Enter> key to the

[RETURN] function. It must be the first line of the keyboard layout.
However, it can be preceded by comments or Config() commands.

2. Notice that all remaining lines have the same format. Each line begins
with the key or keys that are pressed to perform an editing function. This
is followed by whitespace; at least a tab or two spaces. Then comes the
entire editing sequence on one line.

3. As long as each line has the correct format, you can add new lines, delete
lines and modify lines. Wherever you need a “Tab” character enter “[TAB
CHARACTER]”; wherever you need a “newline” (i.e. Carriage-Return
and Line-Feed) enter “[RETURN]”.

4. You can add comment lines to the file by starting the line with two slashes
“//”. See the NOTE: above.

Configuration Commands in “.KEY” Files
A “.key” keyboard layout file (in Text mode), can optionally have any desired
number of lines consisting of Config() and other macro language commands.
This is useful for setting up configuration parameters that are needed to
accurately emulate other editors. For example, our supplied brief.key has
the command Config(E_Line_Mode,5) to properly make the <Home> and
<End> keys emulate the Brief (tm) editor.

When adding macro language commands to a vedit.key file, follow these
guidelines:

� Each command line must begin in column 1 with a valid command.
Comment lines can also be included beginning with the normal “//”.

� The maximum line length for commands and comments is 1000
characters.

� Complex macros using flow control statements are supported; however,
each line must be a complete macro. Text register 119 is reserved specifi-
cally for use by macros in “.key” files.

� {CONFIG, Keyboard layout, Save layout} does not save any Config()
commands or comments back into the “.key” file.

Therefore, you may find it better to make all permanent keyboard layout
changes by editing your personal “.key” file, e.g. “bobs.key”, and then copying
this file to vedit.key.

NOTE: Loading a new keyboard layout may not restore configuration
settings set by a previous “.key” file.

VEDIT.KEY Layout File Chapter 8 Configuration 399

VEDIT.CFG Configuration File
While most configuration changes can be made with the {CONFIG} menu,
there are several reasons for editing the vedit.cfg file directly:

� All configuration parameters can be changed, including some not avail-
able in the {CONFIG} menu:

� The additional characters that separate words from each other. The
characters occurring at the beginning of a line that separate para-
graphs from each other.

� Number of lines of screen overlap when using [PAGE UP] and
[PAGE DOWN]. Also the range of screen lines in which the cursor
can move before the screen scrolls.

� How many times the Command Mode help message is displayed.

� Number of Undo levels available.

� Enable or disable the “DOS shell” functions and the DOS prompt to
be used when shelled out.

� (DOS only) Force VEDIT to start up in 25, 28 or 50 line mode.

� Making numerous changes is often easier by editing thevedit.cfg file.
You can search for items and “cut and paste” between files.

� When upgrading to future versions of VEDIT, you will use the
vedit.cfg and vedit.key files to transfer your configuration to the
new version.

� User familiar with the “Command Mode” can change any configuration
parameter on the fly. Since vedit.cfg really is a VEDIT command
macro, it helps to become familiar with the configuration commands in it.

� To edit the vedit.cfg file:
1. Select {FILE, Open} (default: <Ctrl-O>) and select the file in the User

Config Directory, typically c:\vedit\vedit\vedit.cfg.

2. Change the desired Config() command parameters. Refer to the on-line
help topic “Complete List of Config() Commands” for details. Most
parameters are also described under the {CONFIG} menu in Chapter 6
(Menu Reference).

3. Save your changes, e.g. with {FILE, Save and continue} or {FILE,
Close}.

4. Select {CONFIG, Load config} to load the vedit.cfg file and verify
that the configuration is correct.

The next time VEDIT is started, it should have the new configuration. If
it does not, see “Troubleshooting” above; most likely, the startup macro
startup.vdm is overriding the configuration.

400 Chapter 8 Configuration VEDIT.CFG Configuration File

Summary of Config()
Parameters

The vedit.cfg file consists of over 200 Config() commands. Most of the
Config() commands change parameters which are also in the {CONFIG}
menu and are described in Chapter 6 (Menu Reference) and in the on-line help
for each {CONFIG} sub-menu.

Config() Parameters
The format of all Config() command lines is:

Config(name,"comment",value)

name The name of the configuration parameter to change.

comment A descriptive comment in double-quotes that is ignored by
VEDIT. It is only for your reference; for most parameters it is
identical to the name seen in the {CONFIG} menu.

value The parameter’s value as a decimal number. This is the only
field that you should change.

Config_String() Parameters
Only the Config_String() commands included in the vedit.cfg file are
summarized here.

Config_String(PR_DEF, "PRN")
(DOS version only) Selects the device to which VEDIT prints when
{CONFIG, Printer, Printer} is set to “0”. Under DOS, this is initially
“PRN”. This device can also be changed to a filename such as
"VEDITPRN.PRN"; however, each new print-job will then overwrite the
previous one.

Same as {CONFIG, Printer, Change default printer}.
Config_String(PR_START, "")

(DOS version only) Sets the “Print job start string” which is optionally
sent to the printer at the beginning of each print-job. It typically is used to
select a particular font, pitch, size or weight.

The string can either be a sequence of up to 32 characters or a “@”
followed by the name of a file containing a longer start string.

The DOS on-line help topic “PRINTING” describes how to enter the
necessary control characters into the start/finish strings.

Same as {CONFIG, Printer, Change print job start string}.

Summary of Config() Parameters Chapter 8 Configuration 401

Config_String(PR_FINISH, "")
Sets the “Print job finish string” which is optionally sent to the printer at
the end of each print-job. It typically resets the printer to its default font,
pitch, size and weight.

Same as {CONFIG, Printer, Change print job finish string}.
Config_String(OS_PROMPT, "PG$G")

The string parameter is used as the DOS prompt when shelled out to DOS
via {MISC, DOS shell}. The default “PG$G” gives a prompt of
“path>>”. This is equivalent to the DOS command “SET
PROMPT=PG$G”. For more information see your DOS manual.

Config_String(WORD_SEP, ",;:()")
Determines which characters separate words from each other. All control
characters and “space” also separate words. You could include “.”
(period), but then “e.g.” would be treated as two words. Up to 32 characters
can be specified.

Config_String(PARA_SEP, ".@!\")
Determines which characters identify lines that separate paragraphs from
each other. Lines beginning with these characters are considered “format
command lines” that will not be merged with adjacent line when re-for-
matting. Blank lines also separate paragraphs. Up to 8 characters can be
specified.

Config_String(MATCH_PAREN, "[][()({}{<><")
Determines which character-pairs are matched by {GOTO, Matching ()}.
Notice how each pair is specified using three characters. Up to 8 pairs (24
characters) can be specified.

Config_String(TOOL_MENU, "Tools")
Determines the name of the {TOOL} menu on the main menu bar. Is is
typically “Tools”, “JavaTools” or “Tutorial”.

Config_String(USER_MENU, "User")
Determines the name of the {USER} menu on the main menu bar. The
documentation assumes it is “User”, but any name up to 8 characters can
be specified.

Config_Tab() Parameter
Config_Tab(8)

Determines the tab stops. This command takes the same parameter(s) as
the {CONFIG, Tab stops} function. A single number sets a uniform tab
interval; otherwise, up to 32 explicit tab stops can be specified.

402 Chapter 8 Configuration Summary of Config() Parameters

Chapter 9

Messages

VEDIT displays a message to notify you of errors or special conditions. Many
are simply confirmation prompts to perform an operation that may be difficult
to undo. Most error messages result when you mistakenly attempt an impos-
sible operation, such as loading a non-existent file.

Messages can also result when VEDIT detects syntax and programming errors
in macros written in the VEDIT macro language. In most cases, the offending
macro command is displayed. To resolve these, refer to the VEDIT Macro
Language Reference Manual or the supplier of the macros.

Abandon (quit) altered file? [Yes] [No]
This is the confirmation prompt for a macro written in the VEDIT macro
language that is attempting to abandon the current file. Select [Yes] if you
really want to abandon the file without saving any changes.

Technical: The command option “NOCONFIRM” or “OK” suppresses
this prompt on the Buf_Empty() and Buf_Quit() commands.

Abandon (quit) all files? [Yes] [No]
This is the confirmation prompt after you select [Quit-all] in the {FILE,
Exit} dialog box. Select [Yes] if you really want to abandon all modified
files (buffers) and exit VEDIT.

Technical: This is also the confirmation prompt for the Qall() command.
Use the command option “NOCONFIRM” or “OK” to suppress it or use
the command Qally.

BAD FILENAME
The specified filename does not follow the conventions. Perhaps the
pathname or either part of the filename is too long. Also, Windows/DOS
does not allow some characters (e.g. “+”, “=”, “/”, “*”, “$”, “,”) in a
filename.

BAD PARAMETER
You specified an invalid command parameter.

Technical: Numerous commands give this error if you specified an invalid
argument or a numeric argument is out of range. The actual command is
displayed.

Chapter 9 Messages 403

BLOCK IS TOO LARGE FOR TEXT REGISTER
The block you are attempting to copy or move to a text register or with
{BLOCK, Copy/Move to cursor} is too large; most likely it is greater
than the maximum 256 Kbytes that VEDIT can currently handle.

If the block contains normal text (i.e. it is not a binary file containing Null
characters), you can often perform the copy/move using the Windows
clipboard. The maximum block size is about half of your physical mem-
ory; however, huge clipboard operations are often very slow.

Alternatively, you can use {FILE, Save block as} to write the huge block
to a disk file, such as “block.tmp”. You can then insert the block into any
file at the cursor position with {EDIT, Insert, Insert file}.
See the topic "Blocks - Cut and paste huge blocks" in Chapter 4 (or on-line
help) for details on how to cut and paste huge blocks of any size.

BREAK
You pressed [CANCEL] (<Ctrl-\>) or <Ctrl-C> while printing or while
a command macro is running.

This message can also occur if a macro or menu function could not
complete and VEDIT could not determine its exact cause. If it persists,
you may want to exit VEDIT and restart it.

[C]ANCEL, [I]GNORE, [R]ETRY? (DOS only)
Occurs when DOS detects an error and is preceded by “READ ERROR”
(disk drive door open, read error), “WRITE ERROR” (disk write error)
or “PRINTER NOT READY” to indicate the type of error. Press “C” to
cancel the operation. This is safe because it returns to VEDIT. Press “R”
to retry the operation, such as after closing the drive door. You can press
“I” to ignore, but this usually just leads to another error.

CANNOT CLOSE FILE (LOCKED BY ANOTHER PROGRAM?)
VEDIT cannot currently close the output file and save the file. Most likely,
the file is open in another program which has locked it. This can happen
on a network file where other users might be accessing the same file. After
exiting the other program, you should be able to select {FILE, Close} to
save the file.

Technically, VEDIT has successfully saved the file with a temporary
filename, e.g. with a “.#01” filename extension, but cannot rename it to
the correct filename.

CANNOT CREATE WINDOW
{WINDOW, Custom split} attempted to create a window that already
exists or you specified too small/large a size.

Technical: Win_Split() attempted to split a reserved window, create a
window that already exists, or create too small/large a window.
Win_Reserved() attempted to create a second window at the top or
bottom of the screen. At most, there can be one reserved window at the
top and one at the bottom.

404 Chapter 9 Messages

CANNOT ENTER CTRL-Z
Obscure. You cannot enter a Ctrl-Z character into a file when
Config(F_EOF_PROC) is enabled (it is disabled by default), because
Ctrl-Z is then treated as the “End-of-file” marker.

CANNOT FIND: search string
The specified search string could not be found. This is a normal message
for {SEARCH} menu items when no more occurrences can be found.
Remember that VEDIT always searches from the current cursor position;
perhaps you want to restart the search from the beginning of the file.

Technical: Use the “NOERR” option on the applicable commands to
suppress this message.

CANNOT MODIFY EXECUTING MACRO REGISTER
Caused by a programming error within a VEDIT command macro.

Technical: A macro cannot modify the contents of any text register that
contains the currently executing macro commands. This includes any
parent macro when Call() commands are used. In other words, self-modi-
fying macros are not allowed.

CANNOT NEST KEYSTROKE MACROS
You previously pressed a keystroke macro that contains the Visual()
command to return to Visual Mode. While in Visual Mode you pressed
another keystroke macro. This is not allowed — a previous keystroke
macro must finish running before you can press another one. Keystroke
macros rarely need a Visual() command in them. They should never have
Visual() at the very end; they automatically return to Visual Mode.

CANNOT OVERWRITE READ-ONLY FILE
The file you specified with {FILE, Save as} or {FILE, Save block as} is
a read-only file and cannot be overwritten.

CANNOT RUN COMMAND.COM, ERROR #
Windows version: Most likely, DOS cannot find its COMMAND.COM
file — make sure your “COMSPEC” environment variable is set correctly.
Check that you can enter DOS from the normal desktop MS-DOS icon.

DOS version: Usually indicates that there is not enough memory to shell
out to DOS and run COMMAND.COM. Perhaps you can exit one or more
edit buffers to free more memory space. You should have V-SWAP
installed in memory before running VEDIT in order to prevent this error.
This error also occurs when DOS cannot find its COMMAND.COM file
— make sure your “COMSPEC” environment variable is set correctly.

Cannot undo this operation! Proceed anyway? [Yes] [No]
There is insufficient free memory to delete the (large) block of text and
undo it if needed. This prompt does not occur if the deletion can be undone.

Chapter 9 Messages 405

CLOSE ERROR
The output file could not be closed and therefore is not saved! This is a
very unusual condition, but can occur if the disk becomes inaccessible,
e.g., if VEDIT was attempting to save the file on a floppy disk and you
prematurely removed the disk. This can happen on a network system, if
the network goes down.

Unfortunately, any text that VEDIT has already attempted to write to disk
is probably lost. You can attempt to save the file to another drive with
{FILE, Save as}.
Do not confuse this with “CANNOT CLOSE FILE”.

COMMAND NOT AVAILABLE IN "-B" BROWSE MODE
Some commands are not available when you have invoked VEDIT with
the “-b” browse-only mode or “-r” restricted mode options. {FILE, Save
as} is not available in either mode; {FILE, Save block as} is not available
in restricted mode.

COMMAND REQUIRES (...):
Caused by a programming error within a VEDIT command macro.

Technical: The specified command requires parentheses and, most likely,
arguments.

DIRECTORY NOT FOUND
The directory specified as part of a filename could not be found. Perhaps
you mistyped it or specified the wrong drive. This error also occurs when
the configured VEDIT Home Directory could not be found.

DOS MEMORY OR FAT ERROR. SAVE FILES AND REBOOT
This very unlikely error indicates either that memory has been corrupted,
perhaps by an incompatible Memory-Resident program, or that DOS
detected an error in its “File Allocation Table” (FAT). After re-booting,
run the DOS “CHKDSK” program to check the integrity of the files.

END OF BUFFER REACHED
Caused by a programming error within a VEDIT command macro.

Technical: The Line() command tried to move past the beginning or end
of the file. Use the “NOERR” command option to suppress this error
message.

FLOW CONTROL STATEMENT STILL OPEN
Caused by a programming error within a VEDIT command macro.

Technical: The end of a command macro was reached before the final “}”
of a While, Do-while, Repeat or For loop was reached. Check that the
“{” and “}” are properly matching in all flow control statements. It can
also be caused by unpaired “{” and “}” occurring within string arguments
or comments.

406 Chapter 9 Messages

FILE IS BEING EDITED
The file you are trying to save to disk with {FILE, Save as}, {FILE, Save
block as} or {CONFIG, Save to disk} is currently open for editing. Open
files are locked and cannot be overwritten. Use {FILE, Buffer switch} to
see a list of files being edited.

FILE IS ALREADY OPEN IN THIS BUFFER
A macro written in the VEDIT macro language attempted to open two
files in one edit buffer.

Technical: The File_Open_Write() command attempted to open a file
for output in an edit buffer that already has an output file open. Perhaps
you want to change the output filename with File_Save_As().

FILE NOT FOUND
The file you specified for editing does not exist. Perhaps you mistyped the
pathname or specified the wrong drive.

FILE NOT OPENED
This message follows another message and reminds you that your at-
tempted file-open operation was cancelled. It generally follows an oper-
ating system error message if you attempt to open a file which is in use
(“locked”) by another program or user.

FUNCTION NOT AVAILABLE IN "DISPLAY WRAP" MODE
Some columnar block operations cannot be performed when long lines
are wrapped on the screen with {VIEW, Word wrap (Display)}. In
particular a columnar “paste” cannot be performed.

FUNCTION NOT AVAILABLE IN "RECORD" MODE
Word processing functions such as indenting and paragraph formatting
cannot be performed on binary/data files, i.e. when {CONFIG, File
handling, File type} is set to “8” or more. This prevents binary/data files
from being corrupted.

IN BROWSE MODE -OR- FILE IS READ-ONLY
You cannot alter a file which is in Browse-only mode. A file is in browse
mode if:

� It was opened with “[x] Read-only mode” in the file-open dialog
box.

� The file has the “read-only” attribute set.

� The file is in a network directory that has been set to “read-only”.

� The file is on a write-protected floppy disk.

� {EDIT, Browse mode} has been set.

� VEDIT was invoked with the “-b” browse-only mode option.

See the topic “Opening Files - Read-only Mode” in Chapter 4 (or on-line
help) for details.

Chapter 9 Messages 407

IN OVERWRITE-ONLY MODE
When editing some types of files, particularly binary (e.g., .EXE) and data
files with fixed-length records (e.g., .DBF), it is important not to change
the size of the file or it will become corrupted and unusable.

Therefore, as a default safety feature, VEDIT does not allow you to insert
or delete characters when editing data/binary files, i.e. when {CONFIG,
File handling, File type} is set to “8” or more. (With fixed-length records,
it is set to the record length; with binary files it is typically set to “16” or
“64”.)

If you are confident of what you are doing, you can disable this safety
feature by setting {CONFIG, File handling, Overwrite-only mode} to
“0”.

See the topic “Opening Files - Overwrite-only Mode” in Chapter 4 (or
on-line help) for details.

INCOMPLETE COMMAND:
Caused by a programming error within a VEDIT command macro.

Technical: The following command is missing arguments or the final “)”.
This error can result if the final quote of a string argument is missing.

INTERNAL ERROR # nn
VEDIT has detected an internal problem. After you press any key, VEDIT
will automatically select {FILE, Exit}. You can then save or abandon
your files. Or you can select [Cancel] to return to your editing; however
the error will most likely immediately reoccur. After exiting, double check
that your files are intact. Please contact us if you can replicate the error.

Technical: Following the error, VEDIT will enter Command Mode. We
suggest entering the command Exit to save your files and exit.

INVALID COMMAND:
Caused by a programming error within a VEDIT command macro.

Technical: The specified command is not a known command. Perhaps you
mistyped it or used the wrong abbreviation.

INVALID DRIVE
You specified an invalid or non-existent drive in a filename. Most likely
you mistyped it.

INVALID EDIT BUFFER OPERATION
You are attempting an operation that is valid for text registers, but is
invalid for edit buffers. You cannot change the contents of an edit buffer
except when it is the active buffer. Copying a block to an edit buffer with
{BLOCK, Copy to register} is not allowed. This error also occurs if you
attempt to execute the contents of the current buffer as a command macro
with {MISC, Execute macro} — you must first switch to another buffer.

Technical: May also be caused by an improper Reg_Copy(),
Reg_Empty() or Reg_Load() command.

408 Chapter 9 Messages

INVALID EXPRESSION:
The numeric expression you entered at the prompt for a number has
incorrect syntax.

Technical: The numeric expression used as a numeric argument has
incorrect syntax.

INVALID FLOW CONTROL
Caused by a programming error within a VEDIT command macro.

Technical: A While, Do-while, Repeat, For or If statement has incorrect
syntax. Perhaps you left off the condition or the initial “{”.

INVALID [HELP] REQUEST
During the [HELP] function you are prompted to press the function/con-
trol key for the desired edit function. Instead, you pressed a displayable
character or an unused function/control key.

INVALID KEY SEQUENCE
While setting up a keystroke macro you entered the “Function/Control
key” as an invalid “sequence” beginning with a displayable character. You
may use a function/control key, a single displayable character or a
“sequence” beginning with a control or function key.

INVALID MENU
The custom {USER} menu that you attempted to create contains a syntax
error. The {USER} menu is typically loaded with the command
Reg_Load(124,"user.mnu") in the startup.vdm file. In this case the
“user.mnu” file has a syntax error. See “{USER} and {TOOL} Menus”
in Chapter 5.

INVALID REGISTER
Caused by a programming error within a VEDIT command macro.

Technical: You specified an invalid numeric register for a numeric com-
mand. The numeric register must be in the range “0” - “127”. Or you
specified an invalid text register number which must be in the range “0”
- “127”.

INVALID TEXT MARKER
Caused by a programming error within a VEDIT command macro.

Technical: You specified an invalid text marker with the Set_Marker()
or Marker() command. The text markers must be in the range “0” - “9”.

JUMPING INTO A FLOW CONTROL STATEMENT
Caused by a programming error within a VEDIT command macro.

Technical: The Goto command cannot jump into a flow control statement.
Flow control statements can only be entered at their beginning. However,
it is allowable to jump out of a flow control statement, or to jump within
it.

Chapter 9 Messages 409

KEYBOARD LAYOUT CORRUPTED
VEDIT noticed that its internal keyboard layout table has become cor-
rupted; it will immediately exit after saving all files. May be caused by
loading an invalid .KEY file with {CONFIG, Keyboard layout, Load
layout}. If this error occurs whenever you start VEDIT, simply delete the
file vedit.key file in the VEDIT Home Directory. VEDIT will then
start up with the “normal” layout. Then select {CONFIG, Keyboard
layout, Save layout} to create a new vedit.key file.

DOS version: You may have to go back to the original VEDIT.EXE file
if the invalid keyboard layout was saved into the current VEDIT.EXE file.

LABEL MISSING: label:
Caused by a programming error within a VEDIT command macro.

Technical: The Goto command could not find the “label:” it is to jump to.
Perhaps the “:” is missing.

Lines too long; {CONFIG, File handling, File type}
now set to 64 (Binary)

Although VEDIT is designed to edit lines of any length (DOS version is
limited to a maximum line length of 64,000), VEDIT may occasionally
get confused when editing (binary) files with extremely long lines as
“text” files. It will then set {CONFIG, File handling, File type} to “64”.
Since it indicates an “Internal error”, you should save your files and exit
as soon as possible.

This message should never occur. If you can ever replicate it with a
particular file, we would appreciate having you email us the file (after
“zipping” it) so that we can correct the problem.

MACRO ERROR IN r
This message often precedes other error messages to indicate in which text
register the offending command occurred. ‘r’ has value 255 for command
macro errors occurring in keystroke macros.

NESTING (STACK) ERROR
Caused by a programming error within a VEDIT command macro.

Technical: You cannot nest command macros deeper than 25 levels. This
error often is caused by a macro that recursively calls itself — e.g. register
10 contains the command Call(11) and register 11 contains the command
Call(10). Flow control structures cannot be nested deeper than 25 levels.
Using commands as arguments to other commands cannot be nested
deeper than five levels. The Save_Pos() command can only save five edit
positions on its stack. Also caused when Reg_Push() or Num_Push()
attempt to push too many registers. Also caused by Out_Ins() that doesn’t
have a matching Out_Ins(CLEAR); similarly for other re-direction com-
mands.

410 Chapter 9 Messages

New file
This message briefly displays on the status line if the file opened for
editing did not exist and a new file has been created. If you typed the wrong
filename, you can edit the correct file by immediately selecting {FILE,
Open, Same buffer} (<Alt-O>).

No assigned filename! Enter "Save As" filename:
There is no filename assigned into which to save the current edit buffer,
e.g. with {FILE, Exit}. VEDIT is prompting you for the desired filename.

NO CURRENT SEARCH/REPLACE STRING
The {SEARCH, Again} function did not operate because you have not
yet specified a search or replace string with {SEARCH, Search} or
{SEARCH, Replace}.

NO DISK SPACE
The disk became full before the entire file(s) was saved to disk. To save
your file(s) you must first delete some unneeded files. Alternatively, you
might be able to save the file to another disk using {FILE, Save as}.
Windows version: Switch to Explorer (or Program Manager) and delete
any old unneeded files to make more free disk space.)

DOS version: Shell to DOS with {MISC, DOS Shell} and delete any old
unneeded files.

See the topic “Maximum File Size” in Appendix A for a description of
how much disk space VEDIT requires to edit files.

NOTE: Never delete any files while VEDIT is running that have “#”, “$” or
“%” in their filename extension, e.g. “.#01” “.1$$” and “.1R$”. They
are temporary files needed by VEDIT. (You can delete them after
exiting VEDIT in the unlikely event they still exist.)

NO EDIT BUFFER AVAILABLE
You are attempting to simultaneously edit more files than VEDIT has
available edit buffers. At most 99 (DOS 32) files can be simultaneously
edited; however command macros can use edit buffers for their own
purposes and reduce this number. Perhaps you can close some of the files
you are done editing with {FILE, Close}.

NOT ENOUGH MEMORY FOR OPERATION
There was insufficient memory within VEDIT to perform the operation.
This error will rarely occur. (VEDIT uses memory very sparingly; it is not
related to the amount of RAM in your computer.)

This error will occur with {EDIT, Insert, Insert file} if the current buffer
does not yet have a file open. First open a file with {FILE, Open} or
{FILE, Save as}.
Be sure that configuration parameter Config(F_AUTO_BUF) is set to
“2” as it always should be. (Other settings are provided for backwards
compatibility with old macros.)

Chapter 9 Messages 411

NOT ENOUGH MEMORY TO AUTO-BUFFER
(Rare, but possible with DOS version) There is insufficient free memory
in the edit buffer to perform auto-buffering. Most likely you are simulta-
neously editing more files than the DOS version of VEDIT can handle
with the available memory. You must empty some text registers and/or
close other files.

If there is sufficient free memory, try editing the file in binary mode by
setting {CONFIG, File handling, File type} to “64”.

NOT ENOUGH MEMORY TO LOAD VEDIT (DOS Only)
There is insufficient memory available for VEDIT to start up — approxi-
mately 180K is needed. Use the DOS “MEM” or “CHKDSK” command
to see how much is available.

NOT FOUND IN HELP FILE
The help topic you selected could not be found in the on-line help file.
Most likely you entered the topic name incorrectly.

Ok to truncate (erase) output file? [Yes] [No]
Typical users should never see this error message.

Technical: This is the confirmation prompt for the rarely-used
File_Truncate() command which truncates and closes the current output
file. (The word “erase” is to remind you that improper use of this command
can erase the file being edited!) Use the command option “NOCON-
FIRM” or “OK” to suppress the confirmation.

Ok to erase these files? [Yes] [No]
This message only occurs when a VEDIT macro uses the File_Delete()
command to delete files from disk. Select [Yes] to delete the listed files.

Ok to overwrite existing file? [Yes] [No]
The functions {FILE, Save blocks as} and {CONFIG, Keyboard layout,
Save layout} ask for confirmation if the designated file to be written
already exists on disk. Select [Yes] to overwrite the existing disk. Note
that these functions DO NOT create a “backup” of any existing file.

Technical: The Reg_Save(), Config_Save() and Write_Block() com-
mand asks for confirmation if the designated file to be written already
exists on disk. Use the command option “NOCONFIRM” or “OK” to
suppress the confirmation.

PRINTER/DEVICE NOT READY (DOS Only)
The printer does not respond — most likely it is not turned on or is not set
“on-line”. Under DOS, this message is followed by “[C]ANCEL,
[I]GNORE, [R]ETRY”. Press “R” to retry after setting your printer
on-line. Press “C” to cancel the print command.

412 Chapter 9 Messages

PRINTING -- Press <CTRL-C> to Abort
This message is displayed anytime text is being printed. It reminds you
that you can press <Ctrl-C> to stop the printing. Because many printers
have “print buffers”, your printer may continue printing for some time
after you press <CTRL-C>.

READ ERROR
An error occurred reading from disk — perhaps the drive door is not closed
or you are trying to read an unformatted floppy disk. Under DOS, this
message is followed by “[C]ANCEL, [I]GNORE, [R]ETRY”. Press “R”
to retry after closing the drive door. Press “C” to cancel the read command.
If the disk has developed a bad sector, you can press “I” to ignore the error,
but this will likely read a block of garbage from the disk.

Redefine displayable char? [Yes] [No]
The “Function/Control Key” you entered while adding a new keystroke
macro is a displayable character which is about to be assigned a new
meaning. Select [Yes] to redefine it, or [No] if you made a mistake and
do not want to redefine it.

Redefine existing key? [Yes] [No]
The “Function/Control Key” you entered while adding a new keystroke
macro is already assigned to an edit function or a keystroke macro. Select
[Yes] to redefine it, or [No] if you made a mistake and you do not want
to redefine it.

Technical: The command option “NOCONFIRM” or “OK” suppresses
this prompt on the Key_Add() command.

REGISTER NOT AVAILABLE / PROTECTED
Command macros can protect the text registers they use internally so that
they are not accidentally modified from Visual Mode. We suggest that
text registers 0 through 9 be used as Visual Mode “cut and paste” registers.
Command macros should only use registers “10” and up for their own use.
Ideally, command macros should use the highest numbered registers
possible to reduce the chance of this error.

REGULAR EXPRESSION SYNTAX ERROR (SEARCH)
There is a syntax error on the search side of a regular expression. Perhaps
a “]” or “}” is missing or the groups are not nested properly. The “OR”
operator “|” cannot occur within groups — only between groups. A regular
expression cannot begin with “*”. When using “\n”, be sure that the ‘n’th
group already exists.

REGULAR EXPRESSION SYNTAX ERROR (REPLACE)
There is a syntax error on the replacement side of a regular expression.
Most likely you are improperly using “\n” — be sure that the ‘n’th group
was defined on the search side. (Counting starts at 1.)

Chapter 9 Messages 413

REGULAR EXPRESSION - NOT ENOUGH MEMORY
There is insufficient free memory available to perform the search and
replace. Most likely due to an “\n” on the replacement side which corre-
sponds to many (thousands of) characters matched on the search side. Can
also result from an improperly formed expression.

SEARCH / REPLACE STRING TOO LONG
This error occurs if the overall search/replace string, plus any “variable”
characters included with “|@(r)”, exceeds 260 characters.

SYNTAX ERROR (SEARCH)
There is a syntax error in the search string using pattern matching codes.
The search string cannot end in just “|”; use “||” to search for a “|”. “|ddd”
requires that all three decimal digits are present; e.g. use “|000” to search
for the “Null” character. “|Hhh” requires that both hexadecimal digits are
present; e.g. use “|H0D” to search for the Carriage-Return character.

TOO MANY FILES OPEN (DOS Only)
You are attempting to simultaneously edit more files than the “FILES=nn”
statement in your CONFIG.SYS file allows. Increase the number by three
for each additional file you want to edit. See “Checking your CON-
FIG.SYS file” in Chapter 2 (Getting Started).

V-SWAP ERROR #n (DOS Only)
VEDIT attempted to use V-SWAP while shelling out to DOS and an error
occurred. See “V-SWAP Error Messages” in the on-line help topic
"VSWAP" for a detailed description.

WAITING FOR PRINTER -- Press <CTRL-C> to Abort
VEDIT is waiting on a network or multi-user system for another program
or user to release the printer before it can begin printing. This message
changes to the normal printing message once printing begins.

WRITE ERROR
An error occurred writing to disk — perhaps the drive door is not closed
or you are trying to write to an unformatted floppy disk. Under DOS this
message is followed by “[C]ANCEL, [I]GNORE, [R]ETRY”. Press “R”
to retry after closing the drive door. Press “C” to cancel the write
command. If your disk has developed a bad sector, you should attempt to
save the file to another disk using {FILE, Save as}.

414 Chapter 9 Messages

Appendices

A - File Management
This is a technical description of VEDIT’s file handling. It explains the
automatic file buffering used to handle large files. For most applications, it is
not necessary to have a detailed knowledge of how VEDIT manages large files
and memory.

Basic File Handling
The purpose of editing is to either create a new file, or to modify an existing
file. When a file is first created, the initial text is entered with the editor,
corrections are made, and the text is then saved on disk. When an existing file
is edited, it is read from disk (opened), modified, and then written back to disk
(closed) with either the original filename or a new filename.

Since VEDIT can edit files that are much larger than memory, it processes two
files while editing — it reads text from the existing file called the “input” file
and writes text to a new file called the “output” file.

When VEDIT edits an existing file, it performs the following operations:

1. The existing file is opened as the “input file”. As much of it as will fit is
read into memory; for smaller files, all of it is read into memory.

2. A new file is created for the “output file”. It temporarily has the desired
filename, but with an extension of “.r$$”, where ‘r’ is the edit buffer
number. The main buffer #1 uses the extension “.1$$”. Buffer #10 uses
the extension “.A$$”, buffer #11 uses “.B$$” and so on.

3. The file is edited as desired. In the case of large files, VEDIT will shuffle
text between the input and output files so that the desired portion is in
memory and can be displayed on the screen.

4. When saving the file, VEDIT performs some file renaming — it first
renames the existing input file to have an extension of “.BAK”. This is
referred to as the “backup” of the file. Any previous backup of the file is
deleted by this process.

It then renames the “.r$$” output file to the real name of the destination
file.

A - File Management Appendices 415

Automatic File Buffering
When editing files which are larger than can fit into memory at one time,
VEDIT shuffles text between the input and output files so that the desired
portion is in memory and can be displayed on the screen. We call this shuffling
“auto-buffering”.

Conceptually, it helps to consider the displayed screen a “window” into the
edit buffer. This “window” may readily be moved anywhere within the edit
buffer with the [PAGE UP], [PAGE DOWN] and other cursor movement
functions. Furthermore, the edit buffer can be considered a “window” into a
large file. Moving this edit buffer “window” toward the end of the file is
referred to as “forward file buffering”, and moving it toward the beginning of
the file as “backward file buffering”.

VEDIT also performs auto-buffering, when necessary, to insert large blocks
of text. For example, if there is not enough free memory to insert the contents
of a large text register, part of the edit buffer will be written to disk to make
the necessary memory free.

Backward File Buffering
When editing a large file, you often want to edit some text which has already
passed through the edit buffer and has been written to disk (to the output file).
This is the purpose of backward file buffering.

Backward file buffering reads text from the output file back into the beginning
of the edit buffer for further editing. First, however, it makes additional space
free in the edit buffer by writing out text from the end of the edit buffer to a
temporary disk file. The file has a name extension of “.rR$” where ‘r’ is the
edit buffer number.

Since backward disk buffering requires an additional temporary file, VEDIT
requires additional free disk space when editing files.

Although backward file buffering works just as automatically and invisibly as
forward file buffering, it must be used with a little more care, especially if you
are using floppy disks. Since it requires an additional temporary file, you are
more likely to run out of disk space.

Maximum File Size
Since editing a large file requires both an input file and an output file, the
maximum file size that can be edited is 1/2 of a disk. (Reading from the input
file does not free up disk space.) If the input and output files are on different
drives, the maximum file size is a full disk. Due to the additional temporary
file needed for backward file buffering, the maximum file size (in the worst
case) is reduced to 1/3 of a disk. The temporary file is always on the current
drive. (With a three drive system you could safely edit a file one disk in length,
by making the current, the input file and output file drives all different.) These
file size limitations arise because in the worst case VEDIT needs to create a

416 Appendices A - File Management

temporary file which is nearly as large as the output file, which is generally as
large as the input file.

It is always best be to sure that there is enough free disk space before editing
a file. The DOS “DIR” command can tell you the size of the file being edited
and the amount of free disk space.

When the amount of free space is twice the size of the file being edited, you
are usually safe (unless the new file will be significantly larger than the original
file). You can include any “.BAK” version of the file being edited in the amount
of free space available. If the amount of free space is not at least equal to the
size of the file being edited, you will run out of disk space even without
backward file buffering.

If the amount of free disk space is barely greater than the size of the file being
edited, you should avoid backward disk buffering — going to the beginning
of the file when it is no longer in memory. The format of the “LINE” message
on the status line tells you whether the beginning of the file is in memory.

SUGGESTION: If you are near the end of a very large file and need to go to
the beginning, it is often faster to use {FILE, Open, Same
buffer} (<Alt-N>) to start editing the file over again. This
has the added benefit of saving the current file.

Networking and Multi-Tasking
Some operating systems, such as UNIX and QNX allow several programs to
be run simultaneously on one computer system by one or more users. Networks
also allow multiple users to access a common set of files. These environments
must deal with the situation where one program attempts to access a file which
is already in use by another program. In effect, the second program is denied
access to the file, or “locked out”. This process is called “file locking”. For
example, two users cannot simultaneously run VEDIT on the same file.

VEDIT is designed to work in both environments and in conjunction with their
file locking. Typically, if you try to access a file with VEDIT which is already
in use by another program, the operating system will first issue you an error
message. Then VEDIT will issue an additional error message “FILE NOT
OPENED” to note that the file was not successfully accessed. VEDIT ensures
that files which it is working on, or will soon need to access, are locked from
use by other programs. VEDIT will also release files as soon as it is done with
them so that they may then be used by other programs.

VEDIT also prevents you from editing the same file in two edit buffers.
(Otherwise, it would be unclear which edit buffer contained the “real” file.)
However, you can edit different parts of a file (using one edit buffer) in multiple
windows.

A - File Management Appendices 417

B - Search Modes Summary

Pattern Matching Codes
NOTE: Only the codes “|Hhh”, “|N”, “|Oooo”, “|ddd” and “|@(r)” can be

used on the replacement side.
|A Match any alphabetic letter, upper or lower case.
|B Match a blank - one space or tab.
|C Match any control character.
|D Match any numeric digit - “0” - “9”.
|F Match any alphanumeric - a letter or a digit.
|G Match any graphics (high-bit) character.
|Hhh Match the character with hexadecimal value ‘hh’. Can also be used on

the replacement side.
|I Match any word separator, including Config_String(WORD_SEP).
|K Match any non-standard control character other than Tab, Carriage-

Return and Line-Feed.
|L Match “newline”: Carriage-Return and/or Line-Feed. CR is optional in

DOS/Windows files.
|M Multi - match any sequence of zero or more characters. It can match many

characters over many lines. (See also |Y and |*).
|N Match “newline” characters, similar to “|L”. CR is required in DOS/Win-

dows files. Can also be used on the replacement side.
|Oooo Match the character with octal value ‘ooo’. Can also be used on the

replacement side.
|P Match any “parenthesis” character - { } [] () < >.
|S Match any separator - not a letter, digit or “_” (underscore).
|T Match the Tab character (value 09). Can also be used on the replacement

side.
|U Match any upper case letter.
|V Match any lower case letter.
|W Match white space - single or multiple Spaces or Tabs.
|X Match extended white space - one or more Spaces, Tabs, Carriage-

Returns and Line-Feeds.
|Y Match multiple characters until the next pattern matches.
|ddd Match the character with decimal value ‘ddd’. Can also be used on the

replacement side.
|000 Match the Null (value 00) character
|< Match beginning of line (zero length match).
|> Match end of line (zero length match).
|* Wildcard - match any sequence of zero, one or more characters on the

same line.
|? Match any character.
|! Match any character except following character or pattern.

418 Appendices B - Search Modes Summary

|{set} Matches one occurrence of any item in the “pattern set”.
|[set] Matches one optional occurrence of any item in “pattern set”.
|@(r) Access contents of text register ‘r’ as a variable string.
| | Use “| |” when you need to search for a “|”.

Regular Expressions
Expressions that match a single character:

. (Period) Simple wildcard that matches any character.
[list] Matches any one character in the ‘list’.
[^list] Matches any one character not in the ‘list’.
[~list] Same. “[~” is equivalent to “[^”.
\b Matches the ASCII backspace character (hex 08).
\dDDD Matches the character with decimal value ‘DDD’. All three digits MUST

be present.
\e Matches the ASCII <Esc> character (hex 1B).
\f Matches the ASCII Form-feed character (hex 0C).
\hHH Matches the character with hexadecimal value ‘HH’. Both digits MUST

be present.
\n Matches the Line-Feed character (hex 0A). This is the “newline” char-

acter for UNIX type text files. To search for multiple-line patterns, use
“\N” instead.

\N Matches the “newline” character(s) and allows searching for multiple
line patterns. The “newline” depends upon the current file type and can
be CR, CR+LF or LF. (“\N+” and “\N*” are currently not supported.)

\oOOO Matches the character with octal value ‘OOO’. All three digits MUST
be present.

\r (Lower case) Matches the ASCII CR character (hex 0D).
\s Matches the ASCII space character (hex 20).
\t Matches the ASCII tab character (hex 09).
\0 (Zero) Matches the ASCII Null character (hex 00).
\ “\” followed by a special character matches that character. The special

characters are:
^ $. * + ? - ~ \ | [] { }

Expressions that match multiple characters:

* Matches zero or more occurrences of the preceding single character
matching expression.

+ Matches one or more occurrences of the preceding single character
matching expression.

? Matches zero or one occurrences of the preceding single character
matching expression.

\1 - \9 Matches the same text as was matched by the previous ‘n’th group.

Other:

^ (Caret) Matches the beginning of a line (when it is the first character in
a regular expression).

B - Search Modes Summary Appendices 419

$ Matches the end of a line (when it is the last character in a regular
expression).

{ } Groups expressions for future reference in either the search string or
replacement string.

| Matches any text that is matched by the preceding OR the following
expression. It cannot occur within { }.

\@(r) Use the contents of text register ‘r’ in this position in the search (or
replace) string.

Replacement Side:

\b The ASCII backspace character (hex 08).
\dDDD The character with decimal value ‘DDD’. All three digits MUST be

present.
\e The ASCII <Esc> character (hex 1B).
\f The ASCII Form-feed character (hex 0C).
\hHH The character with hexadecimal value ‘HH’. Both digits MUST be

present.
\n The Line-Feed character (hex 0A). This is the “newline” character for

UNIX type text files.
\N The “newline” character(s) depending upon the current file type and can

be <CR><LF>, <LF> or <CR>.
\oOOO The character with octal value ‘OOO’. All three digits MUST be present.
\r The Carriage-Return character (hex 0D).
\s The ASCII space character (hex 20).
\t The ASCII tab character (hex 09).
\0 (Zero) The ASCII Null character (hex 00).
\@(r) Use the contents of text register ‘r’ in this position in the replacement

string.
\1 - \9 Same text as was matched by the n’th group on the search side.
& Entire text that was matched by the search expression.

Precedence of Regular Expression Operators:

Regular Expression Operator Precedence

Highest: \
[]
* + ?
{ }
Concatenation

Lowest: |

420 Appendices B - Search Modes Summary

C - Application Notes
This appendix lists example keystroke macros that you can add to VEDIT.
These and many more are listed in the supplied file KEY-MAC.LIB. Some of
these macros are included in the default {USER} menu. The VEDIT macro
language is used in these keystroke macros.

NOTE: The Chapter 4 topic “Editing the Keyboard Layout - Adding a
Keystroke Macro from KEY-MAC.LIB” describes how to add these
keystroke macros to VEDIT.

Duplicate line
This keystroke macro duplicates the current line of text and moves the cursor
to the beginning of the new line.

[VISUAL EXIT] BOL() Block_Copy()

This simple macro above does not work quite right on the last line of a file.
However, the following macro does.

[VISUAL EXIT]
BOL() Block_Copy() if (Cur_Col>1) { Ins_Newline() }

Move by sentence
This keystroke macro moves the cursor to the beginning of the next sentence.

[VISUAL EXIT] Search(“.|S”) Search(“|F”)

Transpose letters
This keystroke macro transposes two characters and advances the cursor to the
following character.

[VISUAL EXIT] Block_Move(Cur_Pos+1,Cur_Pos+2) Char()

The following variation transposes the previous two characters without
advancing the cursor.

[VISUAL EXIT] Block_Move(Cur_Pos-2,Cur_Pos-1)

Insert date and time
This keystroke macro inserts the current date and time at the cursor position.

[VISUAL EXIT]
Out_Ins() Date(NOCR) Type_Space(2) Time(NOCR)
Out_Ins(CLEAR)

C - Application Notes Appendices 421

Scroll to center the current line
This keystroke macro scrolls the screen so that the current line is centered
vertically in the middle of the screen.

[VISUAL EXIT] Set_Visual_Line(Win_Lines/2)

Simultaneously [PAGE UP/DOWN] two windows
These keystroke macros perform a simultaneous [PAGE UP] and
[PAGE DOWN] in two windows. (It beeps if there are not exactly two
windows open.) Assign them to any two available keys, perhaps <Alt-PgUp>
and <Alt-PgDn>.

[VISUAL EXIT]
if (Win_Total==2) { #100=Win_Num
Win_Switch(Win_Next,ATTACH)
Do_Visual(“\PU\”) Update() Win_Switch(#100,ATTACH)
Do_Visual(“\PU\”) } else { Alert() }

[VISUAL EXIT]
if (Win_Total==2) { #100=Win_Num
Win_Switch(Win_Next,ATTACH)
Do_Visual(“\PD\”) Update() Win_Switch(#100,ATTACH)
Do_Visual(“\PD\”) } else { Alert() }

Copy block to another open file (buffer)
This keystroke macro copies the highlighted block of text to another open file’s
(buffer’s) cursor position. If three or more files are being edited, it prompts for
the buffer number.

[VISUAL EXIT]
if (be == -1){ return } Num_Push(10,10) #10=Buf_Num
Reg_Copy_Block(0,bb,be,RESET) if (bt == 2){
Buf_Switch(Buf_Next) } else {
Buf_Switch(Get_Num(‘Copy to which buffer? ‘,STATLINE)) }
Reg_Ins(0) Buf_Switch(#10) Num_Pop(10,10)

Search and list matching lines
This macro prompts for a text string and lists all lines containing the string
with their line numbers. See also {USER, Search all - show/select}.

[VISUAL EXIT]
Save_Pos()
Get_Input(103,"Enter text string: “,STATLINE+NOCR)
Win_Clear() Begin_Of_File()
while (Search(@103,ADVANCE+NOERR)) {
Num_Type(Cur_Line,NOCR) Type_Space(2)
Type(0) Type() }
Restore_Pos()

422 Appendices C - Application Notes

Delete blank lines
This keystroke macro deletes all blank lines, i.e. lines containing only a
Carriage-Return and/or Line-Feed. Does not delete “blank” lines that also
contain spaces and tabs.

[VISUAL EXIT]
Replace(“|<|>|N”,"",BEGIN+ALL+NOERR)

The following macro also deletes “blank” lines that contains spaces and tabs.

[VISUAL EXIT]
Replace(“|<|[|W]|>|N”,"",BEGIN+ALL+NOERR)

Delete lines containing a particular string
This keystroke macro prompts for a search string and then deletes all lines in
the file containing the string. As a precaution, the search string must be at least
four characters long; however, the macros should still be used with CAUTION!
The cursor is left following the last deleted line.

[VISUAL EXIT]
Get_Input(103,"Enter search string: “,STATLINE+NOCR)
if (Reg_Size(103) < 4) {

Alert()
Statline_Message(”ERROR - Minimum 4 chars") Return

}
BOF()
repeat(ALL) {

Search(“|@(103)”,ERRBREAK)
BOL() Del_Line()

}

Word count
This keystroke macro counts the number of words in a file and displays the
result. You can assign it to any desired key. It is the same as {USER, Word
count}.

[VISUAL EXIT]
M(“Counting words in file. Please wait...”,STATLINE)
Save_Pos()
BOF() #102=Search(“|s|a”,ALL+NOERR)
Restore_Pos()
#101=Win_Num
Win_Switch(STATLINE)
Win_Clear()
M(“Word count = ”) Num_Type(#102,NOCR)
Get_Key(“ Press any key...”)
Win_Switch(#101)

C - Application Notes Appendices 423

Compare two windows
This keystroke macro compares the current window with the “next” window.
It is similar to {Search, Compare buffers}, but it never prompts for the buffer
number. It beeps if there is only one window.

[VISUAL EXIT]
if ((#100=Win_Next)!=Win_Num) {

Compare(Win_Status(#100)+BUFFER)
} else { Alert() }

Align left edge of line with cursor
This keystroke macro aligns the left edge of the current line with the position
of the cursor and advances to the next line. Repeatedly pressing the assigned
key aligns the following lines. This is useful for re-aligning text in a C program.

[VISUAL EXIT]
#100=Win_Hor-1 BOL() Search(“|!|W”) Del_Line(0)
Ins_Text(“ ”,COUNT,#100) Do_Visual(“\CD\”)

Running V-SPELL (or other DOS program)
This keystroke macro runs the V-SPELL spelling corrector from within
VEDIT to correct the current file being edited. You can assign it to <Ctrl-F12>
or any other desired key. To run other DOS programs from within VEDIT,
replace “vs” with the name of the DOS program.

Note: The Out_Reg() and Dir() commands convert long filenames to the
short 8.3 format needed by V-SPELL (and other DOS programs.).

[VISUAL EXIT]
File_Save(NOMSG) Reg_Set(102,PATHONLY)
Reg_Set(102,"\",APPEND) Out_Reg(102,APPEND)
Dir("|(pathname)",NOMSG+SHORT) Out_Reg(CLEAR)
File_Close(NOMSG)
Sys("vs |@(102)",DOS+MAX+DELETE+NOMSG)
File_Open("|@(102)")

Toggle into VGA 132 column mode (DOS Only)
This keystroke macro switches some VGA cards into 132 x 25 mode using
video mode 35 (23 hex). Substitute “35” for other modes available on your
particular VGA card.

[VISUAL EXIT] #100=35 Sys_Int(16) Screen_Reset()

You can return to 25 line mode with {MISC, VGA/EGA toggle} or with the
following keystroke macro.

[VISUAL EXIT] #100=3 Sys_Int(16) Screen_Reset()

NOTE: Video hardware manufactures warn that incompatible video modes
may damage the video card and/or monitor. Therefore, only select
video modes that are supported by your hardware.

424 Appendices C - Application Notes

D - Troubleshooting
NOTES: Refer to the topic “Configuration - Troubleshooting” in Chapter 8 if

you are having trouble saving configuration changes.

The “FAQ” page on our website www.vedit.com answers many
commonly asked support questions.

DOS version: Refer to the ERRATA.TXT file for additional
troubleshooting tips specific to the DOS version.

IMPORTANT: The first step in solving a “new” problem with VEDIT (or any
other program), such as crashing, no longer printing, etc.,
is to reboot your computer. This solves most “strange”
problems that occur.

The setup program does not run.
In the unlikely event that the setup program does not run, you can start the
installation with the DOS/NT command:

vpw -e -z -v -g -k -ixxx -x installw.vdm

VEDIT does not use a traditional installation program, but instead installs itself
using a “macro”. The command above runs the macro.

Why do I get multiple instances of VEDIT when I open 2 or more
files?

You probably tried to manually set up VEDIT file-type associations using
“Folder Options” from Windows Explorer. This method can be very problem-
atic; unless you correctly set up the complex “DDE” options you will get
multiple instances of VEDIT.

The solution is to set up all associations using the VEDIT menu function
{CONFIG, Associate file types}.

Why can't I open long filenames with spaces?
This assumes you are opening files by double-clicking them in Explorer. You
probably tried to manually set up VEDIT file-type associations using “Folder
Options” from Windows Explorer. This method can be very problematic;
unless you correctly include double-quotes in the associations, filenames with
spaces will cause problems.

The solution is to set up all associations using the VEDIT menu function
{CONFIG, Associate file types}.

Why do I get the message “In Browse-Mode or File is Read-only”?
A file is opened in Read-only mode (also called Browse-only mode) if: 1) its
attributes (Properties) are set to Read-only; 2) [] Browse-only was selected
in the File-open dialog box; 3) the file is on a write-protected disk; 4) the file

D - Troubleshooting Appendices 425

is already open in another program; or 5) VEDIT was invoked with the “-b”
invocation option.

Assuming you didn't manually select [] Browse-only, then the operating
system is preventing VEDIT from making changes to the file. You will have
to determine why the file is write-protected; you cannot force VEDIT to edit
it anyway. If the file is on your local hard disk, it most likely has the
“Read-only” attribute set; this can be checked and disabled with Explorer. If
the file is on a network, it may already be open by another user, or you may
not have “write” access to the file.

SECRET: If you copy files from a CD-ROM to your hard disk using Explorer,
Windows (inconveniently) sets their file attributes to “read-only”.

The topic “Opening Files - Read-only mode” in Chapter 4 describes this in
more detail.

Why do I get the message “Overwrite-only Mode”?
Database files with fixed-length records and binary files, which VEDIT
typically opens with a record length of 64, are by default set to “Overwrite-
only” mode. This is a safety precaution; these files are typically corrupted if
characters are deleted or inserted, causing the file size to change.

Therefore, when {CONFIG, File handling, File type} is set to “8” or greater
(specifying fixed-length records), Overwrite-only mode is enabled by default.

You can easily turn off Overwrite-only mode by setting {CONFIG,
Preferences, File handling, Overwrite-only mode} to “0”.

The topic “Opening Files - Overwrite-only mode” in Chapter 4 describes this
in more detail.

How do I change the cursor color? (Windows)
VEDIT does not control the cursor color; Windows automatically picks a color
based on the background color.

However, if you have a faint gray cursor with a blue background, you can
change this to a bright yellow cursor by setting your system display properties
to 32,000 or more colors. The undesirable gray cursor is only used if your
system display is set to 256 or fewer colors.

How do I change the number of recently-used files in the {FILE}
menu.

The number of MRU files listed in the {FILE} menu can be changed by editing
the value “MaxMRU” in the vedit.ini file. It will take effect the next time
you start VEDIT. The “File selector” displays up to 100 of the most recently
edited files.

How do I print with the same font, e.g. box-drawing characters, as
in DOS?

This is a complex issue related to the ANSI and OEM character sets and fonts.
Q4501 on the “FAQ” page of our website describes it in detail.

426 Appendices D - Troubleshooting

E - IBM PC Keyboard Layout
The entire “normal” keyboard layout is listed in alphabetic order by key name.
It includes the actual contents of each keystroke macro. This list is similar to
that displayed by {CONFIG, Keyboard layout, Edit/view layout}.
<Alt-A> [MENU] CKA
<Alt-B> [MENU] B
<Alt-C> [MENU] C
<Alt-D> [MENU] VD
<Alt-E> [MENU] E
<Alt-F> [MENU] F
<Alt-G> [MENU] G
<Alt-H> [MENU] H
<Alt-I> [MENU] BN
<Alt-J> [MENU] VC
<Alt-K> [MENU] CKR
<Alt-L> [MENU] BL
<Alt-M> [MENU] M
<Alt-N> [MENU] TN (Compiler support)
<Alt-O> [MENU] FMS
<Alt-P> [MENU] TP (Compiler support)
<Alt-Q> [MENU] VI
<Alt-R> [REPEAT LAST]
<Alt-S> [MENU] S
<Alt-T> [MENU] T
<Alt-U> [MENU] U
<Alt-V> [MENU] V
<Alt-W> [MENU] W
<Alt-X> [MENU] FX
<Alt-Y> [MENU] FMH
<Alt-Z> [MENU] VZ
<Alt-`> Not assigned
<Alt—> Used by Windows
<Alt-=> [MENU] VB
<Alt-\> [MENU] VH
<Alt-[> [MENU] GN
<Alt-]> [MENU] GD
<Alt-;> Not assigned
<Alt-’> Not assigned
<Alt-,> Not assigned
<Alt-.> [MENU] VV(DOS Only)
<Alt-/> [ESCAPE] W
<Alt-Bksp> [MENU] EUE
<Alt-Cursor Down> [SCROLL DOWN]

E - IBM PC Keyboard Layout Appendices 427

<Alt-Cursor Left> [SCROLL LEFT]
<Alt-Cursor Right> [SCROLL RIGHT]
<Alt-Cursor Up> [SCROLL UP]
<Alt-Del> Not assigned
<Alt-End> Not assigned
<Alt-Enter> [MENU] HD
<Alt-F1> [MENU] HK
<Alt-F2> [MENU] SR
<Alt-F3> Not assigned
<Alt-F4> [MENU] FX
<Alt-F5> [MENU] WS
<Alt-F6> Cannot be used; reserved by Windows
<Alt-F7> Not assigned
<Alt-F8> Not assigned
<Alt-F9> [MENU] BM
<Alt-F10> [VISUAL ESCAPE]
<Alt-F11> [T-REG MOVE]
<Alt-F12> Not assigned
<Alt-Home> Not assigned
<Alt-Ins> Not assigned
<Alt-PgDn> Not assigned
<Alt-PgUp> Not assigned
<Backspace> [BACKSPACE]
<Ctrl-A> [MENU] BA
<Ctrl-B> [MENU] EF
<Ctrl-C> [MENU] EC
<Ctrl-D> [MENU] GS
<Ctrl-E> [VISUAL EXIT]
<Ctrl-F> [MENU] SS
<Ctrl-G> [MENU] GG
<Ctrl-H> [MENU] SR
<Ctrl-I> [MENU] SI
<Ctrl-J> [ERASE BOL]
<Ctrl-K> [ERASE EOL]
<Ctrl-L> [ERASE LINE]
<Ctrl-M> Not assigned
<Ctrl-N> [MENU] FN
<Ctrl-O> [MENU] FO
<Ctrl-P> [MENU] FP
<Ctrl-Q> [ENTER CTRL]
<Ctrl-R> [REPEAT]
<Ctrl-S> Not assigned
<Ctrl-T> Not assigned
<Ctrl-U> [MENU] EUL
<Ctrl-V> [MENU] EP

428 Appendices E - IBM PC Keyboard Layout

<Ctrl-W> [MENU] FC
<Ctrl-X> [MENU] ET
<Ctrl-Y> [MENU] EUR
<Ctrl-Z> [MENU] EUE
<Ctrl-[> Not assigned
<Ctrl-\> [CANCEL]
<Ctrl-]> [MENU] GM
<Ctrl-Shift-^> [ENTER CTRL]
<Ctrl-_> Not assigned
<Ctrl-Bksp> [DEL PREV WORD]
<Ctrl-Cursor Down> [NEXT PARAGRAPH]
<Ctrl-Cursor Left> [PREV WORD]
<Ctrl-Cursor Right> [NEXT WORD]
<Ctrl-Cursor Up> [PREV PARAGRAPH]
<Ctrl-Del> [DEL NEXT WORD]
<Ctrl-End> [MENU] GE
<Ctrl-Enter> [NEXT LINE]
<Ctrl-F1> [MENU] HS
<Ctrl-F2> [MENU] SA
<Ctrl-F3> [MENU] SC
<Ctrl-F4> [MENU] WO
<Ctrl-F5> [MENU] WP
<Ctrl-F6> [MENU] WN
<Ctrl-F7> [MENU] ML
<Ctrl-F8> [MENU] ME
<Ctrl-F9> [MENU] BC
<Ctrl-F10> [VISUAL EXIT]
<Ctrl-F11> [T-REG COPY]
<Ctrl-F12> Not assigned
<Ctrl-Home> [MENU} GB
<Ctrl-Ins> [MENU] EC
<Ctrl-PgDn> [SCREEN END]
<Ctrl-PgUp> [SCREEN BEGIN]
<Ctrl-Shift-C> [MENU] ESC
<Ctrl-Shift-O> [MENU] FMQ
<Ctrl-Shift-P> [MENU] MP
<Ctrl-Shift-R> [MENU] MQ
<Ctrl-Shift-S> [MENU] FS
<Ctrl-Shift-V> [MENU] ESP
<Ctrl-Shift-X> [MENU] EST
<Ctrl-Shift-Z> [MENU] EUL
<Ctrl-Tab> [MENU] WN
<Cursor Down> [CURSOR DOWN]
<Cursor Left> [CURSOR LEFT]
<Cursor Right> [CURSOR RIGHT]

E - IBM PC Keyboard Layout Appendices 429

<Cursor Up> [CURSOR UP]
 [DELETE]
<End> [LINE END]
<Enter> [RETURN]
<Esc> [ESCAPE]
<F1> [HELP]
<F2> [MENU] SS
<F3> [MENU] SN
<F4> [MENU] FB
<F5> [MENU] FV
<F6> [MENU] FT
<F7> [MENU] EFU
<F8> [MENU] EFI
<F9> [MENU] BS
<F10> [MENU]
<F11> [T-REG INSERT]
<F12> Not assigned
<Home> [LINE BEGIN]
<Ins> [INSERT TOGGLE]
<Numpad/> [VISUAL EXIT]
<Numpad*> [T-REG INSERT]
<Numpad-> [T-REG MOVE]
<Numpad+> [T-REG COPY]
<Numpad.Enter> [RETURN]
<PgDn> [PAGE DOWN]
<PgUp> [PAGE UP]
<Shift-Del> [MENU] ET
<Shift-F1> Not assigned
<Shift-F2> [MENU] SB
<Shift-F3> [MENU] SP
<Shift-F4> Not assigned
<Shift-F5> [MENU] TC (Compiler support)
<Shift-F6> [MENU] TL (Compiler support)
<Shift-F7> [MENU] TD (Compiler support)
<Shift-F8> [MENU] TM (Compiler support)
<Shift-F9> [MENU] BK
<Shift-F10> [MENU] TR (Compiler support)
<Shift-F11> Not assigned
<Shift-F12> Not assigned
<Shift-Ins> [MENU] EP
<Shift-Tab> [BACKTAB]
<Tab> [TAB CHARACTER]

430 Appendices E - IBM PC Keyboard Layout

F - IBM PC Color Chart
Value Text on Background Value Text on Background
16 Black on Blue 1 Blue on Black
32 Green 33 Green
48 Cyan 49 Cyan
64 Red 65 Red
80 Magenta 81 Magenta
96 Brown 97 Brown
112 White 113 White

2 Green on Black 3 Cyan on Black
18 Blue 19 Blue
50 Cyan 35 Green
66 Red 67 Red
82 Magenta 83 Magenta
98 Brown 99 Brown
114 White 115 White

4 Red on Black 5 Magenta on Black
20 Blue 21 Blue
36 Green 37 Green
52 Cyan 53 Cyan
84 Magenta 69 Red
100 Brown 101 Brown
116 White 117 White

6 Brown on Black 7 White on Black
22 Blue 23 Blue
38 Green 39 Green
54 Cyan 55 Cyan
70 Red 71 Red
86 Magenta 87 Magenta
118 White 103

14 Yellow on Black 8 Grey on Black
30 Blue 24 Blue
46 Green 40 Green
62 Cyan 56 Cyan
78 Red 72 Red
94 Magenta 88 Magenta
110 Brown 104 Brown
126 White 120 White

F - IBM PC Color Chart Appendices 431

G - ASCII Table

NOTES: This table displays the IBM PC (OEM) character set.

Windows version: Select {MISC, ASCII table} to see how all
characters in the currently selected font are displayed.

The values 0 (Null), 32 (Space) and 255 appear identical on the
screen. Use {CONFIG, Characters/Cursors, Null display
character} to change how the Null character is displayed.

432 Appendices G - ASCII Table

INDEX

! “.1$$” file, 415
“.1R$” file, 416
“1-END” message, 81
132 Column mode, 424
“<” message, 81
[and] (in regular expressions), 150
\ (regular expression escape character), 151
{ and } (in regular expressions), 153
| (in regular expressions), 152
| (pattern matching codes), 137, 142, 418
|@(r), 148

A Abandoning file (See also File - Exit and File - Close), 70 - 73
<Alt> key shortcuts, 366
ANSI - Translate graphics characters, 189 - 192
ANSI character set, 280

Editing, 95
Font, 82
Printing, 133

ANSI to OEM translation, 280
ASCII - Translate to EBCDIC, 189 - 192, 281
ASCII Table, 269 - 270, 310, 432
ASCII to Unicode translation, 281
Assembly language programming, 92, 146

Ctags, 232 - 233
Associate file-types, 330
Auto-buffering, 416
Auto-configuration (Startup), 59
Auto-execute macros, 215
Auto-file save, 73, 353
Auto-indent mode, 160, 338
Auto-save config, 332
AUTOEXEC.BAT file, 30

B [BACKSPACE], 106, 349, 351, 385
[BACKSPACE] emulation mode, 349
[BACKTAB], 385
Backup file (“.BAK”), 72, 353, 415
Backward file buffering, 416
Beep level, 364
Beginning of file/buffer, 304
Binary file editing, 286
Binary files, 80, 178, 180, 355

Header size, 181
BIOS - Keyboard input, 94

433

Block, 110 - 128
{BLOCK} menu, 293 - 303
Auto-replace, 351
Characters included, 112
Columnar blocks, 110, 124
Copy/move (See Copying/moving text), 110 - 128
Cut and past huge blocks, 120
Delete, 272, 301
Fill, 117, 302
Fill character, 335
Highlighting (See Block markers), 110
Indent, 122, 264
Line blocks, 110
Overstrike, 117
Search, 140, 321
Translating, 189 - 192, 281
Write to disk, 247

Block markers, 80
Auto-cancel, 352
Clear, 112, 255, 352, 382
Goto, 305
Highlight color/attribute, 346
Highlighting, 110, 124, 352
Persistent blocks, 113, 300, 351
Remove, 296
Setting, 110 - 111, 293, 351
Setting columnar markers, 295
Setting line markers, 295

“BLOCK” message, 80
Box drawing mode, 311, 364
Browse mode, 59, 68, 80, 252, 355, 407
Buffer (See Edit buffer), 247
“BYTE” message, 80

C C programming
Ctags, 232 - 233
Syntax highlighting, 207
Template editing, 210

[CANCEL], 386
“Caps” lock, 80
<CR>, 88, 355
Carriage-Return character, 88, 178, 355

Searching, 145
Case (See Lower and upper case), 92
Center line, 257, 336
CFUNC.VDM macro, 229
Clipboard, 83, 121, 253
“COL” message, 80
Collate table, 165, 167
Color

Chart, 431

434

Configuration, 345
Edited text, 290, 346
Syntax highlighting - See Syntax highlighting, 206 - 208
Toggle, 290

Column
Display column #, 80
Go to column #, 306

Columnar block (See Block), 124, 295
Command macros, 212 - 214

Auto-execution, 60, 215
Execute, 214, 314 - 315
Load, 214, 314
Text register usage, 214

Command Mode, 212, 390
Enter via {Escape} menu, 381
Enter via keystroke macro, 108
Message on status line, 80

Comments (Assembly language), 146
Compare

Buffers (files), 322
Directories, 224
Files, 222 - 223

COMPARE.VDM macro, 222 - 223
COMPDIR.VDM and COMPDIR.BAT files, 224
COMPILE.CNF file, 236
Compiler support, 234 - 238

Description of files, 37
Installation, 235
Startup, 317
Using, 237

CONFIG.SYS file, 30
Configuration

{CONFIG} menu, 329 - 366
Edit buffer dependent parameters, 333
File-open, 201 - 205, 373 - 375
Introduction, 33
Keyboard layout, 38 - 42, 367 - 372
Load from disk, 332
Network, 31 - 32
Overview, 329 - 366
Save to disk, 331 - 332
Startup, 59, 363
STARTUP.VDM file, 193 - 198
USTARTUP.VDM file, 195
VEDIT.CFG file, 400
VEDIT.KEY file, 398 - 399

Continuation character, 86
Continuation line, 86
Control characters

Display, 88, 285, 343
Entering, 87, 268

435

Keyboard, 87
Search for, 138

Convert lower to upper case (See Lower and upper case), 92, 277
Converting

Between file types, 182 - 188
Copying/moving text, 114

Between files, 173, 222
Huge blocks, 120
To a text register, 116, 261, 297
To the cursor, 300
To the Scratchpad, 115, 261
To the Windows clipboard, 121, 253

Ctags facility, 232 - 233
<Ctrl> key, 366

Double-tapping, 112
<Ctrl-\>, 80
<Ctrl-C>, 216, 412
Current directory, 67, 353, 378
Cursor

Blink rate, 345
Display (style and type), 94, 345
Position after block insertion, 271, 351
Positioning mode, 348

[CURSOR DOWN], 386
[CURSOR LEFT], 349 - 350, 386
Cursor movement

By paragraphs, 48, 388
By screens/pages, 48, 388
By sentence, 421
By words, 47, 388
In text, 47, 386

[CURSOR RIGHT], 349 - 350, 386
[CURSOR UP], 386
Cut and Paste (See also Copying/moving text), 261

D Data files (See also Binary files), 180
Database files

Editing, 181, 227 - 228
Fixed-length records, 66, 184

Date
Display, 379
Insert date and time, 105, 421

dBase files, 227 - 228
DDE, 330, 425
Default

Directory, 67, 353, 378
Invocation options, 61

[DEL NEXT WORD], 47, 273
[DEL PREV WORD], 47, 273
Delete

Block of text, 272, 301

436

Large blocks, 84
Line, 273
Text (Overview), 46
Undo, 84, 259
Words, 273, 386

[DEL NEXT WORD], 387
[DEL PREV WORD], 386
[DELETE], 351, 386

At end of line, 179
Detabbing (Tabs to spaces), 278
Directory

Compare two directories, 224
Current (starting), 56, 67, 353
Default, 378

Disk full error (recovery), 410
“DISK” message, 80
Disk space

Maximum file size, 416
Usage, 416

Display font, 291
Display modes, 88, 285, 343
DOS Shell, 311 - 312

V-SWAP, 30
DOS text file, 179, 355

Convert to UNIX, 179
Drag and drop, 55, 170
Duplicate line (macro), 421

E EBCDIC, 80
Editing, 98 - 100
Translate to ASCII, 189 - 192, 281

“EBCDIC” message, 80
Edit buffer

Attach to window, 175
Close, 172, 244
Configuration parameters, 333
Details, 174
ID number, 342
Insert as a text register, 174
Multiple file editing, 63
Naming, 175
Number on status line, 80, 247
Open, 240 - 242
Switching, 172, 247 - 248

Edit function - Reference, 385 - 390
{EDIT} menu, 252 - 257
Edit session restore, 59, 71, 249, 354
Editing

Binary files, 286
Hex-mode, 96 - 97, 286
Multiple files, 63, 170 - 174, 241 - 242

437

New file, 240 - 242
One file in two windows, 177
Switching between files, 172, 247 - 248

Emulation
Modes, 93
Of other editors, 348

End-Of-File display, 292
End-Of-File/Buffer, 304
End-Of-Line character (See Newline character), 178
[ENTER CTRL], 268, 387
<Enter> key, 45, 179, 349, 355
Entering new text, 45
Environment variable “VBACKUP”, 73
Environment variable “VEDIT”, 61
Erase (See Delete), 273
[ERASE BOL], 273, 387
[ERASE EOL], 273, 387
[ERASE LINE], 273, 387
Error messages, 403 - 414
<Esc> key

Enter into text, 268, 368
[ESCAPE], 387
{ESCAPE} menu, 381 - 382
European language characters, 362
Event macros, 118, 209 - 210
Exit

Save/restore edit session, 71, 249
VEDIT, 54, 70 - 73, 250, 382

Explorer
Enable filename extensions, 203

Explorer - associate file-types, 330

F Favorite files (See File - Favorite), 74 - 77
File

{FILE} menu, 240 - 251
Altered/unaltered, 70, 80, 244, 252, 258
Binary, 178 - 181, 355
Buffering, 416
Change name (Save as), 246
Close, 172, 244
Comparison, 322
Comparison (macro), 222 - 223
Converting file types, 182 - 188
Exit - save/abandon, 70 - 73, 250, 382
Favorite, 74 - 77
Goto position (offset), 306
Handling/management, 415 - 417
Input file, 378, 415
Inserting, 270
Large (long), 416
Locking, 417

438

Manage, 74 - 77
Maximum file size, 416
Names of files being edited, 80, 247
Open, 62 - 69, 241 - 242
Open - instance control, 58, 60, 64, 364
Output file, 378, 415
Position, 306
Read-only, 252, 407
Recent, 74 - 77
Reload, 245
Save and continue editing, 54, 245
Save and exit, 54
Size, 378
Switching between files, 172, 247 - 248
Type (Binary/text), 178 - 181, 355

File selector, 74 - 77, 289
File-open configuration, 201 - 205, 373 - 375

Enable, 373
Save config, 374

Filename (displaying), 80
Filename extension, 330

In Explorer, 203
Fill (See Block - Fill), 302
Fixed-length records, 66, 179 - 180, 184 - 187, 277
Fonts

Display, 82, 291
Printer, 129

Form-Feed character, 359
Format paragraph, 162, 263
Formatting

{EDIT, Formatting} menu, 263 - 265
Full disk (See Disk full error), 410
Function/control keys, 365

G {GOTO} menu, 304 - 309
Graphics characters, 87

Display, 88, 285, 343
Entering, 87
Keyboard, 94
Strip high bit, 279

H Help, 387
{HELP} menu, 376 - 380
Help level, 364
Introduction, 376
On-line, 376 - 377, 387
Status display, 378

Hex-mode editing, 96 - 97, 286
Hexadecimal

Offset into file, 81
High bit characters (See Graphics characters), 87

439

Highlighting (See Block markers)
Color/attribute, 346

Horizontal scroll increment, 340
Horizontal scroll margin, 86, 340
Horizontal scrolling, 85, 340
HTML editing, 209 - 211

I Icon properties - changing, 56
Indent increment, 159, 338
Indenting text, 122, 159, 264
Input file, 378, 415
“INS” message, 81
Insert

{INSERT} menu, 268 - 271
Empty columns, 303
File, 270
From ASCII Table, 269 - 270
Text (Overview), 45

Insert mode, 274, 345, 349
[INSERT TOGGLE], 274, 387
Installation, 21

DOS, 25 - 29
Network, 31 - 32
Testing, 29
Windows, 22 - 24

Instances of VEDIT, 58, 60, 64, 364
Invoking VEDIT, 193 - 198

Options, 59, 215
Overview, 44, 55 - 61

J Java SDK support, 234 - 238
Justifying paragraphs, 162 - 163, 338

K Key conversion character, 92, 339
.KEY file (VEDIT.KEY), 371, 398 - 399
KEY-MAC.LIB file, 105, 108
Keyboard

Notation, 19
Numeric keypad, 39
Options, 94, 365
Polling, 26
Shortcuts, 366
Typematic rate, 26

Keyboard characters, 87 - 94
Keyboard layout, 38 - 42, 367 - 372

Change, 107 - 109, 370, 398 - 399
Display/Help, 377
Edit, 107 - 109, 370
Edit (Keyboard layout file), 399
Load from disk, 109, 372
Print, 370

440

Save to disk, 371
Unused keys, 370
“Normal” layout, 40, 427 - 430

Keystroke macros, 101 - 106, 367, 421
Add/Record, 103, 368 - 369
Built-in, 41
Delete (un-assign a key), 106
Escape sequence, 367
Examples, 103, 105, 421
Help, 377
Hot-keys, 101
Macro language, 101, 105, 108, 212
Modify, 106
Repeating, 368
Save, 371

L Large files (See File - Large), 416
Left margin, 159, 337, 358
Line

Center, 257, 336
Display line #, 80, 181, 355
Display ruler, 79
Editing long lines, 86
Erase, 273
Go to line #, 305
Split into two, 45
Toggle 25/28/50 line mode, 289
Wrap long lines on screen, 86, 340

[LINE BEGIN], 47, 350, 387
Line block (See Block), 110, 295
Line emulation mode, 350
[LINE END], 47, 350, 388
“LINE” message, 81
<LF>, 88, 355
Line-Feed character (See also Newline character), 88, 178, 355
Long filenames, 58 - 59, 61
Lower and upper case

Change/switch case of text, 277
Converting keys, 92, 338
Reverse case (Keyboard), 94, 365
Searching, 138, 322, 361

M Macintosh text file, 180, 355
Convert to Windows/DOS, 180

Macro language (See Command Macros), 212
Macros (See Command macros or Keystroke macros), 212 - 214
Margin (See Left and Right margins), 159
Markers (See Block markers or Text Markers), 307
Match parentheses, 308
Maximum file size, 416
[MENU], 388

441

Microsoft Windows, 27
{MISC} menu, 310 - 317
Monochrome screen colors, 29
Mouse

Right-click menu, 383 - 384
Multi-Tasking Operating Systems, 417
Multiple drives, 416
Multiple file processing, 217 - 221
Multiple files (See Editing), 170 - 174

N Network
Configuration, 31 - 32
File locking, 417
Installation, 31 - 32
Printing, 360

“New file” message, 58
Newline character, 45, 178, 355

Display, 88, 292, 344
Searching, 138, 143, 145

[NEXT LINE], 388
[NEXT PARAGRAPH], 48, 388
[NEXT TAB STOP], 388
[NEXT WORD], 47, 388
Notation, 19
Null character, 87, 138, 144, 152

Display, 344
“Num” lock, 80
Numeric expressions, 83
Numeric keypad (keyboard), 39, 365

O OEM character set, 280
Editing, 95
Font, 82
Printing, 133

OEM to ANSI translation, 280
Offset into file, 81, 306
Offset paragraph, 163
OS/2, 28
Outliner (CFUNC macro), 229
Output file, 378, 415
Overstrike mode, 45, 345, 349
Overwrite-only mode, 69, 117, 354

P Padding (Tabs and spaces), 124, 160
Padding at End-Of-Line, 277
[PAGE DOWN], 48
[PAGE UP], 48, 388
Page eject, 135, 359 - 360
Paragraph

Definition of, 158
Formatting, 162, 263 - 264, 336

442

Justifying, 162 - 163, 338
Offset, 163
Unjustify, 163

Parentheses matching, 308
PATH Environment variable, 57
Pattern matching, 142, 418

Codes, 142
Pattern sets, 147

Persistent blocks, 113, 300, 351
“POS” message, 81
[PREV PARAGRAPH], 48, 388
[PREV WORD], 47, 388
Print

ANSI/OEM characters, 133
Basic operation, 130
Block, 130, 134, 249
Configuration, 357
Control characters, 132, 358
Dialog box, 249
Display mode, 132
EBCDIC, 134
Eject Page, 359 - 360
Entire file, 130 - 131, 216, 249
Finish (reset) string, 359
Finish print job, 360
Form-Feed character, 359
Formatter (macro), 131, 216
Hexadecimal, 132, 358
Introduction, 53, 129 - 135
Job, 359
Laser Printer notes, 357
Line spacing (double, etc.), 358
Macro, 131, 216
Margins, 131, 357 - 358
Mode, 358
Page eject, 135
Paper length, 131, 357
Print-job, 134
Printer port selection, 359 - 360
Start/Finish strings, 134 - 135
To file, 359 - 360
Wrapping long lines, 358

PRINT.VDM macro, 131, 215 - 216
Programs

Run from within VEDIT, 230 - 231, 311 - 313

Q Quit (abandon) and exit (See File - Exit), 70 - 73

R Read-only file, 252, 407
Read-only mode, 59, 355
Recent files (See File - Recent), 74 - 77

443

Record length (size), 66, 179 - 180, 184 - 186
Record mode, 180
Redo, 49, 84, 259
Registers (See Text register), 115
Regular expressions, 149, 361
Reload file, 245
[REPEAT], 256, 365, 388

Keystroke macros, 368
[REPEAT LAST], 388
Repeating operations (See also [REPEAT]), 50, 256
Replace

Multiple files, 218
Replacement string, 139
Restore edit session, 59, 71, 249, 354
Retabbing (Spaces to tabs), 278, 335
[RETURN] (See also <Enter> key), 389
Right margin, 160, 336, 358
Right-click menu, 383 - 384
“RM” message, 81
Rulers, 79, 288, 340
Running programs (Shell), 230 - 231, 311 - 313

S Save configuration changes into VEDIT, 332
Save configuration changes to disk, 331
Save file and continue, 245
Save keyboard layout, 371
Save text and continue, 54
Save text and exit, 54, 70 - 73, 250, 382
Scratchpad (text register), 83, 115, 261
Screen

Color chart, 431
Color/attributes, 345 - 346
Display (updating), 94
Display modes, 88, 285, 343
Initialize, 285
Scrolling, 85 - 86
Size, 424

[SCREEN BEGIN], 350, 389
Screen display, 87 - 94
[SCREEN END], 350, 389
Scroll bars, 288, 340, 342
[SCROLL DOWN], 85, 350, 389
[SCROLL LEFT], 85, 340, 389
[SCROLL RIGHT], 85, 340, 389
[SCROLL UP], 85, 350, 389
Scroll increment, 340
“Scroll” lock, 80
Scroll margin, 340
Scrolling, 85 - 86, 389
Search, 136 - 156, 318 - 323

{SEARCH} menu, 318 - 323

444

Again, 319
Basics, 136
Blocks, 138, 140, 321
Carriage-Return, 145
Case sensitive, 138, 322, 361
Configuration, 361
Control character, 138
Error, 362
From beginning of file or block, 138
Incremental search, 320
Local (only to end of memory), 138
Modes, 137, 361
Multiple files, 220, 321
Newline, 145
Next, 319
Non-English characters, 362
Null character, 144, 152
Options, 138
Pattern matching codes, 418 - 420
Previous, 319
Regular expressions, 137, 361, 419
Simple mode, 137, 361
String, 148, 318
Text, 318
Words, 138

Search and Replace, 136 - 156, 318 - 323, 350
Again, 319
Multiple files, 218
Options, 140

Serial number, 379 - 380
Set markers (See Block markers or Text markers), 293
Shelling out to DOS/NT, 230 - 231, 311 - 313
<Shift> key, 366

Double-tapping, 112
Shortcuts, 82
Sorting, 266 - 267

{SORT} menu, 266 - 267
Collate tables, 167
Detailed topic, 165 - 169
Lines, 165
SORTMAIL macro, 225 - 226
Technical description, 169

SORTMAIL.VDM macro, 225 - 226
Spaces

Convert to tabs, 128, 278, 335
In paragraphs, 164, 337
Trailing, 124, 188
Trimming, 127, 335

Starting directory, 56
Starting VEDIT, 44, 55 - 61

Instance control, 58, 60, 64, 364

445

Startup configuration, 59
STARTUP.VDM file, 59, 193 - 198
Status display, 378
Status line, 80 - 81
Strip comments (assembly language), 146
Strip high bit (Bit 8), 279
Substitute (See Search and Replace)
Switching buffers (See Edit buffer - Switching, 172
Syntax highlighting, 206 - 208, 339

Colors, 347
Load syntax file, 316

T [T-REG COPY], 297, 390
[T-REG INSERT], 299, 390
[T-REG MOVE], 297, 390
[TAB CHARACTER], 334, 349, 389
Tab character (key), 90, 334, 389

Convert spaces to tabs, 128, 278
Convert Tab character to spaces, 91, 128, 278
Display, 88, 90, 344
Expand Tab key with spaces, 90, 334

Tab stops, 90, 334
Tabbar, 79, 288, 341
Technical support, 20, 380

Replacement disk, 21
Template editing, 209 - 210, 339

Load template file, 316
Temporary disk file (“.1R$”), 416
Text Markers

Go to, 308
Setting, 307

Text register
Copy/move to, 116, 261, 297
Display, 378
Emptying, 117
In search string, 138, 148
Inserting, 116, 262, 299
Memory usage, 378 - 379
Naming, 118
Overview, 115
Usage, 118, 378
Usage by command macros, 214

Time
Display, 379
Insert date and time, 105, 421

Toolbar, 289, 341
{TOOLS} menu

Description, 199
Load menu, 317
Startup, 363

Trailing spaces, 124

446

Translating a block/file, 189 - 192, 281
Transpose letters, 423
Troubleshooting, 425 - 426

Configuration and Startup

U Undenting - See Indenting, 264
Undo, 49, 84, 258

{UNDO} menu, 258 - 260
Deletion, 84, 259, 301
Edit, 258
Levels, 84
Line, 258
Redo, 84, 259
Reset, 260

Unicode, 281
Unicode to ASCII translation, 281
UNIX text file, 179, 355

Convert to Windows/DOS, 179
Unjustify (See also Justifying paragraphs), 163
Upper and lower case (See Lower and upper case), 92
Usage - registers, 118
User Config Directory, 392, 395
User interface, 82 - 83
{USER} menu

Description, 199
Load menu, 317

USTARTUP.VDM file, 193 - 198, 363

V V-SPELL
Introduction, 14
Run from inside VEDIT, 424

V-SWAP
DOS Shell, 312
Enable, 354
Installation, 30

“.VDM” file, 213
“VEDIT” environment variable, 61
VEDIT Home Directory, 392, 395
VEDIT icon, 55

Properties, 56
VEDIT.CFG file, 391 - 402
VEDIT.INI file, 21, 60, 73, 198, 392, 395
VEDIT.KEY file, 371, 393 - 394, 398 - 399
Version number (VEDIT), 378, 380
Vertical scrolling, 85
VGA display, 289, 424
View - See Windows, 324
{VIEW} menu, 283 - 292
Virtual space mode, 345
[VISUAL ESCAPE], 390
[VISUAL EXIT], 108, 390

447

Visual Mode, 390
Definition, 213

W Whitespace, 142 - 143
Wildcard characters, 144, 150, 217
Wildfile macro, 313
WILDFILE.VDM macro, 217 - 221
Windows, 175 - 177

{VIEW} menu, 283 - 292
{WINDOW} menu, 324 - 328
Arrange icons, 325
Attach to buffer, 175
Borders, 342
Cascade, 324, 342
Close, 172, 326
Color/attributes, 346
Command Mode window, 382
Delete, 327
Display modes, 88, 285, 343
Editing multiple files, 171, 243
Full-sized, 171 - 172, 177, 284, 342
ID Number/name, 175, 326, 342
Microsoft, 27
Minimized, 325
Multiple per file, 325
Name display, 342
Naming, 175
Overview, 175 - 177
Registry, 330
Remove, 327
Reset, 171, 285
Resize, 171
Splitting, 171, 325
Switching, 176, 327 - 328
Tile, 324
Zooming, 171, 176, 283

Windows Clipboard, 121, 253
Word

Count, 423
Definition of, 158, 402
Selecting as a block (mouse), 296
Wrap (See also Right margin), 160

Word Perfect keyboard layout, 109
Word Processing, 157 - 164

Configuration, 336
Word wrap - Display, 287, 336
Word wrap - Enable, 264, 336
WordStar keyboard layout, 94, 109

Z Zooming windows (See also Windows), 176

448

	Table of Contents
	1 - Introduction
	Welcome to VEDIT
	Main Features
	Ready-To-Use Macros
	EBCDIC Conversion Software
	System Requirements
	Using This Manual
	Notation
	Product Support

	2 - Getting Started
	Installation
	Windows Installation
	Un-installing VEDIT

	DOS Installation
	CONFIG.SYS and AUTEXEC.BAT files
	Network Installation
	Initial Configuration
	Description of Files
	Keyboard Layout

	3 - Quick Tutorial
	Starting VEDIT
	Entering New Text
	Deleting Text
	Moving the Cursor
	Undo and Redo
	Repeating Operations
	“Cut and Paste” a Block
	Printing Text
	Saving Your Work
	Exiting VEDIT

	4 - Editing Guide
	Starting (Invoking) VEDIT
	Opening Files
	Exiting VEDIT
	File Selector (Windows only)
	Toolbar, Tabbar and Rulers
	Status Line
	User Interface
	Undo and Redo
	Scrolling the Screen
	Screen Display & Keyboard
	ANSI and OEM Characters
	Hex Mode Editing (and Octal)
	EBCDIC Editing
	Keystroke Macros
	Editing the Keyboard Layout
	Block Operations
	Printing in VEDIT
	Search and Replace
	Word Processing Functions
	Sorting Lines in a File / Block
	Editing Multiple Files
	Windows
	File Types - Text and Binary/Data
	Converting Files
	Translating Files

	5 - Advanced Topics
	STARTUP.VDM File
	{USER} and {TOOLS} Menus
	File-open Configuration
	Color Syntax Highlighting
	Template Editing
	HTML Editing Features
	Command Macros (Intro)
	Auto-Execute Macros
	PRINT - Print Macro
	WILDFILE - Multi-file Processing
	COMPARE - Compare Files
	COMPDIR - Compare Directories
	SORTMAIL - Sorting Macro
	DBASE.VDM Macro
	CFUNC - C Program Outliner
	RUNSHELL - Run Other Programs
	"ctags" Symbol Lookup
	Compiler Support

	6 - Menu Reference
	{FILE} Menu
	{EDIT} Menu
	{EDIT, Undo} Sub-menu
	{EDIT, Scratchpad} Sub-menu
	{EDIT, Formatting} Sub-menu
	{EDIT, Sort} Sub-menu
	{EDIT, Insert} Sub-menu
	{EDIT, Delete} Sub-menu
	{EDIT, Convert} Sub-menu
	{EDIT, Translate} Sub-menu
	{VIEW} Menu
	{BLOCK} Menu
	{GOTO} Menu
	{MISC} Menu
	{SEARCH} Menu
	{WINDOW} Menu
	{CONFIG} Menu
	Keyboard Layout (Sub-menu)
	File-open Config (Sub-menu)
	{HELP} Menu
	{ESCAPE} Menu
	{Mouse Right-Click} Menu

	7 - Edit Function Reference
	8 - Configuration
	Basic Configuration
	How VEDIT Configures Itself
	Troubleshooting
	VEDIT.KEY Layout File
	VEDIT.CFG Configuration File
	Summary of Config() Parameters

	9 - Messages
	Appendices
	A - File Management
	B - Search Modes Summary
	C - Application Notes
	D - Troubleshooting
	E - IBM PC Keyboard Layout
	F - IBM PC Color Chart
	G - ASCII Table

	Index

