
VEDIT 6.0
Programmable
Universal File

Editor / Translator

Macro Language
Reference Manual

Greenview Data



VEDIT
Programmable, Universal File Editor and Translator

For Text, Program, Database, Binary
And Mainframe File Editing

Version 6.03

Manual Written By:
Theodore Green & Timothy McLean

Programmed By:
Theodore Green & Thomas Burt

Greenview Data, Inc.
2773 Holyoke Lane

Ann Arbor, MI 48103
Telephone: (734) 996-1300

Fax: (734) 996-1308
E-Mail: support@vedit.com

Visit our Web site: www.vedit.com

Copyright (C) 1990 - 2002 by Greenview Data, Inc. All rights reserved
worldwide. No part of this publication may be reproduced, in any form
or by any means, for any purpose without the express written permission
of Greenview Data.

DISCLAIMER

Greenview Data, Inc. and the authors make no claims or warranties with
respect to the contents or accuracy of this publication, or the product it
describes, including any warranties of fitness or merchantability for a
particular purpose. Any stated or expressed warranties are in lieu of all
obligations or liability for any damages, whether special, indirect, or
consequential, arising out of or in connection with the use of this
publication or the product it describes. Furthermore, the right is reserved
to make any changes to this publication without obligation to notify any
person of such changes.

Last Manual Revision: May. 10, 2002



ACKNOWLEDGEMENTS

We would like to thank the following people for their assistance.

Christian Ziemski for the exceptionally thorough beta-testing of
new versions and assistance in setting up the Discussion Conference
on our Web site.

Scott Lambert for the numerous suggestions, for supporting other
users in the Discussion Conference, and for running his own "VEDIT
macro" Web site.

Maxim Glukhov for writing the new BOX-DRAW.VDM and AS-
CII2.VDM macros supplied with VEDIT.

Wayne Barrett, for donating many hours to editing and enhancing
this manual and for his helpful feedback over many years.

Peter Freed of Data Base Management Systems, Inc. for writing the
CMD-CONV.VDM, DBASE.VDM and WS6.VDM (enhanced
WordStar emulation) macros supplied with VEDIT.

This manual was created using Corel Ventura in conjunction with
VEDIT. V-SPELL was used for spelling correction.

TRADEMARKS

VEDIT, V-SPELL and V-PRINT are trademarks or registered trade-
marks of Greenview Data, Inc.

Microsoft, MS-DOS, Windows, Windows NT and Internet Explorer
are trademarks or registered trademarks of Microsoft Corporation.

Netscape and Netscape Communicator are registered trademarks of
Netscape Communications Corporation.

UNIX is a registered trademark of The Open Group.

Linux is a registered trademark of Linus Torvalds.

IBM, IBM PC/AT, PS/2 and OS/2 are trademarks or registered
trademarks of International Business Machines.

Corel, WordPerfect, Paradox and Ventura are registered trademarks
of Corel Corporation.

dBase and Brief are trademarks or registered trademarks of Borland
International.

All other trademarks and copyrights referred to are the property of
their respective owners.



TABLE OF CONTENTS

Chapter 1 - Introduction................................................................. 7
Welcome to VEDIT....................................................................................7
Macro Language Features ..........................................................................8
Using this Manual.......................................................................................10

Chapter 2 - Command Macro Guide............................................. 11
Definition of "Command Macro" ................................................11

Easy as 1 - 2 - 3 - 4 .....................................................................................12
"COMMAND:" Prompt Example ...............................................12
Keystroke Macro Example ..........................................................13
{USER} Menu Example..............................................................14
Creating a Macro as a .VDM file.................................................15
Running Bigger Macros...............................................................16

Please use the On-Line Help! .....................................................................16
Command Mode .........................................................................................17

Entering Command Mode ...........................................................17
Return to Visual Mode ................................................................18
Command Lines ...........................................................................18
Command Line Editing................................................................18
Reusing Previous Command Lines..............................................19
Using the Scratchpad ...................................................................19
Command Syntax.........................................................................19
Command Arguments ..................................................................20

String Arguments..................................................................21
Command Options................................................................22

Multiple Line String Arguments .................................................22
Command Return Value
On-Line Calculator .....................................................................23
Command Mode Window ...........................................................24
Controlling Screen Display .........................................................24

Basic Commands ........................................................................................25
Help Command ............................................................................25
Exiting VEDIT.............................................................................25
Display Status Information .........................................................26
The Config( ) Commands ............................................................27
Edit Buffer Dependent Configuration
Parameters ....................................................................................28
Moving the Edit Position .............................................................29
Alter Commands ..........................................................................30

3



Search and Replace ................................................................................... 31
Searching and Search Options .................................................... 31
Replacing..................................................................................... 32
Unsuccessful Search and Replace............................................... 33

File Editing Commands ............................................................................. 34
Opening Files for Editing............................................................ 34
Closing Files................................................................................ 35
Save File and Continue Editing .................................................. 35
Directory Display ........................................................................ 36
Deleting (Erasing) Files ............................................................ 36
Pathnames ................................................................................... 37
Changing Current Drive / Directory ......................................... 37

Text Registers ........................................................................................... 38
Text Register Commands............................................................ 38
Using Text Registers in Filenames ............................................ 39
Text Register Usage .................................................................. 40

Intermediate Commands ............................................................................ 41
Printing Text ............................................................................... 41
Entering Control Characters........................................................ 42
Re-routing Console Output ......................................................... 43

Multiple File Editing ................................................................................. 44
Using Edit Buffers as Text Registers ......................................... 44
Moving Text Between Edit Buffers ........................................... 45

Window Commands ................................................................................ 46
"Reserved" Windows .................................................................. 48
Windows and Edit Buffers ......................................................... 48
Advanced Window Commands .................................................. 49

Chapter 3 - Programming Guide....................................................51
Introduction to Programming .................................................................... 51

Command Macros ...................................................................... 52
Command Macros in Visual Mode ............................................. 52
Loading Macros into Text Registers ......................................... 54
Commenting Macros ................................................................... 54

Flow Control .............................................................................................. 55
Repeat Loop ................................................................................ 55
Ending Repeat (and other) Loops ............................................... 57
Commands versus Repeat Loops ................................................ 58
While and Do-While Loops ........................................................ 59
For Loop ...................................................................................... 60
If-then and If-then-else Statements ............................................. 61
Examples - Flow Control Statements.......................................... 62
Break-Out Commands ................................................................ 64
Goto Statement ............................................................................ 65
Processing End-Of-File Condition.............................................. 66

4



Processing Unsuccessful Search .................................................67
Using Visual Mode in Command Loops ....................................68

Numeric Capability ....................................................................................69
Numeric Constants ......................................................................69
Examples - Numeric Constants ...................................................69
Numeric Registers (Variables) ...................................................70

Numeric Register Indirection (Arrays) ................................71
Internal Values (Commands) ......................................................71

Numeric Expressions .................................................................................72
Numeric Operators.......................................................................73
Relational Operators ....................................................................74
Logical Operators.........................................................................74
Operator Precedence ..................................................................75

Additional Numeric Features .....................................................................76
Displaying Numbers ....................................................................76
Insert (Line) Numbers into Text ..................................................76
Reading Numbers in Text ............................................................77
Command Return Values as
Numeric Arguments.....................................................................77
Numeric Register Stack (Technical) ...........................................78

Interactive Input and Output.......................................................................79
Screen Display Commands..........................................................79
Changing Screen/Window Color ...............................................80
Details About Command Mode Output.......................................81
Input Commands ........................................................................82
Checking for Valid User Input ....................................................83
Select Filename with a Dialog Box ...........................................84
Custom Dialog Boxes (Windows only) ......................................85
Input (keyboard) Redirection ....................................................86

Block Operations ........................................................................................87
Determining File Position ...........................................................87
Setting Block and Text Markers ................................................87
Block Commands.........................................................................88
Columnar Blocks ........................................................................89
Line-range Blocks .......................................................................90
Overriding Text Register Block Type ........................................91
Setting Block Markers by Searching ..........................................91

Text Register Commands ...........................................................................93
Reading Environment Variables..................................................93
Text Register Stack .....................................................................93

Match and Compare ...................................................................................95
Additional Commands................................................................................98

Displaying Input/Output Filenames ..........................................98
Directory( ) Command ................................................................98
Sound Generation ........................................................................99

5



WordStar Files (Strip 8th bit) .................................................... 99
Modify Keyboard Layout............................................................ 99
Save / Restore Edit Position........................................................ 101

Technical Topics ........................................................................................ 102
File Buffering in Command Mode ............................................ 102
Explicit Read/Write Commands ............................................... 102
Undo in Command Macros ........................................................ 103

Search/Replace Multiple Files ................................................................. 104
Multiple Replace in Huge Files .................................................. 106

Event Macros ............................................................................................. 107
File-Open Event Macro............................................................... 107
File-Close Event Macro .............................................................. 108
File Pre-Open and Post-Close Event Macros.............................. 108
Template Editing Macro ............................................................. 109
Event Macro Programming Guidelines ...................................... 110

Developing Complex Macros .................................................................... 111
Writing Macros in Edit Buffers ................................................. 111
Self-Modifying Command Macros ............................................ 111
Chaining to a Command Macro .................................................. 112
Using the "Extra" Edit Buffers.................................................... 113
"Locked-in" Macros .................................................................. 113

On-Line Help and Web site ....................................................................... 114
Debugging Macros .................................................................................... 115

Trace Mode.................................................................................. 115
Debugging Hints ......................................................................... 117
Using "{" and "}" in String Arguments ...................................... 118

Cleanup/Converting Macros .................................................................... 119
Preserving Your Files ................................................................................ 120

Chapter 4 - Command Reference...................................................121

Appendices - ....................................................................................243
A - Edit Function Codes ............................................................................ 243
B - Command Syntax................................................................................. 244
C - Numeric Expressions ........................................................................... 247
D - String Arguments................................................................................. 249
E - Command Summary ............................................................................ 251
F - Search Modes Summary....................................................................... 282

Pattern Matching Codes ............................................................ 282
Regular Expressions.................................................................... 283

G - Text Register Usage ........................................................................... 285

6



Chapter 1

Introduction

Welcome to VEDIT
Purpose of Program

VEDIT is an editor/translator designed not only for text preparation and
program development, but also for editing large database, mainframe and
binary files. It can edit in ASCII, EBCDIC, Hexadecimal, Octal or any
combination of modes. It supports variable length and fixed length database
records.

The powerful macro language makes VEDIT an ideal alternative to conven-
tional programming languages such as Basic, C or Pascal when writing file
translators, converters and filters. A single-line "macro" can often perform the
equivalent of a 100+ line C program. Translation between ASCII and
EBCDIC, and sorting are built in.

Since VEDIT can efficiently edit any type of file, including binary/data files
and huge files up to 2 Gigabytes (2000 Megabytes) in size, it is ideal for editing
and translating files downloaded from Mainframe computers and CD-ROM
data files.

VEDIT can process entire groups of files automatically. For example, the same
edit changes can be applied to all files in a directory, or even in all subdirec-
tories.

Powerful, Easy to Use Macro Language
Besides the normal "Visual Mode" editing, VEDIT additionally has an inter-
active "Command Mode" which gives instant access to over 400 powerful
macro language commands using a C-like programming syntax. (In computer-
ese: The VEDIT macro language is interpreted and not compiled.)

This "Command Mode" makes the VEDIT macro language exceptionally easy
to use. (It is much, much easier to learn and use than C.) Any desired sequence
of commands can be entered at the "COMMAND:" prompt. The command(s)
execute immediately when you press <Enter>; the main window lets you
observe the effect the command(s) had on your file. Yes, there is undo.

The macro language is ideal for automating any repetitive editing operations.
Macros can be saved as files for future use, can be assigned to "hot-keys" to
add custom editing features and can be added to the {USER} menu. Macros
can easily be modified as needed.

Welcome to VEDIT Chapter 1 Introduction 7



VEDIT can be used as an application programming language. Most macros
developed with VEDIT only require VEDIT to run. With many applications,
users would need to know little or even nothing about VEDIT itself.

This manual builds on the VEDIT manual and describes the VEDIT macro
language in detail.

Macro Language Features
● Instant access to over 400 powerful commands. Any desired sequence of

commands can be entered at the "COMMAND:" prompt. Allows "off-the-
cuff" macros; there is no compiling.

● Command Mode window. Visual and Command modes can operate in
separate windows — you can observe the effect of Command Mode
commands in the Visual Mode window. This is useful for learning the
macro language and for debugging macros.

● Extensive on-line help describes each command and its options. Many
short examples are given.

● Extensive set of file handling commands to open, close and save files,
manage buffers and windows. Files can be copied, moved and renamed.
File attributes can be checked or changed.

● Command oriented configuration. All aspects of the configuration can be
examined and modified with the macro language.

● Command macros (programs) can be saved and loaded as files, can be
permanently assigned to a "hot-key" (keystroke macro) or can be added
to the {USER} menu.

● Commands permit editing by character, line, block or file. Character,
columnar and line oriented blocks are supported.

● Complex macros can be simplified and modularized by splitting them into
"subroutines". Other macros can be accessed by a "Call" or "Chain"
command.

● Command macros can be automatically executed when VEDIT is in-
voked.

● "Bomb proof" macros can be written that return to a main menu (or
perform other operations) when unusual conditions occur.

● Event macros. Special macros can be executed for each file opened and
closed. Permits automatic file translations or checking a file's integrity
before it is saved to disk. Event macros are used to implement language-
specific "template editing".

● On-line calculator. Any algebraic expression entered at the "COM-
MAND:" prompt is immediately calculated and displayed in either deci-
mal or hexadecimal.

● Complete numerical capability with 32 bit resolution (+/- 2,147,483,613).
Complete set of "C-like" numeric, relational and logical expressions. Over
250 numeric variables.

8 Chapter 1 Introduction Macro Language Features



● Over 100 text registers can be used as "cut and paste" buffers, as string
variables or to hold subroutine macros. Permits the use of variable
filenames, search/replace strings and much more.

● "C-like" program flow control with While, Do-while, For, If-then,
If-then-else, Goto, Break, Continue and Return statements. Includes
additional flow control statements not found in C.

● Powerful search and replace can use pattern matching or regular expres-
sions. Flexible options can select character or columnar block search/re-
place, selective or global replace, search every 'n'th occurrence and much
more.

● Flexible matching and compare commands for numeric, character and
string testing.

● Interactive input and output. Messages and prompts can be displayed
under macro control. Input can be in the form of single characters,
character strings, numbers, or numerical expressions.

● Keyboard layout can be dynamically changed. Individual key assignments
can be added or deleted, keystroke macros can be defined, and a complete
new layout can be loaded from disk.

● Command macros can also access any basic editing functions or menu
items.

● Flexible window control. The creation, deletion, size, position and color
of windows is fully programmable. Address, write and erase any window.
Permits writing application programs with windows, menu prompts and
forms entry.

● Macro language can shell out to the operating system to execute other
programs and OS commands.

● (DOS only) Direct hardware access. Memory and I/O ports can be
examined and modified. DOS functions, BIOS functions and interrupts
can be directly called. Blocks of memory can be read and written.
Assembly language routines can be stored in VEDIT's memory spaced
and called from the macro language.

● When necessary, macros can easily be debugged using breakpoints,
tracing and a debugging window.

Macro Language Features Chapter 1 Introduction 9



Using this Manual
This manual assumes that you have a working knowledge of the "Visual Mode"
of VEDIT as described in the VEDIT User's Manual.

Chapters 2 and 3 are intended to be read sequentially; new topics usually build
on previous topics. However, once Chapters 2 and 3 are understood, the
experienced user will primarily only use Chapter 4, which is the detailed
command reference.

HINTS: The best way to learn VEDIT is with the tutorial items in the
{TUTOR} menu. If the {TUTOR} menu is not displayed, select
{MISC, Load Tutorial menu}. The tutorial covers VEDIT's features
in great depth — it is well worth the one or two hours it takes to
carefully work through it.

With VEDIT's extensive on-line help, we hope that you won't need
this manual very much.

This manual is organized into the following chapters:

Chapter 1 - Introduction
Introduces VEDIT.

Chapter 2 - Command Mode Guide
Introduces command macros which are the "programs" of VEDIT. Step-
by-step examples show how to run a simple command macro from the
"COMMAND:" prompt, as a keystroke macro, from the {USER} menu
and from a file. It also introduces basic commands for exiting and quitting
the editor, for editing new and additional files and other commands that
are often used individually.

Chapter 3 - Programming Guide
Covers the main topics of writing command macros, including flow
control, numeric expressions, interactive input and output, block opera-
tions, and more technical topics.

Chapter 4 - Command Reference
Covers each macro language command in complete detail.

Appendices
The following topics are included in the appendices.

A summary of the command language syntax including numeric expres-
sions and string arguments.

A summary of the all macro language commands.

A summary of text register usage, including a description of all the
reserved registers.

10 Chapter 1 Introduction Using this Manual



Chapter 2

Command Macro Guide

This manual covers the VEDIT macro language in complete detail. Even if
you have never written a computer program, you will find the VEDIT macro
language easy to use. This is true because some useful macros consist of just
a single short command! Combining just a handful of commands lets you easily
perform complex tasks or add custom editing features to VEDIT.

This chapter begins with simple step-by-step examples of the four main ways
that the macro language can be used. You will then know exactly how to add
custom features to VEDIT.

This chapter then explains the unique VEDIT "Command Mode". In this mode
you simply type the desired macro language commands and press <Enter> —
the commands are immediately executed.

The rest of this chapter introduces basic commands that you are likely to use
to display status information, get on-line help, create windows, edit new files
and exit VEDIT.

The next chapter (Programming Guide) covers how commands are combined
to create more powerful command macros.

Definition of "Command Macro"
We use the term command macro to refer to any sequence of macro language
commands. You can think of a command macro as a "program".

We are careful to distinguish command macros from keystroke macros. A
keystroke macro is a sequence of recorded keystrokes, such as a hot-key to a
menu item; this has nothing to do with command macros. Similarly, a com-
mand macro that is stored as a file has nothing to do with keystroke macros.

However, as you will soon see, keystroke macros can also contain command
macros. This lets you assign command macros, such as custom editing func-
tions, to a hot-key.

Chapter 2 Command Macro Guide 11



Easy as 1 - 2 - 3 - 4
There are four ways to run VEDIT macros. This topic gives step-by-step
directions for creating and running a simple command macro in each of the
four ways. The four ways are:

● Enter Command Mode and simply type in the macro at the
"COMMAND:" prompt.

● Add the macro to the keyboard layout, making it a keystroke macro that
is activated with a hot-key. This is preferred for commonly used, simple
macros.

● Add the macro to the {USER} menu.
● Create the macro as a file (typically with the .VDM extension) and execute

it from {MISC, Load/execute macro} or when you invoke VEDIT. It can
also be added to the {USER} menu.

"COMMAND:" Prompt Example
VEDIT has a special "Command Mode" in which you simply type one or more
macro language commands that are immediately executed.

It is often easier to use the Command Mode by first creating a special
Command Mode window. As each command line is executed, you can then
immediately see its effect on your file. A handy five line window can be created
by selecting {ESCAPE, Command mode window}.
You can enter Command Mode by selecting {ESCAPE, Command Mode}.
(Other ways are described later.) VEDIT then prompts you with
"COMMAND:" in the Command Mode window.

Our example command macro is just a single command that switches the case
of all letters from the cursor to the end of the line. We will show you all four
ways in which the same command macro can be run. The command is:

Case_Switch_Block(Cur_Pos,EOL_Pos)

(A single-command macro may seem overly simplistic, but the same principles
will apply to macros of any size.)

Here we go, step by step, assuming you haven't started VEDIT yet:

� "COMMAND:" prompt example:
1. Start up VEDIT, select {FILE, Open} (default: <Ctrl-O>) and open up

a text file that you can safely modify.

Position the cursor in the middle of a line that has upper and lower case
letters.

2. Select {ESCAPE, Command mode window} (default: <Alt-/>) to create
the special Command Mode window. You should now see:

12 Chapter 2 Command Macro Guide Easy as 1 - 2 - 3 - 4



3. For the sake of experimentation, enter the command "line" (without
quotes) followed by <Enter> and notice that the cursor in the top window
has moved to the next line. Enter the command "bof" to move the cursor
back to the beginning of the file.

4. Now enter the command to switch the case of all letters from the cursor
to the end of the line; it can all be entered in lower case.

Case_Switch_Block(Cur_Pos,EOL_Pos)

You should be able to see the effect of the command on the file displayed
in the upper window as soon as you press <Enter>.

5. Enter the command "visual" or its abbreviation "v" to return to normal
Visual Mode editing.

-OR-
Press <Alt-/> again to remove the Command Mode window and return to
normal Visual Mode editing.

Keystroke Macro Example
Commonly used command macros can be set up as keystroke macros and
assigned to hot-keys. The topic "Keystroke Macros - Adding Keystroke
Macros from KEY-MAC.LIB" in Chapter 4 of the VEDIT User's manual also
describes this procedure.

Although keystroke macros that use the macro language could be set up with
{CONFIG, Keyboard layout, Add macro}, we suggest using {CONFIG,
Keyboard layout, Edit layout} instead. Since you are then editing your
VEDIT.KEY file (which is automatically loaded when you start VEDIT), you
can easily copy and paste the macro commands from KEY-MAC.LIB or
another source directly into the VEDIT.KEY file without retyping.

Easy as 1 - 2 - 3 - 4 Chapter 2 Command Macro Guide 13



For this example, we will use the same command macro that switches the case
of all letters from the cursor to the end of the line.

Here we go, step by step, assuming you are in VEDIT:

� Keystroke macro example:
1. Select {CONFIG, Keyboard layout, Edit layout}. Your current key-

board layout is displayed as a normal text file that you can directly edit.

Go to the end of the file.

2. Select {CONFIG, Keyboard layout, Unused keys} to view a list of
unassigned keys. You can assign the keystroke macro to any of these keys.
We'll assume here that <Shift-F12> is available.

3. Enter the following line at the end of the keyboard layout:

Shft-F12 [VISUAL EXIT] Case_Switch_Block(Cur_Pos,EOL_Pos)

Be sure to hit <Enter> at the end of the line. (Your cursor should be in
column 1 of the following line; there must not be any additional blank
lines.)

4. Press [VISUAL EXIT] (default: <Ctrl-E>) when finished editing. You
are prompted with:

[I]gnore changes, [T]emporary, [S]ave into VEDIT.KEY

If you only want the keystroke macro to work until you exit VEDIT, type
"T"; to make the keystroke macro permanent, type "S".

5. Open a file for editing, if you haven't already. Press the hot-key, e.g.
<Shift-F12> and you should be able to see its effect.

This technique can be used to easily copy and paste any desired keystroke
macro from the supplied KEY-MAC.LIB file into your own keyboard layout.
KEY-MAC.LIB contains many useful functions that can be added as keystroke
macros.

{USER} Menu Example
You can easily modify the supplied {USER} menu, adding and deleting items
as desired.

For this example, we will implement the same macro above, which switches
the case of letters, as an item in the {USER} menu instead of as a keystroke
macro.

Here we go, step by step, assuming you are in VEDIT:

� {USER} menu example:
1. Open the file "user.mnu" for editing. (It is in the VEDIT Home Directory.)

Go to the end of the file.

2. Enter the following three lines at the end of the file:

14 Chapter 2 Command Macro Guide Easy as 1 - 2 - 3 - 4



9
Switch case to EOL
Case_Switch_Block(Cur_Pos,EOL_Pos)

Be sure to press <Enter> after each of the three lines.

For detailed information about the layout of the {USER} menu, refer to
the on-line help topic "{USER} and {TOOL} Menus" (DOS: "USER").

3. Save the new "user.mnu" file.

4. Exit VEDIT and start it up again. The new {USER} should be loaded and
you can try out the new item "Switch case to EOL".

Creating a Macro as a .VDM file
More complex command macros are best created as files, typically with a
".vdm" filename extension. VEDIT is supplied with dozens of ".vdm" macros.
Some are loaded and run when you select menu items. For example,
wildfile.vdm is run when you select {MISC, WILDFILE macro};
sallbuff.vdm is used by {SEARCH, Search all buffer}.
Any ".vdm" macro file can be loaded and run with {MISC, Load/Execute
macro}.
There is nothing special about ".vdm" files; they are simple text files that
contain the macro language commands exactly as you see them in this manual.
(Remember, VEDIT macros are not compiled.)

Once again, we will implement the previous switch case macro as a ".vdm"
file. You will then have implemented the same macro as a keystroke macro,
as an item in the {USER} menu and as a ".vdm" file.

In practice, you would rarely create a single command ".vdm" file, but it is
possible.

Here we go, step by step, assuming you are in VEDIT:

� Creating a Macro as a .VDM file:
1. Select {FILE, Open} (default: <Ctrl-O>) and enter the filename for the

macro. Let's use "swcase.vdm" in the VEDIT User Macro Directory,
typically c:\vedit\user-mac or c:\program files\vedit\user-mac.

You should now have an empty editing window and "New file" should
temporarily be displayed on the status line.

2. Type in the same macro as before:

Case_Switch_Block(Cur_Pos,EOL_Pos)

3. Select either {FILE, Close} (default: <Ctrl-W>) or {WINDOW, Close}
(default: <Ctrl-F4>) to close the file and save it to disk.

4. Open a file for editing, if you haven't already.

Select {MISC, Load/execute user macro}. Select or enter the filename
"swcase.vdm". (The default register number "100" is fine.) As soon as you

Easy as 1 - 2 - 3 - 4 Chapter 2 Command Macro Guide 15



close the dialog box, the macro will run and convert the case of letters on
the current line in your file.

5. Since the macro remains loaded, you can select {MISC, Execute macro}
and select the default register number of "100" to run the macro again.

This obviously isn't as convenient as running a command macro from a
hot-key, but demonstrates how a less often used macro can be run. Command
macros in ".vdm" files can also be attached to hot-keys or to an item in the
{USER} menu; this is described next.

Running Bigger Macros
(You may want to skip this topic for now if you are new to VEDIT.)

Bigger command macros are usually saved to disk as ".vdm" files. Although
there is no absolute limit on how large a command macro you can build into a
keystroke macro or the {USER} menu, we suggest saving any macro larger
than a few hundred bytes as a ".vdm" file.

It is easy to attach a command macro in a ".vdm" file to a hot-key or to an item
in the {USER} menu by using the Call_File( ) command. It is equivalent to
{MISC, Load/Execute macro}; it loads and runs the specified ".vdm" file.

To see an example of this, you may want to examine the supplied "user.mnu"
file. The item "Color scheme" is implemented with the following command:

#103=Reg_Free Call_File(#103,"color.vdm") Reg_Empty(#103)

The command Call_File(#103,"color.vdm") loads and runs the macro in the
file "color.vdm". (Technical: the remaining commands find a free text register
in which to load the macro, and empty the register when done.)

Similarly, the Call_File( ) command can be used in a keystroke macro to load
and run a command macro saved as a ".vdm" file.

Please use the On-Line Help!
Please use the on-line help for more information about a particular command.
It is constantly updated and describes every command and every command
option, including any recent additions that are not in this manual.

It is organized differently from this manual and includes additional topics and
examples.

Since the on-line help file "vphelp.hlp" is just a text file, you can easily open
it in VEDIT and print any desired portions. ("vphelp.hlp" is used by the
non-Windows versions of VEDIT.)

16 Chapter 2 Command Macro Guide Please use the On-Line Help!



Command Mode
The VEDIT Command Mode lets you enter macro language commands at the
"COMMAND:" prompt. They are immediately executed when you press
<Enter>. This is a very convenient way to enter any desired "off-the-cuff"
macros and learn the macro language.

You may want to run the Command Mode in its own special window. As each
command line is executed, you can then immediately see its effect on your file.
A handy 5 line window can be created by selecting {ESCAPE, Command
mode window}.

Entering Command Mode
Assuming you are in the normal Visual Mode of VEDIT, you can enter
Command Mode by selecting "Command Mode" from the {ESCAPE} menu,
or by pressing the key for [VISUAL EXIT] or [VISUAL ESCAPE].
[VISUAL EXIT] <Ctrl-E>

<Ctrl-F10>
Exit Visual Mode and enter Com-
mand Mode. If any command macro
is currently running, it will continue
running.

[VISUAL ESCAPE] <Alt-F10>
<Ctrl-Shift-E>

Exit Visual Mode and enter Com-
mand Mode. If any command macro
is currently running, it is stopped.
Same as {ESCAPE, Command
mode}.

Normally there is no difference between these two functions and you will get
the "COMMAND:" prompt.

However, if a macro is already running, [VISUAL EXIT] will let it continue
running, whereas [VISUAL ESCAPE] will stop it. With the exception of
"locked-in" macros, [VISUAL ESCAPE] will always give you the
"COMMAND:" prompt.

If you already created a Command Mode window, e.g. with {ESCAPE,
Command mode window}, the "COMMAND:" prompt will appear in this
window. Otherwise your current window will scroll up and the prompt will
appear at the bottom of the window.

The first few times the "COMMAND:" prompt is displayed, it is preceded with
a help line to remind you of a few frequently used commands.

See Also:

The on-line help topic "Command Mode basics" (DOS: "CMD").

Command Mode Chapter 2 Command Macro Guide 17



Return to Visual Mode
To exit the Command Mode and return to the Visual Mode, enter the Visual( )
command; it can be abbreviated as just V. All commands end with <Enter>.

Visual( ) Enter Visual Mode. You will remain in Visual Mode
until you select [VISUAL EXIT] (<Ctrl-E>) or
[VISUAL ESCAPE] (<Ctrl+Shift-E> or
<Alt-F10>).

V Use this convenient abbreviation for Visual( ). Many
common commands have a short abbreviation.

EXIT Exit VEDIT. You will be prompted to save or abandon
each modified file. This command is identical to
{FILE, Exit}.

Command Lines
In Command Mode you are prompted for "command lines" by the
"COMMAND:" prompt. Each command line you enter consists of a single
command or a sequence of multiple commands. Each command line is ended
by pressing <Enter>, at which time the command line is executed.

Since no commands are executed until you press <Enter>, the line can be
edited as you enter it. Previous command lines can also be reused by pressing
[CURSOR UP]. Once execution begins, it can usually be aborted by pressing
[CANCEL] (default: <Ctrl-\>), <Ctrl-C> or <Ctrl-Break>. This results in
the "*BREAK*" message and a new "COMMAND:" prompt. VEDIT checks
for [CANCEL] before any new command is executed, at the end of each line
displayed on the screen and during commands which repeatedly access the
disk.

The maximum command line length is 256 characters. Longer commands are
more easily handled as command macros — the macro is copied to a text
register or loaded from a file.

Occasionally you may see a "<<" displayed at the end of a line preceding the
"COMMAND:" prompt. This only indicates that the previous line did not end
in a "newline". It can occur when you use the "NOCR" option on selected
commands to suppress the newline.

Command Line Editing
The command line can be edited in the same way as a string in a dialog box.

Characters typed in the middle of a command line will either be inserted or
overstrike existing characters, depending upon the Dialog insert mode. The
Dialog insert mode is independent of the Visual insert mode.

[INSERT TOGGLE] <Ins> Toggle the Dialog Insert Mode be-
tween Insert and Overstrike modes.

18 Chapter 2 Command Macro Guide Command Mode



After editing the command line press <Enter> — it is NOT necessary to first
move the cursor to the end of the line.

To enter control characters on the command line, first press [ENTER CTRL]
(default: <Ctrl-Q>) and then the control character, e.g. <Ctrl-X> or <Enter>.
[ENTER CTRL] causes the following character to be taken literally, and not
to be interpreted as a line editing character or any other special character.

Reusing Previous Command Lines
The previous ten or more command lines can easily be reused.

[CURSOR UP] Accesses the previous command line.

[CURSOR DOWN] Accesses the next command line.

A previous command line can be edited before pressing <Enter>.

Using the Scratchpad
You can easily transfer command lines to and from the scratchpad (text register
0). For example, you can copy a line of macro language commands from a file
to the scratchpad: press [T-REG COPY] (default: <Ctrl-F11>), select register
"0", enter Command Mode, and press [T-REG INSERT] (default: <F11>).

[T-REG COPY] <Ctrl-F11>
<Numpad+>

Copy the entire command line to
the scratchpad.

[T-REG MOVE] <Alt-F11>
<Numpad->

Move the entire command line
to the scratchpad.

[T-REG INSERT] <F11>
<Numpad*>

Insert the scratchpad into the
command line.

When using these [T-Reg...] functions at the "COMMAND:" prompt, you are
not prompted for the register number; it automatically uses register 0.

Command Syntax
VEDIT's command syntax loosely follows the syntax of the "C" programming
language. The format of commands is:

Command( arguments )

Command names can be entered in any combination of upper and lower case
letters. To improve readability, we usually capitalize the first letter of each
command word, e.g. Type_Space( ).
The "_" character is optional and is only intended to improve readability.

Most commands have a short abbreviation. It is often, but not always, the first
letter of each command word.

Therefore, the following commands are identical:

Command Mode Chapter 2 Command Macro Guide 19



Type_Space( ) typespace( ) TS( ) ts( )

Many commands take one or more arguments which must be enclosed in
parentheses "(...)". With a few exceptions, commands that take no arguments
can have the empty "( )" left off.

NOTES: The macros we supply on disk and the examples in this manual
usually use the full command name and include empty "( )" for
commands that perform an operation and leave the "( )" off for the
commands (called "internal values") that only return a value. How-
ever, we usually abbreviate the command Visual( ) as just V.

Commands that take a single numeric argument, e.g. Type_Space( ), will use
the default argument of "1" if no argument is specified.

Therefore, the following commands are identical:

Type_Space(1) Type_Space( ) Type_Space TS

Multiple commands may be typed one after another on a command line. They
are always executed left to right. Their effect is the same as if each command
had been typed on its own command line. For clarity's sake, you should leave
a space between the commands. For example, the three command lines, each
with a single command:

Begin_Of_File
Print(ALL)
V

are equivalent in operation to the single command line with three commands:

Begin_Of_File Print(ALL) V

You will often want to use a sequence of commands over and over again. We
refer to any sequence of commands as a "command macro". As described
earlier in this chapter, command macros can be saved to disk as ".vdm" and/or
assigned to keystroke macros, or added to the {USER} menu for easy access.

Chapter 3 (Programming Guide) covers command macros in more detail.

Command Arguments
VEDIT commands take two types of arguments - numeric and string. Argu-
ments must be enclosed in (...) following the command name. When there are
two or more arguments, they must be separated from each other with commas.

Each numeric argument can be a numeric expression consisting of numeric
constants (e.g. 12345), numeric variables (e.g. #10), reserved words (e.g. ALL)
or the return value from a command (e.g. File_Size). Chapter 3 (Programming
Guide) covers numeric expressions in detail.

Numeric arguments have the range of +/- 2,147,483,647. When a large number
is needed, for example to specify an "infinite" repeat count, the reserved word
"ALL" can be used; its value is greater than one billion.

20 Chapter 2 Command Macro Guide Command Mode



For example, the command Print(n) prints 'n' lines of text. The command
Print(1000000) could be used to print the entire file (up to 1 million lines
anyway). However, the following is preferable:

Print(ALL) Print the entire file, starting at the current edit
(cursor) position.

String Arguments
Each string argument can either be a string constant (e.g. "hello") a string
variable stored in a text register (e.g. @20), or one of the predefined string
values, (e.g. CUR_DIR).

A string constant is enclosed in "delimiters" that cannot occur in the string.
The allowable delimiters are:

` ' " % & * , . : ; / ~ ^ =

As a convention, we use double-quotes as the string delimiters whenever
possible. When the string contains double-quotes, we use single-quotes or the
forward-slash.

Ins_Text(/The name is "TOM"/)

Since the normal double-quote character is part of the
string constant, "/" is used as the string delimiter.

String arguments are often accessed from text registers which can be used as
string "variables". The syntax @r uses text register 'r' as the entire string
argument. The register can contain any characters, even including the string
delimiter.

Reg_Set(20, /The name is "TOM"/)
Ins_Text(@20)

Text register 20 is used as a string variable in the
Ins_Text( ) command. It performs the same insertion
as the previous example.

Although not available for all string arguments, all filename arguments plus
the Search( ), Replace( ), Match( ), Statline_Message( ), System( ) and Goto
commands can use a text register as a portion of the string argument. The
syntax |@(r) uses text register 'r' as a portion of the string argument.

The following equivalent commands display a directory of all "chapter1.*"
files in the current directory.

Directory("chapter1.*")

Reg_Set(10,"chapter1.*")
Directory(@10)

Reg_Set(10,"chapter1")
Directory("|@(10).*")

The predefined string values can be used anywhere that a string constant can
be used.

Command Mode Chapter 2 Command Macro Guide 21



Reg_Set(10,CUR_DIR) Set text register 10 to the pathname of the
current directory.

Appendix D gives a description of all predefined string values.

Command Options
Many commands have an optional argument referred to as "options". Techni-
cally it is a normal numeric argument, but we highly recommend that any
options be specified using the appropriate reserved words. When two or more
options are needed, the corresponding reserved words are ORed together with
"|" or added together with "+". (Note: "|" is <Shift-\>.)

NOTE: It is better to "OR" the options together with "|" in case you
inadvertently specify the same option twice. For example, the
options "CASE | ... | CASE" works properly, while "CASE + ... +
CASE" gives unpredictable results. However, we use "+" in this
manual because it is more readable.

For example, the command Search("text", REVERSE+NOERR) performs
a search in the reverse direction and suppresses the error message if the string
is not found.

The command option "COUNT" is followed by an additional numeric argu-
ment, often indicating the number of times the command is to be repeated.

Search("text",COUNT,3)

The command option "COLSET" is followed by two additional numeric
arguments that set the explicit columns for a columnar block operation.

Search_Block("text",Block_Begin,Block_End,COLSET,10,40)

When "COUNT" and "COLSET" are both used, the argument for "COUNT"
comes first. Combining the two examples above gives:

Search_Block("text",BB,BE,COUNT+COLSET,3,10,40)

NOTE: Although all reserved words are numeric constants, your macros
should always use the reserved word because their specific value
may change in future versions.

Multiple Line String Arguments
The string argument in commands such as Search("ss"), Ins_Text("text")
and Message("mtext") can be several lines long. If you press <Enter> before
the second delimiter, the "newline" becomes part of the string argument and
the command waits for the rest of its string — the command prompt then
changes to "-".
Prompt: "-" VEDIT is waiting for the second string delimiter.

For example, the following command will search for two lines:

Search("This is line 1<Enter>
This is line 2")<Enter>

Note: Prompt changes to "-" here.

22 Chapter 2 Command Macro Guide Command Mode



The screen display just before pressing the second <Enter> is:

COMMAND: Search("This is line 1
-This is line 2")■

The "-" command prompt is normal for string arguments that contain <Enter>.
However, if you have made a mistake and unexpectedly receive the "-" prompt,
press [CANCEL] (<Ctrl-\>) or <Ctrl-C> to abort the command.

The Message( ) command can take a multiple line string argument or the
sequence "\n" can be used be specify a "newline". Therefore the following two
commands are equivalent.

Message("Line 1
Line 2
Line 3")

Message("Line 1\nLine 2\nLine 3")

Command Return Value
On-Line Calculator

Each command executed returns a numeric value. For some commands, such
as Search( ), this value indicates whether the command succeeded. The only
purpose for some commands, such as File_Size, is to return status information.
Most commands simply return "1".

The "COMMAND:" prompt has a handy on-line calculator feature that evalu-
ates any numeric expression that you enter. It can also display the return value
from any command.

12000/25+123 Evaluate the numeric expression and display the
answer in decimal.

$ 12000/25+123 Evaluate the numeric expression and display the
answer in hexadecimal.

. File_Size Display the current file's size in decimal.

The special operator "." forces VEDIT to display the following numeric
expression in decimal; if it is a command, it displays the command's return
value. For commands that do nothing but return a value, such as File_Size, the
"." is not necessary, but in general it is.

The special operator "$" forces VEDIT to display the following numeric
expression in hexadecimal.

Command Mode Window
The best way to experiment in Command Mode is to create a dedicated
Command Mode window named "$". A major advantage of this is that you

Command Mode Chapter 2 Command Macro Guide 23



can observe in the Visual Mode window(s) the effect of the Command Mode
commands. The cursor displayed in the Visual Mode window will correspond
to the Command Mode "edit position".

As described earlier, {ESCAPE, Command mode window} creates a handy
five line for this purpose. Alternatively, you can use {WINDOW, Create} or
the Win_Reserved( ) command to create a window of any size.

Win_Reserved($,10,BOTTOM) Create the special Command Mode
window "$" on the bottom with 10
lines.

Update Re-display the current file in Visual Mode and
immediately return to Command Mode.

This illustrates an application of the Update command which only updates the
Visual Mode window and immediately returns to Command Mode. Since the
"$" window now exists, it also switches to this window.

All edit changes performed in Command Mode can now be immediately
observed in the Visual Mode window.

Controlling Screen Display
Some commands can display dozens or even thousands of lines of text. When
any commands attempt to display more than one window of text, VEDIT
prompts on the status line with:

Display more text [More] [Non-stop] [Cancel]

Select [More] (the default) to permit the display of up to another window full
of text. Select [Non-stop] to temporarily turn off this feature so that all the text
can quickly be displayed. Select [Cancel] to abort the commands that are
running. This feature is reset each time VEDIT waits for keyboard input.

This feature can be disabled by setting {CONFIG, Display options, Enable
-MORE- operation} to "No".

Screen output can also be temporarily stopped by pressing <Ctrl-S>. Pressing
any other key, but typically another <Ctrl-S>, resumes the screen output.

During lengthy screen output, you can press [CANCEL] (<Ctrl-\>),
<Ctrl-C> or <Ctrl-Break> to abort the command macro that is running. This
typically returns you to the "COMMAND:" prompt.

24 Chapter 2 Command Macro Guide Command Mode



Basic Commands

Help Command
On-line help is available in the Command Mode via the Help( ) command.

Help( ) Start up the on-line help for the Command Mode.
Starts with the topic "Command".

H Abbreviation for Help( ).

From Command Mode, the on-line help starts with the topic "Commands"
which is a complete list of commands (including abbreviations). The detailed
command descriptions are organized into topics containing related commands.

Windows version: Simply click on the name of any command to link to the
detailed description of that command.

DOS version: Select "[T]opic" and enter the name of any command to go to
the detailed description of that command.

You can also go directly to the on-line help for a specific command.

H("file_open") Go to the on-line help detailed description of the
File_Open( ) command.

You can also access the Command Mode help from Visual Mode by indexing
to the topic "Commands" or to a particular command. For example:

� To access on-line help for Replace( ) from Visual Mode:
1. Press [HELP] (<F1>).

2. Windows version: Select "Search".

DOS version: Type "T" to enter a new help topic.

3. At the help topic prompt enter "Replace". You should now see the on-line
help for the command.

Exiting VEDIT
The Exit command is identical to {FILE, Exit} and exits VEDIT after
prompting whether each modified buffer (file) is to be saved or abandoned.

Exit Prompt whether each buffer is to be saved or aban-
doned. Then exit VEDIT.

To save all files and exit quickly without any prompts, use the Xall( )
command. It is equivalent to {FILE, Exit} followed by selecting [Save all].

Xall Save all files without prompting and exit.

Note that Xall( ) does not save modified buffers that have no assigned file-
name, whereas Exit( ) will prompt for the filename. However, as a precaution,

Basic Commands Chapter 2 Command Macro Guide 25



Xall( ) will prompt for a filename if the main buffer "1" has no assigned
filename.

If you want to quit (abandon) all files and exit, use the Qall( ) command. It is
equivalent to {FILE, Exit} followed by selecting [Quit all]".

Qall Quit (abandon) all files and exit. It prompts for
confirmation.

Qally Quit (abandon) all files and exit without con-
firmation.

Think of the "Y" in Qally as answering "Yes" to the confirmation prompt. Use
it with caution!

Display Status Information
Several commands simply display status information. This is similar to the
information displayed by {HELP, Status display}.

Version or Ver Display VEDIT's version number.

Name_Dir or ND Display the current drive and directory.

Name_Read or NR Display the name of the input (read) file.

Name_Write or NW Display the name of the output (write) file.

Name_File or NF Display the input and output file names.

Mem_Status or MSTAT Display the number of bytes free in the
current edit buffer, the number of bytes
used, and the total number of bytes in all
text registers.

Date Display the current system date.

Time Display the current system time.

Reg_Status or RSTAT Display the total number of bytes in all text
registers and the number of bytes in each text
register.

VEDIT has many other commands that return a numeric value for useful status
information. For example, File_Size( ) returns the size of the current file;
Cur_Line( ) returns the line number of the edit position (cursor). These
commands are fully described in Chapters 3 and 4. As described earlier, the
on-line calculator at the "COMMAND:" prompt will display their value.

.File_Size or .FSIZE Display the size of the current file.

.Disk_Free or .DKF Display the amount of free disk space.

.Buf_Total or .BT Display the number of edit buffers (files)
currently open.

26 Chapter 2 Command Macro Guide Basic Commands



The Config( ) Commands
The Config( ) command lets you display or change any of VEDIT's configu-
ration parameters including many not included in the {CONFIG} menu.

You can display either all 180+ configuration parameters or just one category.

Config or CF Display the current values of all configuration
parameters. It is about 180 lines long. Assum-
ing the "-MORE-" function is enabled, the
display will pause after each screen full.

The display from the Config( ) is very similar to the contents of the
VEDIT.CFG file described in the VEDIT User's Manual. The name of each
configuration parameter begins with a one or two letter category name. (The
on-line help lists all categories.) For example, all screen-display oriented
parameter names begin with "S_" and all printing oriented parameter names
begin with "P_". You can display just the configuration parameters in one
category as in the following examples:

Config(s) Display just the configuration parameters in
the screen-display category, i.e. those with a
name beginning with "S_".

Config(pg) Display just the programming oriented con-
figuration parameters, i.e. those with a name
beginning with "PG_".

To change the value of a configuration parameter, you must specify its name
(upper/lower case doesn't matter and "_" is optional) and its new value.

Config(W_RT_MARG,70) Set the right margin to column 70.

If you examine a VEDIT.CFG file (created with {CONFIG, Save config}),
you will notice that the parameter name, e.g. W_RT_MARG, can optionally
be followed with a descriptive name in quotes, e.g. "Right margin (*)
(0=Window, 16 - 255)". VEDIT ignores the text between the quotes — it is
only intended to improve readability.

Similarly, the Config_String( ) command lets you display all configuration
strings or change one.

Config_String or CFS Display the current values of all
configuration strings.

Config_String(PR_DEF,"LPT2") Change the "Default" printer to
be the 2nd parallel port.

The Config_Tab( ) command displays the current tab stops or lets you set new
ones. It is very similar to {CONFIG, Tab stops}. You can specify either
uniform tab stops or up to 33 explicit tab stops.

Config_Tab or CFT Display the current tab stops.

CFT(10) Set uniform tab stop at every 10 columns.

CFT(7 15 24 64) Set tab stop at columns 7, 15, 24 and 64.

Basic Commands Chapter 2 Command Macro Guide 27



The tab stops can be separated from each other with commas or a space. It is
the only command that allows numeric arguments to be separated by just a
space.

Edit Buffer Dependent Configuration
Parameters

For maximum flexibility when editing multiple files, VEDIT maintains a
separate set of Tab stops and selected configuration parameters for each edit
buffer. This lets you, for example, have word wrap enabled for one file being
edited, but not for another.

The edit-buffer dependent configuration parameters are identified with a "(*)"
in their name. Many of the programming, word processing and file handling
parameters are included.

{CONFIG, Config all buffers} controls whether {CONFIG} menu changes
apply only to the current edit-buffer or all buffers. The Config command is
even more flexible; you can change up to three different copies of each
edit-buffer dependent parameter.

● The "global" copy of the configuration parameter. This copy is used as
the initial value for all newly opened edit buffers. It is also the copy saved
to disk with {CONFIG, Save to disk} or {CONFIG, Save into VEDIT}.

● The "local" copy of the configuration parameter in the current edit buffer.
● The additional copies of the configuration parameter in any additional edit

buffers that are currently open.

The Config( ) command without options, changes both the "local" value and
the "global" value. This is equivalent to the {CONFIG} menu with {CONFIG,
Config all buffers} disabled.

Config(W_RT_MARG,70) Set the right margin in the current edit
buffer and set the "global" value. Other
existing edit buffers are not affected.

Use of the "ALL" option changes all copies of the configuration parameter.
This is equivalent to the {CONFIG} menu with {CONFIG, Config all
buffers} enabled.

Config(W_RT_MARG,70,ALL) Set the right margin in all edit
buffers and set the "global"
value.

Use of the "LOCAL" option changes only the copy in the current edit buffer.
The "global" copy is not changed. This cannot be done with the {CONFIG}
menu.

Config(W_RT_MARG,70,LOCAL) Set the right margin only in the
current edit buffer. Other buff-
ers and the "global" value are
not affected.

28 Chapter 2 Command Macro Guide Basic Commands



Moving the Edit Position
Many of the commands operate on the text at the "edit position". The edit
position corresponds to the cursor position in Visual Mode. Commands exist
to move the edit position by character or by line. The number of lines or
characters the edit position moves is determined by the numeric argument for
the command. Negative numbers mean backward movement, towards the
beginning of the edit buffer.

Begin_Of_File or BOF Move the edit position to the beginning
of the file. Equivalent to {GOTO, Begin-
ning of file}.

End_Of_File or EOF Move the edit position to the end of the
file. Equivalent to {GOTO, End of file}.

Begin_Of_Line or BOL Move the edit position to the beginning
of the current line. Similar to [LINE
BEGIN].

End_Of_Line or EOL Move the edit position to the end of the
current line. Similar to [LINE END].

Goto_Line(n) Move the edit position to the beginning of line 'n'
in the file.

Goto_Pos(n) Move the edit position to the n'th character in the
file. Counting starts at 0 (zero); therefore,
Goto_Pos(0) moves to the beginning of the file.

Goto_Pos(500000) Move the edit position to the 500,001 'st character
in the file. If the file is not this large, moves to the
end of the file.

Line(m) Move the edit position forward or backward by 'm'
lines.

Line(6) or L(6) Move the edit position forward by 6 lines.

Line(-5) or L(-5) Move the edit position backward by 5 lines.

Line(0) or L(0) Move the edit position to the beginning of the
current line. Equivalent to BOL( ).

Char(m) Move the edit position forward or backward by 'm'
characters. Remember that with DOS/Windows
files, the "newline" is usually two characters -
<CR> and <LF>.

Char(90) or C(90) Move the edit position forward by 90 characters.

Char(-2) or C(-2) Move the edit position backward by 2 characters.

The commands that alter the text all operate from the current edit position. The
search and replace commands normally start their search at the edit position.
You can display the lines in the region of the edit position with the Type( )
command:

Basic Commands Chapter 2 Command Macro Guide 29



Type(m) Display (type) the following or previous 'm'
lines of the file.

Type(10) or T(10) Display the following 10 lines of the file.

Type(-4) or T(-4) Display the previous 4 lines of the file.

T(0) T Display the current line regardless of where
the edit position is on it.

Alter Commands
The basic alter commands let you delete a specified number of characters or
lines. Variations of these commands, described in Chapter 3 (Programming
Guide) let you delete blocks of text.

Del_Line(m) Delete the following or previous 'm' lines of
text.

Del_Line(6) or DL(6) Delete from the edit position up to and includ-
ing the 6th "newline".

Del_Line(-4) or DL(-4) Delete all characters (if any) on the current line
up to the edit position and the previous 4 lines.

DL(0) DL Delete the current line regardless of where the
edit position is on it.

Del_Char(m) Delete the following or previous 'm' charac-
ters. Remember that with DOS/Windows
files, the "newline" is usually two characters.

Del_Char(100) or DC(100) Delete the following 100 characters.

Del_Char(-2) or DC(-2) Delete the previous 2 characters.

The basic insertion commands are Ins_Text( ) and Ins_Char( ):

Ins_Text("text") Insert the text 'text' at the edit position and
advance the edit position.

Ins_Text("Help ") Insert the word "Help " at the edit position.

The "COUNT" option lets you insert multiple copies.

Ins_Text(".",COUNT,80) Insert eighty periods at the edit position.

Ins_Char(n) Insert the single character with ASCII value
'n' at the edit position and advance the edit
position.

Ins_Char(10) Insert a line-feed (<LF>) at the edit position.

Ins_Char(205) Insert a graphics character at the edit position.

The "OVERWRITE" option overstrikes the current character with a new one:

Ins_Char('A',OVERWRITE) Overstrike (change) the current char-
acter to "A".

30 Chapter 2 Command Macro Guide Basic Commands



Search and Replace
This topic describes the search and replace commands Search( ) and
Replace( ) which correspond to the functions {SEARCH, Search} and
{SEARCH, Replace}.

Searching and Search Options
The text to search for is specified with a "search string". Usually the search
string consists of the exact characters you want to locate. For example:

Search("today") Search for the next occurrence of "today".

Like any string argument, the search string must be enclosed in delimiters that
are not part of the search string.

If the search is successful, the "edit position" is placed at the first character of
the matched text, e.g. at the "t" of "today". If not, the command gives the error
message "CANNOT FIND "string". (Search errors can also be suppressed.)

Sometimes it is preferable to have the edit position placed past the matched
text, e.g. immediately after the "y" of "today". For example, this is convenient
when a following block operation needs to include the matched text. This is
easily done with the "ADVANCE" option.

Search("today",ADVANCE) Search for the next occurrence of
"today"; if found, place the edit posi-
tion past the matched text.

You can directly search for the 'n'th occurrence with the command form
Search("string", COUNT, n). For example:

Search("today",COUNT,7) Search for the 7th occurrence of
"today".

All searches are normally forwards, toward the end of the file. However, you
can also search backwards toward the beginning of the file by using the
command option "REVERSE". For example:

Search("house",REVERSE) Search backward for the nearest
occurrence of "house".

When searching, VEDIT normally equates upper and lower case letters.
However, when needed, the command option "CASE" can be used to distin-
guish between upper and lower case letters.

Search("house",CASE) Make a distinction between upper
and lower case letters. This search
will not match "House".

Sometimes you want to search for a distinct "word" that is separated from other
characters with spaces or other separators. For example, you might want to
search for the word "and", but not match "sand", "Anderson" or other words
that contain "and". For this use the "WORD" option:

Search and Replace Chapter 2 Command Macro Guide 31



Search("and",WORD) Restrict the search to distinct words. This
search will not match "band".

The search string can include any desired pattern matching codes, just like
[SEARCH]. For example: (The "|" is the keyboard character above "\".)

Search("|D|D") Search for two consecutive digits using
Pattern matching.

Regular Expressions can also be used when the "REGEXP" option is specified:

Search("[A-Z][a-z]*",REGEXP) Search for a capitalized word
using Regular expressions.

NOTE: The configuration parameters {CONFIG, Search, Default case-
sensitive option} and {CONFIG, Search, Default search mode}
have no effect on the Search( ) and Replace( ) commands.

The [SEARCH] function saves the current search string so that it can be reused
by [SEARCH AGAIN]. You can do the same thing in Command Mode by
using the command option "SET":

Search("house",SET) Perform the search and save the search
string as the default search string.

Following the example above, [SEARCH AGAIN] would search for the string
"house". There is an equivalent to [SEARCH AGAIN] in Command Mode:

Search( ) Search again for the next occurrence of
the default search string.

One difference between a "search" and a "search again" is that the "search"
begins at the current edit position, while the "search again" begins with the
character following the current edit position. Otherwise, a "search again"
would tend to match the same text over and over again.

Replacing
The Replace( ) command is used to search for text and replace it with new
text.

Replace("today","not today")

Replace the next occurrence of "today"
with "not today".

All of the options of the Search( ) command apply. For example:

Replace("today","not today",COUNT,4)

Replace the next four occurrences of
"today" with "not today"

Replace("today","not today",REVERSE)

Search backwards for "today" and replace
it with "not today"

32 Chapter 2 Command Macro Guide Search and Replace



A common use of Replace( ) is to replace all occurrences of a word (perhaps
a misspelled one) with another word(s). You could use the command option
"COUNT" with a large number, but it is preferable to use the command option
"ALL":

Replace("today","not today",WORD+ALL)

Replace all occurrences of the word "today"
with "not today".

Another use for Replace( ) is to delete all occurrences of some particular text.
For example, the command to find and delete all occurrences of the word
"junk" is:

Replace("junk","",WORD+ALL)

Search and delete all occurrences of "junk",
i.e. "junk" is being replaced with nothing.

Unsuccessful Search and Replace
An unsuccessful search normally gives the error message CANNOT FIND
"string". When the "ALL" option is used with the Search( ) and Replace( )
commands, the error is only given if no occurrences were found.

The error message can be suppressed with the "NOERR" and "ERRBREAK"
options. This is fully described in Chapter 3 (Programming Guide). The
"NOERR" option must be used with care to avoid "infinite" loops inside
command macros that use looping. (You can break out of an infinite loop by
pressing [CANCEL], <Ctrl-C> or <Ctrl-Break>.)

When a search is unsuccessful, Config(SR_RES_POS, n) controls where the
edit position will be placed. This is identical to {CONFIG, Search, Restore
edit position on error}.
0 The edit position is only restored if it is still in memory. No file buffering

is performed.

1 The edit position is always restored.

2 The edit position is left at the end of the file. In case of a backwards
(REVERSE) search, it is left at the beginning of the file.

When searching large files, it is not always desirable to restore the edit position
following an unsuccessful search because it can take a significant amount of
time. Using the option "NORESTORE" with Search( ) or Replace( ) overrides
the setting of Config(SR_RES_POS, n) and does not restore the edit position;
it is left at the end (beginning) of the file.

Search("house",NORESTORE) If the search is unsuccessful,
don't restore the edit position.
This saves time when searching
in very large files.

Search and Replace Chapter 2 Command Macro Guide 33



File Editing Commands

Opening Files for Editing
One or more files can be opened at a time with the File_Open( ) command. If
you specify a filespec with the wildcard characters "*" and "?", File_Open( )
will open all of the files (when possible).

File_Open("myfile.txt") Open the file "myfile.txt" for editing.

File_Open("c:\jobs\acme\*.c") Open all files in the "c:\jobs\acme"
directory that have a filename exten-
sion of ".c".

Long
Filenames

Long filenames with embedded spaces or commas must be
enclosed in double-quotes; if multiple files are specified, or
the "-a", "-l" and "-t" options are used, the entire string must
be enclosed in other delimiters, typically single-quotes.

File_Open('"a long filename.txt","file2.abc"')

Open the two files "a long filename.txt" and
"file2.abc" for editing. Notice how single and double-
quotes are used to support long filenames with spaces.

File_Open('"*.c", "*.h"') Open all files in the current directory that
have a filename extension of ".c" or ".h".

File_Open( ) also supports the "-a" and "-l" options available when you invoke
VEDIT.

The "-a" option lets you specify separate input and output files. For example,
if you want to edit the text in the file "infile.txt" and in the process create a new
file with the name "outfile.txt", you could use the following command:

File_Open('"infile.txt" -a "outfile.txt"')

This is equivalent to the command sequence File_Open("infile.txt")
File_Save_As("outfile.txt").
The "-l" option lets editing begin at the specified line number.

File_Open('"myfile.txt" -l125') Open "myfile.txt" and begin editing
at line number 125.

NOTE: File_Open() does not automatically create a window for each file
opened as does {FILE, Open}. Buffers (files) and windows are
independent of each other, especially in the command mode.

The command option "ATTACH" causes a new window to be automatically
created for each new buffer, similar to {FILE, Open}. (This assumes that
{CONFIG, Screen display, Auto-create windows for buffers} is enabled.)

34 Chapter 2 Command Macro Guide File Editing Commands



In practice, the "ATTACH" option is rarely used. Windows are not needed for
files edited entirely with a command macro. The first time the buffer (file) is
displayed in Visual Mode, a window will be auto-created for it.

Closing Files
Whereas {FILE, Close} closes both a file and its buffer, when you close a file
in Command Mode, you can either remain in the current buffer or also close
the buffer.

File_Close( ) Save and close the current file, and remain in the
current edit buffer. If the current buffer contains
text but has no assigned filename, you are
prompted for one.

File_Quit( )
Buf_Empty( )

Empty the current edit buffer without closing it.
Quit (abandon) any text or file in the buffer. Re-
quests confirmation if the buffer has been altered.
File_Quit( ) and Buf_Empty( ) are two names for
the same command.

File_Quit(OK) Skip the confirmation prompt.

Buf_Close( ) Save and close the current file and also close the
edit buffer. If the buffer contains text but has no
assigned filename, you are prompted for one.
Switches to one of the remaining buffers. The main
buffer "1" cannot be closed - only the file will be
saved and closed.

Buf_Quit( ) Quit (abandon) any file in the buffer and also close
the edit buffer. Switches to one of the remaining
buffers. The main buffer "1" cannot be closed -
only the text/file will be abandoned. Requests con-
firmation if the buffer has been altered.

Buf_Quit(OK) Skip the confirmation prompt.

File_Close( ) and File_Quit( ) are useful when you are finished editing one
file and want to edit a new file in the current buffer.

You can perform the equivalent of {FILE, Open (More), Same buffer} with
a combination of the File_Close( ) and File_Open( ) commands:

File_Close( ) File_Open("filename")

NOTE: File_Close( ) is not the same as {FILE, Close}.

Save File and Continue Editing
The File_Save( ) command performs the equivalent of the {FILE, Save}
function. When you are spending a lot of time editing a file, it is a good habit
to routinely save the file on disk and then continue editing it. Otherwise, all of

File Editing Commands Chapter 2 Command Macro Guide 35



your edit changes will be lost should a power or hardware failure occur. This
also protects you from your own mistakes.

File_Save( ) Save file to disk for continued editing.

File_Save(ALL) Save all files to disk for continued editing.
Equivalent to {FILE, Save all}

The File_Save( ) command does not affect your current editing position, the
text markers or the text registers.

NOTE: File_Save( ) saves the file to disk and begins editing it again.
Therefore, if a File_Save( ) is later followed by a File_Close( ) -
Abandon, you will only abandon those changes made after the
File_Save( ) command. Those changes made before the
File_Save( ) will have already been saved on disk.

You may find the File_Save(BEGIN) command useful; it has no equivalent
in Visual Mode:

File_Save(BEGIN) Save the file to disk and continue editing from
the beginning of the file. It is equivalent to, but
faster than File_Save( ) BOF( ).

SUGGESTION: If you are near the end of a very large file and need to begin
editing from the beginning again, it is often faster to use the
command File_Save(BEGIN) instead of BOF( ). This has
the added benefit of saving the current file. It then restarts
the editing at the beginning of the file.

Directory Display
The Directory( ) command displays the filenames in any desired directory.
Drive specifiers and the "wildcard characters" "?" and "*" can be used. Some
examples are:

Dir( ) Display the current directory.

Dir("a:") Display the directory of drive "A".

Dir("*.asm") Display (list) all ".asm" files in the current
directory.

Deleting (Erasing) Files
Files can be deleted with the File_Delete( ) command. In case the disk becomes
full and VEDIT gives you a "NO DISK SPACE" or "NO DIRECTORY
SPACE" error, you can first use the Directory( ) command to determine what
files can be deleted. Then use File_Delete( ) to delete the unneeded files. Some
examples are:

FDEL("oldfile.txt") Delete one file.

FDEL("*.bak") Delete all ".bak" files.

36 Chapter 2 Command Macro Guide File Editing Commands



Before deleting the files, File_Delete( ) displays a list of the files to be deleted
and requests confirmation.

If you prefer, you can also delete files by shelling out to DOS with the
System( ) command (equivalent to {MISC, DOS Shell}) and then using DOS
commands to delete the files.

NOTE: When deleting files, do not delete any ".r$$" or ".rR$" files while
VEDIT is running! These are temporary files that VEDIT is using.
Deleting these files will result in lost text.

Pathnames
Any filename may optionally include a standard "pathname" to any directory.
For example:

File_Open("\business\letter.txt") Edit the file "letter.txt" in the
directory "\business".

Dir("\business\") List all files in the directory "\business". Note
that you must include the second "\".

The Directory( ) command lists both files and directories — directories are
indicated with a "\" following the name.

"\" and "/" Windows/DOS use the backward-slash "\" in pathnames,
while UNIX and QNX use the forward-slash "/". If desired,
you can enter all pathnames in VEDIT macros with forward-
slashes; this makes it much easier to write macros that will
work under all operating systems.

Changing Current Drive / Directory
If you are constantly accessing files in another directory, it may be easier to
change to that directory with the Chdir( ) command. That way you won't have
to specify the pathname each time a file is referenced. You can also change to
another drive.

Chdir("\business") Change the default (current) directory to
be "\business".

Chdir("D:") Change to drive D:.

Chdir("D:\BUSINESS") Change to drive D: and the directory
"BUSINESS".

You can verify which drive and directory are current with the command:

Name_Dir Display the current drive and directory.

You can also display the current drive and directory with Chdir( ) without any
arguments. However, Name_Dir( ) has several display options that Chdir( )
does not have.

File Editing Commands Chapter 2 Command Macro Guide 37



Text Registers
The 100+ text registers serve two primary purposes. One is for "cut and paste"
operations, where they temporarily hold a block of text. The second is to hold
"command macros" which are sequences of macro language commands. In
both cases, the registers are holding textual material; only the manner in which
the text is used is different.

Text Register Commands
The text registers can be loaded directly from disk or saved to disk and their
contents can be displayed on the screen or printed.

The command option "APPEND" indicates appending to the existing contents
(if any) of the register. The command option "INSERT" indicates inserting at
the beginning of the existing contents of the register.

Lines of text are copied to a register with the Reg_Copy( ) command:

Reg_Copy(5,35) Copy the next 35 lines to register "5".

Reg_Copy(4,-6,APPEND) Append previous 6 lines to register "4".

Reg_Copy(5,9,INSERT) Insert 9 lines at the beginning of register
"5".

A text register is emptied with the Reg_Empty( ) command:

Reg_Empty(2) Empty register "2".

The Reg_Ins( ) command inserts the contents of a register at the edit position:

Reg_Ins(2) Insert register "2" at the edit position.

The Reg_Save( ) command saves the contents of a text register to a file. A
block of text may therefore be copied (or appended) to a text register, which
is then saved as a new file.

Reg_Save(10,"\data\file.txt")

Save contents of register "10" in "file.txt"
in directory "\data".

The Reg_Load( ) command loads a register with a file from disk. This is often
used to load command macros from disk.

Reg_Load(11,"\data\file.txt")

Load register "11" with "file.txt" in direc-
tory "\data".

Reg_Load(11,"file.txt",APPEND)

Append "file.txt" to the contents (if any)
of register "11".

The contents of a text register can be displayed with the Reg_Type( ) com-
mand:

38 Chapter 2 Command Macro Guide Text Registers



Reg_Type(0) Type out (display) contents of register "0".

Reg_Type( ) may expand control character, depending upon the current
display mode. Since this is not always desired, the command form
Reg_Type(r,0) is provided, which does not expand any control characters.

Reg_Type(9,0) Type out (dump) the contents of register "9"
without expanding any control characters.

The Reg_Print( ) command prints the contents of a text register. One applica-
tion is to print a file after first loading it into a text register.

Reg_Print(100) Print contents of register "100".

A string constant can be placed into a text register with the Reg_Set( )
command:

Reg_Set(10,"abcde") The text string "abcde" is placed
into register "10".

Reg_Set(10,"The end",APPEND) The text string "The end" is ap-
pended to register "10".

Text can be directly copied from one text register to another as the following
example illustrates:

Reg_Set(10,@11) Copy the contents of register
"11" to register "10".

Reg_Set(10,@11,APPEND) Append the contents of register
"11" to register "10".

The Reg_Status( ) command displays the total number of bytes in all text
registers followed by the number of bytes in each text register.

Using Text Registers in Filenames
The contents of a text register can be used as the entire filename or as a portion
of a filename with any command that takes a filename argument. This makes
it easy to have "variable" filenames. A register can also specify the DOS
command to be executed with the System( ) command.

Reg_Set(10,"myfile.txt")
File_Open(@10)

Open the file "myfile.txt". Register 10
contains the entire filename.

Reg_Set(10,".txt")
File_Open("myfile|@(10)")

Open the file "myfile.txt". Register 10
contains just the filename extension
".txt".

Besides the Reg_Set( ) command, there are more useful ways to store the
desired filename in a text register. The topic "Interactive Input and Output" in
Chapter 4 (Programming Guide) describes how to interactively enter a file-
name from the keyboard.

System(@10) The contents of register "10" are used as
a DOS command to be executed.

Text Registers Chapter 2 Command Macro Guide 39



Reg_Set(10,"txt")
System("dir *.|@(10)")

Use the DOS "dir" command to display a
directory of all files with a filename
extension of ".txt".

Text Register Usage
With over 100 text registers available, it is easy to forget what each register
contains. Several text registers are also reserved for special purposes. We
recommend the following organizational scheme for using registers:

0 The "scratchpad" or default "cut and paste" register in Visual
Mode.

1 - 9 Used as additional "cut and paste" registers from Visual Mode.
10 - 99 Used to hold command macros or as string variables in command

macros.
100 Used by any auto-execution macro specified with the "-x" invo-

cation option. It is also the default register for {MISC, Load and
execute macro}. It should be reserved for the "main" macro that
is running.

101 - 127 Reserved for special purposes. See Appendix G or the on-line help
topic "USAGE" for a detailed description of these registers.

To protect users from unintentionally overwriting text registers, the Visual
Mode can only access registers 0 through 100. The Reg_Prot( ) command (see
Chapter 4) can also be used by a command macro to write-protect the text
registers it uses.

40 Chapter 2 Command Macro Guide Text Registers



Intermediate Commands

Printing Text
Text can be printed with the Print( ) command which takes a numeric argu-
ment identical to Type( ) specifying how many lines are to be printed.

Print(m) Print the following or previous 'm' lines of text.

Print(40) Print the following 40 lines.

BOF( ) Print(ALL) Print entire edit buffer (file).

Any control characters in the text are expanded according to the current print
mode set with {CONFIG, Printer, Print mode}. Typically, all control char-
acters, except for <Tab> are sent as-is to the printer. Therefore, embedded
"Escape sequences" can be used to control printer functions such as font
changes and underlining. The <Tab> character is expanded to spaces accord-
ing to the current tab stops.

When text is printed, lines are offset from the left edge of the paper by a
selectable "printer margin". You can select the desired margins and other print
configuration parameters with the {PRINT, Config} sub-menu or with the
appropriate Config( ) commands.

Config(P_TOP_MARG,2) Set the top margin for a printed page to 2
lines.

The command option Print(n,RAW) prints in "raw" mode without adding any
printer margins or expanding any control characters. It is ideal for printing files
which have already been formatted for a printer, such as word processing file
which was "printed" to a file, or the ".LST" files created by a compiler.

BOF( ) Print(ALL,RAW) Print the entire file in "raw" mode without
adding margins; send all characters as-is
to the printer.

The Print_Eject( ) command advances the printer to the next page. To keep
VEDIT synchronized with the paper position in the printer, you should perform
page ejects with Print_Eject( ) and NOT use the printer's "Form Feed" or
"Paper Advance" functions.

If VEDIT does get out of sync with your printer, press the "Form Feed" button
on your printer and, if necessary, manually align the print head with the top of
a page. Then issue the special Print_Eject(0) command.

Print_Eject( ) Eject - advance printer to next page.

Print_Eject(0) Synchronize VEDIT with the printer at the top of
a new page.

When writing a command macro to print labels, it helps to set the "Paper
Length" to the size of the labels — typically nine lines. Then use Print_Eject( )
to advance to the next label.

Intermediate Commands Chapter 2 Command Macro Guide 41



The supplied macro print.vdm prints the entire file and additionally prints
the filename, date and page number at the top of each page. Examining this
macro is instructive for understanding the print commands better.

Print_Finish( ) finishes and closes the current print job. Assuming {CONFIG,
Printer, Page eject on Finish/Eject} is enabled, it first sends a page eject to
the printer. If {CONFIG, Printer, Enable printer setup strings} is set to "2"
or "3", it then sends the "Printer Finish string". Finally, it closes the print job.
On most systems that spool the printer, nothing will print until this command
closes the print-job. This is especially true with network printers.

When printing to a file, Print_Finish( ) closes the file, saving it on disk.

Entering Control Characters
You can include control character in a string argument such as a search string.
Since many control characters perform editing operations, first press [ENTER
CTRL] (<Ctrl-Q>) and then the control character, e.g. <Ctrl-X>.

The following examples insert a <Ctrl-H> into the text and search for a
<Ctrl-H>: (Assumes [ENTER CTRL] is <Ctrl-Q>.)

Ins_Text("<Ctrl-Q><Ctrl-H>") Insert a <Ctrl-H>.

Search("<Ctrl-Q><Ctrl-H>") Search for a <Ctrl-H>.

Because the IBM PC keyboard cannot produce a Null (value 00) character, it
is a little more difficult to search and insert these characters. The pattern
matching code "|000" and the regular expression "\d000" permit searching for
the Null character.

Search("|000") Search for the Null (value 00) character.

Ins_Char(0) Insert the Null character.

NOTE: You may find it easier to search for control characters by specifying
their decimal or hexadecimal value. Both pattern matching and
regular expressions support this. For example, "|003" is the pattern
matching code to search for <Ctrl-C>.

DOS/Windows text files normally have lines ending with a "newline" consist-
ing of the two characters "carriage return" and "line feed" — a <CR><LF>
pair. However, when files are transferred from mainframe computers, the lines
often end in a <CR> without the <LF>. These lone <CR>'s must be changed
to <CR><LF> pairs. The easiest way to specify the control characters is as
decimal values.

The command to change all lone <CR>'s to <CR> <LF> pairs is:

Begin_Of_File( )
Replace("|013","|013|010")

42 Chapter 2 Command Macro Guide Intermediate Commands



Re-routing Console Output
Any command macro console output, which normally goes to the screen, can
be re-routed to the printer, the edit buffer, to the OS (DOS), a file, or a text
register. Such re-routing is in effect until the next "COMMAND:" prompt or
until re-routing is canceled. This capability is tremendously powerful and
permits operations which would otherwise be very difficult or even impossible.

Out_Ins( ) Re-route to the edit buffer.

Out_OS( ) Re-route directly to the OS, bypassing the
normal window handlers.

Out_File("file") Re-route to a file.

Out_Print( ) Re-route to the printer.

Out_Reg(r) Re-route to text register 'r'.

The command Out_Print(0) or Out_Print(CLEAR) cancels the re-routing
and allows normal console output. (Similar for the other commands.)

NOTE: The following command sequences are shown on one line because
the "COMMAND:" prompt cancels any re-routing. In command
macros executed from a text register, each command could be on
its own line.

Out_Print( ) Directory("B:") Out_Print(CLEAR)

Print the directory of drive B.
Out_Print( ) Message("Hello") Out_Print(CLEAR)

Print the word "Hello".

Out_Ins( ) re-routes console output to the edit buffer, inserting it at the edit
position. Out_Ins(0) or Out_Ins(CLEAR) cancels the re-routing. Some
examples to try are:

Out_Ins( ) Date( ) Time( ) Out_Ins(CLEAR)

Insert current date and time into the edit buffer
(file).

Out_Ins( ) Dir( ) Out_Ins(CLEAR)

Insert current directory into the edit buffer.

Out_Reg( ) can be used to place the name of the output file into a text register:

Out_Reg(20) Name_Write(NOMSG+NOCR) Out_Reg(0)

Place name of output file into text register 20.

The re-routing commands can be nested. Therefore, following the commands
Out_Print( ) ... Out_Ins( ) ... Out_Ins(0), console output will be re-routed to
the printer.

The topic "Input Commands" in Chapter 3 describes how keyboard input can
be redirected from a file with the Redirect_Input( ) command.

Intermediate Commands Chapter 2 Command Macro Guide 43



Multiple File Editing
NOTE: In practice, it is much easier to handle multiple file editing by using

the {FILE} and {WINDOW} menus. This topic describes details
about multiple file editing as it relates to command macros.

VEDIT has 99 available edit buffers, each of which can have one file open for
editing. The edit buffers are always in one of three possible states:

● Closed. We also say that a closed edit buffer is "available" or "free".
● Open without a file. The edit buffer may or may not contain text. If the

buffer contains no text, we say that it is "empty".
● Open with a file open. The edit buffer is being used to edit a file.

Once an edit buffer is opened, it remains open until you explicitly close it with
the Buf_Close( ) or Buf_Quit( ) commands or from Visual Mode. One edit
buffer is always open; if only one edit buffer is open and you attempt to close
it, it will close any file, but the buffer will remain open.

At any time, only one edit buffer is the "current" or "active" buffer. The name
of the current edit buffer is always displayed on the status line: "#1" - "#32".
All editing operations are performed on the "current" buffer.

The Buf_Switch( ) command is used to switch to another edit buffer; if the
selected buffer is not already open, it will be opened as an "empty" buffer. It
is equivalent to {FILE, Buffer switch}.

Buf_Switch(b) Switch to edit buffer 'b', opening it if necessary.

The File_Open( ) command opens edit buffers as necessary to edit the
specified files. Although it can then be difficult to predict in which buffer each
file will be opened, this is usually not important.

If it is important to open specific files in specific buffers, you can use the
Buf_Switch( ) and File_Open( ) commands together, opening one file at a
time. The following example assumes that edit buffers 2 and 3 are either closed
or empty:

Buf_Switch(2)
File_Open("file2.abc")
Buf_Switch(3)
File_Open("file3.abc")

Open the file "file2.abc" in edit buffer 2
and the file "file3.abc" in buffer 3.

Using Edit Buffers as Text Registers
Many text register operations can also be performed on edit buffers:

● You can execute the contents of an edit buffer as a command macro with
{MISC, Execute macro} or the equivalent Call( ) command. This lets
you write macros in a window (buffer) and directly execute it, without
first copying it to a text register. However, you cannot execute the macro
in the current buffer; you must first switch to another buffer.

44 Chapter 2 Command Macro Guide Multiple File Editing



● You can insert the contents of another edit buffer into the current buffer
with {BLOCK, Insert register} or the equivalent Reg_Ins( ) command.

● You can save the contents of any edit buffer to disk with the Reg_Save( )
command.

You cannot change the contents of an edit buffer except when it is the
"current" edit buffer.
Therefore, you can perform {BLOCK, Insert Register} with edit buffers, but
not {BLOCK, Copy/Move to Register}. This limitation on altering edit
buffers helps prevent you from inadvertently altering the corresponding file.

To perform a text register operation on edit buffer 'b', use the register name
'b+BUFFER'.

Reg_Ins(2+BUFFER) Insert the contents of edit buffer "2" into the
current edit buffer at the edit position.

TECHNICAL: In general, text register operations with edit buffers should
only be performed with edit buffers that either have no file
open or are reasonably small. In particular, if the open file
is large, only the portion currently in memory will be used.

When editing multiple large files, VEDIT may perform file buffering when
switching from one edit buffer to another — part of the edit buffer you are
leaving will be written to disk to free more memory space. This auto-buffering
on the Buf_Switch( ) command can be disabled with the command form
Buf_Switch(r, LOCAL). (See Buf_Switch( ) in Chapter 4 for more details.)

Moving Text Between Edit Buffers
You can copy or move text from one edit buffer to another by using an
intermediate text register.

� Copy text from one edit buffer to another in command macros:
1. Make the edit buffer containing the text active with the Buf_Switch( )

command, if necessary.

2. Copy the text from the edit buffer to an available text register with the
Reg_Copy( ) command.

3. Give the Buf_Switch( ) command for the edit buffer which is to receive
the text.

4. Place the edit position where the text is to be inserted. The Line( ),
Search( ) and Goto_Pos( ) commands may be useful here.

5. Insert the text with the Reg_Ins( ) command.

If the text being copied is already in a disk file, you may want to use the
Type_File( ) command to locate it and then use the Ins_File( ) command to
insert it directly from the disk file.

Multiple File Editing Chapter 2 Command Macro Guide 45



Window Commands
The {WINDOW} menu manages windows from Visual Mode. Command
Mode permits windows to be managed with additional flexibility. The com-
mands to create, delete, switch windows and change color are covered here.
Additional commands related to window management are covered in Chapter
4 (Programming Guide).

Windows are created by either splitting an existing window in two, or by
creating an overlapping window. A window may be as small as one line and/or
10 columns (not including the border drawn around the window).

Win_Split(w,n,BOTTOM)

Split the current window to create window 'w' of 'n' lines at
the bottom of the current window. The reserved words "TOP",
"BOTTOM", "RIGHT" and "LEFT" specify the location.

Win_Create(w,l,c,nl,nc)

Create the overlapping window 'w' and switch to it. The
window's top-left corner origin is at line 'l' and column 'c'. It's
size is 'nl' text lines and 'nc' columns, not including the
borders.

Win_Create(w,y-org,x-org,y-size,x-size,PIXEL)

Create the overlapping window 'w' and switch to it. The
window's top-left corner origin is at pixel position (x-org,y-
org). It's width is 'x-size' pixels and it's height is 'y-size' pixels,
including the borders. (Windows version only.)

Win_Create(w,0,0,0,0,PIXEL)

Create window 'w' as a "full-size" overlapping window and
switch to it. (Windows version only.)

Additional windows can be numbered from "2" to "35" or can be named with
any ASCII character '$' or greater (value 36 to 127). We suggest that editing
windows be numbered while special purpose windows be named. This pre-
vents conflicts with the {WINDOW} split functions which always create
numbered windows. You should avoid naming windows '0' through '9' since
they will be difficult to distinguish from numbered windows.

Win_Split(2,30,RIGHT) Create window numbered "2" of 30 col-
umns at the right of the current window.

Win_Split('H',2,TOP) Create window named "H" of 2 lines at
the top of the current window.

Three window numbers/names are predefined:

1 Window 1 is referred to as the "main window" because it is
auto-created upon startup and by Screen_Init( ). Therefore, it
usually exists, but can be deleted if desired.

STATLINE The status line is a one line window that always exists and
cannot be deleted. You can switch to it with Win_Switch( ).

46 Chapter 2 Command Macro Guide Window Commands



$ If you create a window named '$' it becomes the dedicated
Command Mode window. This was described earlier in this
chapter.

Like most numeric arguments, the window number/name can be a numeric
expression. However, as a special case, a window name may be specified with
or without single quotes.

Win_Split('$',5,BOTTOM) Create the special Command Mode
window of 5 lines at the bottom of
the current window.

Win_Split($,5,BOTTOM) Alternate form — the single quotes can
be left off.

The special window size of "0" (zero) indicates that the window is to be split
in half. This has the added benefit that the new window will remain half the
size of the current window even if the screen size changes, e.g. with {VIEW,
VGA/EGA toggle}. {WINDOW, Vertical Split} uses this feature.

Win_Split(3,0,BOTTOM) Create window "3" by splitting the cur-
rent window horizontally in half. For ex-
ample, subsequently switching from 25
screen lines to 50 lines will double the
size of the window.

The new window will normally have borders as determined by the setting of
{CONFIG, Display options, Window borders}. The description of
Win_Split( ) in Chapter 4 (Command Reference) describes how to select the
desired type of borders.

Once a window is created, you can switch to it with the command:

Win_Switch('w') Switch to window 'w'.

Win_Switch('H') Switch to window "H".

WS(1) Switch to the default window "1".

Following a switch to a window, any command macro console output will be
displayed in the new window. However, a simple Win_Switch( ) command
does not switch to a different edit buffer. When you enter Visual Mode, the
current buffer will be displayed in its "attached" window, not the window you
just switched to.

The command form Win_Switch(w, ATTACH) performs the equivalent of
the {WINDOW, Switch} function. It also switches to the edit buffer currently
attached to the selected window. If the buffer has two or more attached
windows (e.g. when a file is displayed in two or more windows), it makes the
selected window the primary editing window.

Win_Switch(2,ATTACH) Switch to window "2". If window "2" is
currently being used to display a buff-
er/file, it also switches to that edit buffer.

Windows can be deleted with Win_Delete( ) which is similar to the
{WINDOW, Delete} function. Remember that this only deletes the window,
it does not affect files or edit buffers.

Window Commands Chapter 2 Command Macro Guide 47



Win_Delete(w) Delete window 'w'.

Win_Delete($) Delete the Command Mode window.

Win_Delete( ) Delete the current window.

Some additional window/screen commands are:

Screen_Init( ) Initialize the screen by deleting all win-
dows; only the default window "1" re-
mains. Reset to the configured color
attributes.

Screen_Init(ALL) Initialize the screen by deleting all win-
dows, even the default window "1".

Win_Zoom( ) Zoom the current window to full screen.

Win_Zoom(CLEAR) De-zoom the window.

"Reserved" Windows
The command Win_Reserved( ) creates a "reserved" window at the top or
bottom of the screen that cannot be overlapped. This is useful for a help line
or other window that must always be visible. With a reserved window, the
screen is effectively smaller for all other windows; even zooming a window
will not cover the reserved window. Cascading and tiling does not include a
reserved window.

Win_Reserved(w,n,BOTTOM)

Create the reserved window 'w' of 'n' lines at the bottom of the
screen. All other windows are resized to account for these
reserved screen lines.

The Command Mode window is typically created as a reserved window to
ensure that it is always visible.

Windows and Edit Buffers
Although windows are typically used to display edit buffers (files), windows
and edit buffers operate independently of each other, especially in command
macros. Command macros often create windows that display help information,
menus or other text.

When an edit buffer is displayed in a Visual Mode, it selects a window
according to these rules:

Rule 1: If the edit buffer is already "attached" to a window, and the
window still exists, it selects this window.

Rule 2: If a window by the same ID number as the edit buffer exists (and
is not already attached to another edit buffer), it selects and
attaches itself to this window. According to Rule 1, it will con-
tinue to use this window as long as possible.

48 Chapter 2 Command Macro Guide Window Commands



Rule 3: Assuming {CONFIG, Display options, Auto-create window
style} is enabled, it creates a new full-screen overlapping window
and attaches itself to this window.
Otherwise, it selects and attaches itself to the current window.
However, if the current window is the special "$" Command
Mode window, it selects the main "1" window instead.

When {CONFIG, Display options, Auto-create window style} is enabled
(default), each edit buffer (file) is displayed in its own window. Initially these
windows are full screen and overlap each other.

When disabled, several buffers can be attached to the same window; this
happens when you edit several files without splitting the screen into windows.

In many cases edit buffer "1" will be displayed in window "1", buffer "2" in
window "2" and so on. However this is not always true. Fortunately you rarely
need to know which window number a buffer is attached to. When needed,
command macros give you complete control over opening files in specific edit
buffer and displaying them in specific windows.

For example, to simultaneously edit the files "report.txt", "table.txt" and
"index.txt" in separate custom sized windows you could give the following
commands (starting with invoking VEDIT):

vpw report.txt Invoke VEDIT with first file.

[VISUAL EXIT] Go into Command Mode.

Win_Split(2,8,BOTTOM)
Win_Split(3,8,BOTTOM)
Buf_Switch(2)
File_Open("table.txt")
Buf_Switch(3)
File_Open("index.txt")
Visual( )

Create window "2" of 8 lines
Create window "3" of 8 lines
Begin editing in buffer "2"
Edit the file table.txt
Begin editing in buffer "3"
Edit the file index.txt
Enter Visual Mode

You can now use either the {FILE, Buffer switch} (<F4>), {FILE, Next
buffer} (<F6>), {WINDOW, Switch} (<Alt-F5>) or {WINDOW, Next
window} (<Ctrl-F6>) functions to switch between files (and associated win-
dows).

Advanced Window Commands
By Rule 1 above, an edit buffer is displayed in its "attached" window. The first
time the buffer is displayed in Visual Mode, it will select or create a window,
and attach itself. The buffer will remain attached to the window until either the
window is deleted, or you explicitly detach it.

You can also explicitly attach windows to the current edit buffer.

Win_Attach(w) Attach window 'w' to the current edit buffer. This
detaches the window from any other edit buffer.

Win_Detach(w) Detach window 'w' from any edit buffer.

Window Commands Chapter 2 Command Macro Guide 49



You can attach more than one window to an edit buffer; this is how different
regions of one edit buffer (file) can be displayed in multiple windows. This is
one use of the Win_Attach( ) command.

When an edit buffer is attached to multiple windows (or multiple windows are
attached to an edit buffer; you can look at it either way), the window in which
you are editing is the "primary" window while the others are the "secondary"
windows. Therefore, by Rule 1 above, when an edit buffer is displayed in
Visual Mode, it selects the "primary attached" window for its display.

The command Win_Switch(w, ATTACH) lets you switch to a "secondary"
window and make it the new "primary" window. It is equivalent to the
{WINDOW, Switch} function.

Win_Switch(w,ATTACH)

Switch to window 'w' and, if it is attached to the current edit
buffer, make it the primary window. This also moves the edit
position in the edit buffer to the edit position corresponding
to this window (which may involve file buffering).

When a window is already attached to an edit buffer, Win_Attach( ) attaches
additional windows as secondary windows. Should the primary window be
deleted, one of the secondary windows automatically becomes the primary
window.

50 Chapter 2 Command Macro Guide Window Commands



Chapter 3

Programming Guide

This chapter covers the VEDIT macro programming language in much greater
detail. It is organized as follows:

● Explains how "command macros" are stored and run from text registers.
● Details the Repeat, While, Do-while and For loops and the If-then and

If-then-else statements which provide flow control.
● Details the extensive numeric capabilities including numeric, logical and

relational operators which closely follow the "C" language.
● Covers logical groups of commands that are primarily used within the

context of command macros. Advanced topics explain file buffering,
running macros on huge data files, and event macros.

● Explains topics related to developing large, complex macros. Covers how
macros can be debugged by using breakpoints and tracing.

Introduction to Programming
Even if you have never written computer programs before, you will find it easy
and useful to write your own "programs" in VEDIT. As you will see, there is
no real distinction between "commands" and "programs"; it can be said that a
single command is just a very short program. If that doesn't satisfy your
intuitive definition of a "program", try running some of the examples in this
chapter. By all accounts, you will then have written and used real "programs".

We use the term "command macros" or just "macros" instead of programs to
refer to sequences of one or more macro language commands. (Some users are
needlessly frightened away from the word program.)

Some macros are quite short, while others can be quite long and sophisticated,
such as the supplied compare.vdm and sort.vdm macros. Useful macros
do not need to be long — many useful macros consist of less than ten
commands and are just a few lines long! The supplied file key-mac.lib
contains dozens of short, useful macros.

Any command macro, no matter how long, can be entered directly from the
keyboard while in Command Mode. Many short one line macros are in fact
entered in response to the "COMMAND:" prompt — when you press <Enter>
the macro is executed. However, it would be tedious and error prone to have
to type in the entire macro each time you wanted to use it. Therefore, all but
the simplest command macros are typically created and stored as files which
are then loaded into text registers for execution.

Introduction to Programming Chapter 3 Programming Guide 51



Command Macros
While simple command macros can be implemented as keystroke macros (as
described in Chapter 2), most command macros are stored as files and loaded
into text registers when needed. Command macros sitting in the text registers
can consist of just a single command or hundreds of commands.

There is nothing special about the way command macros are stored in text
registers — there is no difference between text registers that contain blocks of
text from a file and those that contain command macros. It is up to you to keep
track of which registers contain text and which contain commands.

An existing command macro on disk is usually loaded into a text register with
the Reg_Load( ) command.

Reg_Load(10,"splitter.vdm") Load the file splitter.vdm
into text register 10.

New macros are created just like any other file — by entering and editing it in
Visual Mode. The macro is then copied to a text register for execution and
testing. When done, the macro is saved to disk just like a normal text file.

The commands in a text register are executed with the Call( ) command.

Call(10) Execute the macro in text register 10, starting
at the beginning of the register.

Just like with other programming languages, complex macros should be broken
down into several simpler ones. This is analogous to the programming concept
of "subroutines". Since a macro can itself contain the Call( ) command, it can
execute other subroutine-like macros.

Each subroutine macro can be stored in its own text register, or multiple macros
(subroutines) can be placed into one text register. In the latter case, the
command form Call(r, "label") must be used to start execution at the label
'label', instead of at the beginning of the register. Execution continues until the
end of the register is reached, a Return( ) or Break_Out( ) command is
executed, or an error occurs.

Call(10,"exchange") Execute the macro in text register 10, starting
at the label "exchange".

Since a subroutine macro is often in the currently executing text register, the
command form Call("label") can be used to execute the subroutine macro
labeled 'label' in the current register.

Call("exchange") Execute the subroutine macro labeled
"exchange" in the current text register.

Command Macros in Visual Mode
Command Mode commands can also be accessed from Visual mode in three
ways — via keystroke macros, via the {MISC, Execute Macro} function and
via the {USER} menu. These methods were introduced in the topic "Easy as

52 Chapter 3 Programming Guide Introduction to Programming



1-2-3-4" in Chapter 2 of this manual and in Chapter 5 of the VEDIT User's
manual.

Simpler command macros that are repeatedly used from Visual Mode are
usually implemented as keystroke macros. Such a keystroke macro must begin
with [VISUAL EXIT] (<Ctrl-E>) to enter Command Mode. However, the
keystroke macro will return automatically to Visual Mode and a final "V"
command is not needed.

When the command macro assigned to a keystroke macro is longer than a few
hundred characters, the command macro should be saved as a file. The
keystroke macro can then use the Call_File( ) command to load the command
into a text register and run it there. It is a combination of the Reg_Load( ) and
Call( ) commands.

[VISUAL EXIT]
Call_File(10,"splitter.vdm")

Load the command macro
splitter.vdm into text
register 10 and execute it.

NOTE: The following example command macros would be better handled
as keystroke macros. It is only intended to illustrate how {MISC,
Load/execute macro} can be used.

The following macro duplicates the current line of text on the next line. It also
moves the cursor to the beginning of the new line. This saves you the time of
typing a line of text which is identical or nearly identical to the previous line.

Begin_Of_Line( ) Block_Copy( ) Macro to duplicate a line of text.

The next example macro moves the cursor to the beginning of the next
sentence.

Search(".|S") Search("|F") Macro to move the cursor to the
beginning of the next sentence.

To execute a command macro with {MISC, Execute Macro} you must first
place the commands into a text register you will not be using for other purposes.
Command macros are often loaded from disk using the Reg_Load( ) com-
mand.

If you are repeatedly using a command macro (from Visual or Command
Mode), it is easy to have VEDIT start up with the macro pre-loaded. For
example, to set up the two macros above add the following line to the
ustartup.vdm file:

Reg_Set(10,/Begin_Of_Line( ) Block_Copy(1)/)
Reg_Set(11,/Search(".|S") Search("|F")/)

Load "duplicate line" macro into register 10 and
load "next sentence" macro into register 11.

After invoking VEDIT you can then immediately use the two macros from
Visual Mode:

{MISC, Execute macro} - 10 To duplicate a line.

{MISC, Execute macro} - 11 To move cursor to next sentence.

Introduction to Programming Chapter 3 Programming Guide 53



Loading Macros into Text Registers
To execute a command macro saved on disk, it can be loaded into a text register
with the Reg_Load( ) command and then executed with the Call( ) command.
For example, the commands to execute the suppliedprint.vdmmacro using
text register 10 are:

Reg_Load(10,"print.vdm")
Call(10)

Call_File( ) is equivalent to the two commands above. It also has the advantage
that if the macro file is not found in the current directory, it will search for it
in the VEDIT Home Directory. It is equivalent to the {MISC, Load/Execute}
function.

Call_File(10,"print.vdm") Preferred shortcut for the two com-
mands above.

Some command macros are written to have their subroutine macros in addi-
tional text registers. Each register of a multiple register macro could be loaded
from a separate disk file, but this would be awkward. It is better to have the
main macro set up the additional subroutine registers by using the
Reg_Set(r,"text") command. Since the string argument 'text' can be multiple
lines long, an arbitrarily complex subroutine macro can be placed into register
'r'.
For example, instead of setting up eight registers from eight disk files, it is
easier to just load one disk file and then set up the eight registers with eight
Reg_Set( ) commands.

Commenting Macros
"Commenting" is the useful practice of adding descriptive text (sentences and
phrases) within a program (macro) to explain its operation. This helps other
people understand how the program works, and will help you too, should you
have to modify it sometime in the future.

VEDIT follows the ANSI C convention that any text following "//" to the end
of the line is treated as a comment and is ignored during macro execution. Note
that the "//" must occur outside of any command — a "//" inside a string
argument will not be treated as the beginning of a comment.

// This text is a comment and is ignored by VEDIT

Message('A "//" in a string doesn't confuse VEDIT.')

54 Chapter 3 Programming Guide Introduction to Programming



Flow Control
The simplest type of macro consists of a sequence of one or more commands
which are executed just once. For example:

Search("the")
Type(0) Type( )

This simple sequence of commands could be
a macro. There is no flow control.

To execute a sequence of commands repeatedly, you must specify that the
execution is to "loop" back to the commands that are to be repeated. Any such
looping involves flow control — you are controlling the order (flow) in which
commands are executed.

In addition to "looping", there is "decision making". The macro tests some
condition — if it is TRUE, the macro performs one operation — if it is FALSE,
the macro performs a different operation. For example, the description of a
macro might be: "If the character is a lower case letter, change it to upper case;
else leave the character unchanged". There is no looping involved in such a
macro. However, decision making is often used together with looping. Con-
sider the description: "Until the end of the file is reached, change all lower case
letters to upper case, leaving all other characters unchanged".

Looping and decision making is performed primarily with "flow control
statements". The Repeat statement performs simple looping. The If-then and
If-then-else statements perform decision making. The While, Do-while and
For statements perform a convenient combination of looping and decision
making.

VEDIT also has the Goto statement that jumps to a label. Macros should
always be written to minimize use of Goto since they tend to make a macro
difficult to understand.

Repeat Loop
Although VEDIT has the While, Do-while and For loops of the C program-
ming language, the Repeat loop (not in C) is often easier to use. Here is its
format:

repeat (n) {
commands
...

}

Notice that there is an optional space between "repeat" and "(". Only flow
control statements can have this space and we recommend using it. This helps
distinguish these statements from commands. As a convention, we don't
capitalize the first letter of these statements as we do commands. It is common
practice to indent all lines between the "{" and "}".
A Repeat loop repeatedly executes the group of 'commands' between the
braces "{...}" a total of 'n' times. Command execution then continues with any
commands following the "}". In case 'n' is zero (0), the 'commands' are not
executed at all.

Flow Control Chapter 3 Programming Guide 55



The following macro prints 10 pages with only 20 lines of text on each page:

repeat (10) { Print(20) Print_Eject( ) Line(20) }

The Print(20) prints 20 lines of text, Print_Eject( ) starts a new page and
Line(20) moves the edit position over the text just printed. Due to the Repeat
loop, this sequence of commands is executed for a total of 10 times.

A Repeat loop may also occur within another Repeat loop. This is called a
"nested" loop.

repeat (5) { Type(4) } Display the same four lines over again
five times.

repeat (3) {
repeat (5) { Type(4) }
Line(4)

}

Display the same four lines five times,
then move to the next four lines and dis-
play them five times, and finally, move to
the next four lines and display them five
times.

It is important to note that if the repeat count 'n' is zero (0), the 'commands' are
not executed at all. It is also important to note that 'n' is evaluated only once
as the following example illustrates:

#1=10
repeat (#1) {

#1=1000
}

This loop will execute 10 times, not 1000
times.

A repeat count of "ALL" makes a Repeat loop continuously ("forever" or for
"all occurrences") until a "break-out" condition occurs. Therefore, the form for
a continuous loop is:

repeat (ALL) {
commands
...

}

Loop "forever" until a break-out condi-
tion occurs.

The "break-out" might be the user pressing [CANCEL] (<Ctrl-C>) or, more
likely, a condition such as a Search( ) command not succeeding or an explicit
break-out command such as Break or Return( ).
The following example displays (types) all lines that contain the word "teeth":

Begin_Of_File( )
repeat (ALL) {

Search("teeth")
Type(0) Type( )
Line( )

}

Type(0) displays from the beginning of the line up to the edit position and
Type( ) displays from the edit position to the end of the line. Therefore,
Type(0) Type( ) displays the current line no matter where the edit position is
on it. Without Line( ), the macro would just display the same line over and
over again.

56 Chapter 3 Programming Guide Flow Control



Ending Repeat (and other) Loops
The Repeat loop above is not an "infinite" loop because it will stop with the
error message "CANNOT FIND ..." when no more occurrences of "teeth" can
be found.

Similarly, a Repeat loop that advances through a file with the Line( ) com-
mand will stop with the error message "END OF BUFFER" when the end of
the file is reached.

Repeat loops can end in five ways:

● When the repeat count is exhausted.
● When a Goto, Break_Out or Return command is executed.
● When a Break statement ends the loop. Execution then continues with

any commands following the ending "}".
● When an error occurs, such as a search failure or the Line( ) command

reaches the end-of-file.
● When the user presses [CANCEL] (<Ctrl-C>).

Since many command loops process a file line by line or by searching for the
next occurrence of some text, the Line( ), Search( ) and Replace( ) commands
normally stop execution with an error message if they are unsuccessful. This
prevents casually written command loops from getting into infinite loops and
doing unexpected things. This is also convenient when a simple command loop
is entered at the "COMMAND:" prompt.

More refined macros can use the "NOERR" option with Line( ), Search( ) and
Replace( ) to suppress the error. The success of the command can then be tested
and appropriate action taken. The "NOERR" option must be used with care to
avoid "infinite" loops.

Alternatively, the "ERRBREAK" option is often sufficient. If the command is
unsuccessful, it performs the equivalent of a Break command which ends the
current command loop. Execution then continues with any commands follow-
ing the ending "}".
In the printing example above, if there were only five pages to print, the macro
would end with the unfriendly error message "END OF BUFFER
REACHED". The following macro ends gracefully with the message "Printing
is done".

repeat (10) {
Print(20) Print_Eject( ) Line(20,ERRBREAK)

}
Message("Printing is done.")

IMPORTANT
WARNING

Improperly constructed command loops can result in an
apparent "system crash" because the editor has entered an
infinite loop. However, the editor constantly checks for
[CANCEL] (<Ctrl-C>) which stops any command execu-
tion.

Flow Control Chapter 3 Programming Guide 57



Therefore, before assuming that your system has crashed from within VEDIT,
always press [CANCEL] (<Ctrl-C>) which will break out of any infinite loop
or other lengthy operation.

Commands versus Repeat Loops
Although a Repeat loop could use a simple Replace( ) command to replace
all occurrences of a string, it is better to do the same thing by using the "ALL"
option with the Replace( ) command. It is simpler and executes much faster.
Therefore, the second command below is the preferred one:

repeat (ALL) { Replace("teeths","teeth") } Poor.

Replace("teeths","teeth",ALL) Better, faster.

Of course, the Replace( ) command will commonly appear inside iteration
loops that also contain other commands. The Type( ) command can be used
to display the lines that were changed. For example, the command to change
all occurrences of "teeths" to "teeth" and display those lines which changed is:

Begin_Of_File( )
repeat (ALL) {

Replace("teeths","teeth")
Type(0) Type( )

}

The Ins_Text( ) command can use the "COUNT" option to insert multiple
occurrences of the same text. For example, the following two equivalent
commands insert the text " three times" in triplicate. The second command is
preferable.

repeat (3) {
Ins_Text(" three times")

}

Poor.

Ins_Text(" three times",COUNT,3) Better, faster.

However, the Ins_Text( ) command is needed in iteration loops for more
complex insertions. For example, the following command line creates a table
of 60 lines with each line consisting of 80 periods, e.g. "......".

repeat (60) {
Ins_Text(".",COUNT,80)
Ins_Newline( )

}

In summary, before placing a single command inside of a Repeat loop, check
if the same thing can be done with the command options "ALL" or "COUNT".

All command loops begin operation at the current edit position. Therefore, be
sure to place the edit position correctly before executing an iteration loop. If
you need to start at the beginning of the file, precede the loop with the
Begin_Of_File( ) command as in several of the examples above.

58 Chapter 3 Programming Guide Flow Control



While and Do-While Loops
The While loop repeats for as long as a specified condition is TRUE. Its format
is:

while (c) {
commands
...

}

The statement evaluates the condition 'c'. If TRUE, the 'commands' are exe-
cuted. Then the condition is re-evaluated. The loop repeats as long as the
condition is TRUE or until a "break-out" condition occurs.

It is important to note that if 'c' is initially FALSE, the 'commands' are not
executed at all.

The Do While loop is similar. Its format is:

do {
commands
...

} while (c)

The statement executes the 'commands'. It then evaluates the condition 'c'. If
TRUE, the loop is repeated. The loop repeats as long as the condition is TRUE
or until a "break-out" condition occurs.

The difference between the Do-while and While loops is that with Do-while
the 'commands' are executed at least once and are executed before the condition
is tested. This may seem like a trivial difference, but in practice it is an
important one.

In practice, While loops are used more often than Do-while loops.

The following macro prints all text in the edit buffer with 50 lines printed per
page. The While condition tests for the end-of-file condition.

Begin_Of_File( )
while (! At_EOF) {

Print(50)
Line(50,NOERR)
Print_Eject( )

}

Goto BOF
While NOT at EOF
Print 50 lines
Advance by 50 lines
Start a new page
End of loop

Notice that this macro would do nothing if the current edit buffer (file) were
empty. If the macro were written using a Do-while loop, an empty buffer would
cause a blank page to be printed.

Flow Control Chapter 3 Programming Guide 59



For Loop
NOTE: If you are not familiar with the C programming language, you may

want to first read the following topics "Numeric Capability" and
"Numeric Expressions", and then come back to this section.

A loop often involves: (1) initializing a numeric variable(s), (2) testing a
condition to see if the body of the loop is to be executed, (3) incrementing
(adjusting) the variable(s) and (4) re-evaluating the condition. The For state-
ment does all this in a convenient manner:

for (cm1; c2; cm3 ) {
commands
...

}

Notice that 'cm1' and 'c2' are each followed by a semicolon ";" (semicolon).

The statement executes the command(s) 'cm1' once; this is the initialization. It
then evaluates the condition 'c2'. If TRUE, the 'commands' are executed. The
command(s) 'cm3' are then executed. Finally, the condition is re-evaluated. The
loop repeats, executing 'cm3' each time, as long as the condition is TRUE or
until some other "break-out" condition occurs.

Let's say you wanted to create a file containing the following lines:
This is line #1
This is line #2
...
This is line #100

It could be done with the following While loop. (The statement #1++ incre-
ments numeric register #1.)

#1 = 1
while (#1 <= 100) {

Ins_Text("This is line #")
Num_Ins(#1,LEFT)
#1++

}

Use of a For loop is preferable because all of the manipulation and testing of
the numeric variable is done in one place.

for (#1 = 1; #1 <= 100; #1++) {
Ins_Text("This is line #")
Num_Ins(#1,LEFT)

}

60 Chapter 3 Programming Guide Flow Control



If-then and If-then-else Statements
The If-then statement performs an operation if a condition is TRUE and skips
the operation if the condition is FALSE. Its format is:

if (c) {
commands
...

}

The statement evaluates the condition 'c'. If TRUE, the 'commands' are exe-
cuted once. If the condition is FALSE, the 'commands' are skipped and
execution continues with any commands following the "}".
The condition 'c' is often a relational expression such as "#1 == 20" that can
only evaluate to 0 (FALSE) or 1 (TRUE). However, in practice 'c' can be any
numeric expression. If it evaluates to non-zero, it is TRUE. If it evaluates to 0
(zero), it is FALSE.

In the following example, the condition 'c' is a command (internal value) that
returns a positive number:

if (Reg_Size(10)) {
Message("T-Reg 10 is in use.\n")

}

The "!" (Not) operator is often used in the condition to flip the truth value of
an expression. The following two examples are equivalent:

if (Reg_Size(10)==0) {
Message("T-Reg 10 is empty.\n")

}

if (! Reg_Size(10)) {
Message("T-Reg 10 is empty.\n")

}

The If-then-else statement performs one alternative if a condition is TRUE
and the other alternative if the condition is FALSE. Its format is:

if (c) {
commands-1

} else {
commands-2

}

The statement evaluates the condition 'c'. If TRUE, the 'commands-1' are
executed once and 'commands-2' are skipped. If the condition is FALSE, the
'commands-1' are skipped and 'commands-2' are executed. In either case,
execution then continues with any commands following the second "}".

if (Reg_Size(10)) {
Message("T-Reg 10 is in use.\n")

}
else {

Message("T-Reg 10 is empty.\n")
}

Flow Control Chapter 3 Programming Guide 61



The example above uses six lines to improve readability. The "{", "}" and "else"
may be surrounded with any desired spaces, tabs and "newlines". At the
expense of readability, you could squeeze it into two (or even one) lines.

if (Reg_Size(10)) { M("T-Reg 10 is in use.\n") }
else { M("T-Reg 10 is empty.\n") }

For more complex loops and decision making, flow control statements can
occur within each other. This is called "nesting". Statements may be nested to
a depth of 25.

The If-then-else statement allows two alternatives. Decision making often
involves more than two alternatives. Consider the description: "If aaa then do
vvv; else if bbb then do xxx; else if ccc do yyy; else do zzz". This can be
implemented with a nested If-then-else statement. Its format is:

if (c1) {
alternative-1

} else { if (c2) {
alternative-2

...

...
} else { if (cn) {

alternative-n
} else { default-case
}}}

If condition #1
commands-1
Else If condition #2
commands-2
.
.
Else If condition #n
commands-n
Else the default
'n' closing braces

Some programmers prefer to indent each alternative further and further, but
actually each alternative is at the same "level".

Examples - Flow Control Statements
NOTE: If you are not familiar with the C programming language, you may

want to first read the following topics "Numeric Capability" and
"Numeric Expressions", and then come back to this section.

The following example of an If-then statement displays the message "Letter",
followed by "All Done" if the character at the edit position is a letter. If the
character is not a letter, it just displays "All Done". (Note: "CC" is the
abbreviation for Cur_Char. "&&" is the logical "and" operator; "| |" is the
logical "or" operator. The "\n" in the Message( ) command starts a new line.)

if ((CC >= 'A' && CC <= 'Z') | | (CC >= 'a' && CC <= 'z')) {
Message("Letter\n")

}
Message("All Done\n")

The above test for a letter can be simplified (and speeded up) with the command
Match("|A") which returns 0 if the current character is a letter.

if (Match("|A") == 0) {
Message("Letter\n")

}
Message("All Done\n")

62 Chapter 3 Programming Guide Flow Control



The following example of an If-then-else statement displays the message
"Letter" or "Not A Letter" depending upon whether the character at the edit
position is a letter.

if (Match("|A") == 0) {
Message("Letter\n")

}
else {

Message("Not a Letter\n")
}
Message("All Done\n")

The following example of a nested If-then-else displays the message "Letter",
"Digit' or 'Not Alphanumeric' depending upon the character at the edit position.
It then displays the final message "All Done".

if (Match("|A") == 0) {
Message("Letter\n")

} else { if (Match("|D") == 0) {
Message("Digit\n")

} else {
Message("Not Alphanumeric\n")

} }
Message("All Done\n")

The following example shows how a For loop can be used to process a file
character-by-character. For each character, it displays "Letter", "Digit" or "Not
Alphanumeric".

for ( Begin_Of_File( ); ! At_EOF; Char( ) ) {
if (Match("|A") == 0) {

Message("Letter\n")
} else { if (Match("|D") == 0) {

Message("Digit\n")
} else {

Message("Not Alphanumeric\n")
} }

}
Message("All Done\n")

The following example of a While loop displays the line numbers of lines in
the edit buffer (file) that are more than 80 columns long (including TAB
expansion). The command (internal value) Cur_Col is used to check the length
of each line, and Cur_Line is used to indicate which line it is.

Begin_Of_File( )
while (! At_EOF ) {

End_Of_Line( )
if (Cur_Col > 80) {

Message("Line #")
Num_Type(Cur_Line)

}
Line(1,NOERR)

}

Goto beginning of file
While NOT at EOF
Goto end of current line
If too long, THEN
Display header and
the line number
End of THEN
Goto next line
End of While

Flow Control Chapter 3 Programming Guide 63



The macro above can be rewritten using a For loop that processes the file
line-by-line.

for( Begin_Of_File( ); ! At_EOF; Line(1,NOERR) ) {
End_Of_Line( )
if (Cur_Col > 80) {

Message("Line #")
Num_Type(Cur_Line)

}
}

Break-Out Commands
It is often desirable to exit a loop when a special condition occurs. This is a
necessity with a Repeat(ALL) loop which would otherwise execute forever.
This is commonly done with the Break command:

Break Breaks out of any While, Do-while, For or
Repeat loop and continues with any com-
mands following the loop's final "}".

Notice that Break only exits the innermost enclosing loop. In the case of nested
loops, any outer loops will continue executing. If there is no enclosing loop, a
Break does nothing. Don't confuse If-then (else) statements with loops — an
If-then (else) has no effect on Break.

The Continue does not exit the entire loop, but rather just the current iteration.
This is similar to jumping to the final "}" so that the loop condition is
re-evaluated. It is often used to skip certain cases.

Continue Skips the current iteration of any While,
Do-while, For or Repeat loop, causing the
loop to be re-tested.

Similar to Break, if there is no enclosing loop, Continue does nothing.

As a variation of our previous example, let's say you wanted to create a file
containing the following lines where every 10'th line is skipped:
This is line #1
This is line #2
...
This is line #9
This is line #11
...
This is line #99

Using the Continue command makes this easier than it would otherwise be:
(The % is the "remainder" operator.)

for (#1 = 1; #1 <= 100; #1++) {
if ((#1%10)==0) { Continue }
Ins_Text("This is line #")
Num_Ins(#1,LEFT)

}

64 Chapter 3 Programming Guide Flow Control



The Return( ) and Break_Out( ) commands break out of the current macro
regardless of whether they occur inside a loop.

Return(n) Stops the current macro and returns to any
parent (calling) macro, the "COMMAND:"
prompt or Visual Mode. The internal value
Return_Value is set to 'n' for subsequent test-
ing.

Break_Out( ) Stops all macro execution and returns to the
"COMMAND:" prompt. If a "locked-in"
macro is enabled, it returns to this macro in-
stead.

Break_Out(EXTRA) Stops all macro execution and returns to Vis-
ual Mode. If a "locked-in" macro is enabled,
it returns to this macro instead.

Goto Statement
The Goto label statement performs a jump to a specified 'label'. There are two
forms for a label:

label: A label is a string of characters followed by a colon ":".
:label: This alternate form for a label executes faster.

The label may consist of any character except space, tab, semicolon and
"newline".

The label must occur within the current text register. Although labels may
occur inside loops, a Goto can only jump within the current loop or out of a
loop. It cannot jump into the middle of a loop. In the case of nested loops, a
Goto can jump from an inner level loop into the middle of an outer level loop,
but not vice versa.

The use of Goto statements should be minimized because they can make a
macro difficult to understand — you don't know if the Goto is jumping
forwards or backwards, a few lines or many lines.

Nonetheless, there are good uses for Goto statements. For example, if an error
condition is detected in the middle of a complex macro, you may want to jump
to an error handler at the end of your macro. If you need to break out of nested
loops, a Goto is often easier to use and understand than the alternatives.

Although VEDIT does not have the "switch" statement of C, you can achieve
the same thing (and much more) using a Goto with a "variable" label. Just like
a search string, a "variable" label has the syntax "@r" to use text register 'r' as
the entire label name or "|@(r)" to use register 'r' as a portion of the label name.

A Goto with a "variable" label is a good way of jumping to the commands for
processing each selection of a menu.

Flow Control Chapter 3 Programming Guide 65



Get_Input(10, /Enter "1" thru "3": /,NOCR)
Goto Item|@(10)
...
Item1:
Message('You entered "1"\n')
Return(1)
Item2:
Message('You entered "2"\n')
Return(2)
Item3:
Message('You entered "3"\n')
Return(3)

Processing End-Of-File Condition
A macro that processes a file character-by-character or line-by-line will
eventually reach the end of the file. The end-of-file condition always has to be
treated with some care to prevent infinite loops and unwanted side effects.
Usually you simply want the macro to terminate.

One easy way of handling the end-of-file condition is to use a While loop that
tests for end-of-file as its condition. Let's look at the previous printing example
again:

Begin_Of_File( )
while (! At_EOF) {

Print(50)
Line(50,NOERR)
Print_Eject( )

}

Goto BOF
While NOT at EOF
Print 50 lines
Advance by 50 lines
Start a new page
End of loop

The While loop condition "! At_EOF" becomes FALSE when the end-of-file
is reached and the loop terminates.

The "NOERR" option on the Line( ) command prevents it from breaking out
with the error "END OF BUFFER REACHED" when it reaches the end-of-file.
Instead, we let Line( ) place the edit position at the end-of-file and let the While
condition terminate the loop.

Alternatively, the "ERRBREAK" option may be used to exit the current loop
when a Line( ) command attempts to go past the end-of-file. Although the
While loop above is easier to understand, the printing macro could also be
written as:

Begin_Of-File( )
repeat (ALL) {

Print(50)
Line(50,ERRBREAK)
Print_Eject( )

}

In more complex macros it may not be easy to test for end-of-file as the
condition of the loop. You will then have to test for it explicitly and take
appropriate action.

66 Chapter 3 Programming Guide Flow Control



if (AT_EOF) { Break } Exit the current loop if end-of-file
reached.

if (AT_EOF) { Return( ) } Return from (exit) the current macro if
end-of-file reached.

if (AT_EOF) { goto done } Jump to the label "done:" if end-of-file
reached.

Processing Unsuccessful Search
The purpose for a loop is often to search for all occurrences of something in a
file and process each occurrence. After the last occurrence is processed, the
Search( ) will be unsuccessful and the macro should terminate the loop or take
some other action. Since the last successful search probably did not leave us
at the end-of-file, we cannot use end-of-file as the condition for terminating
the loop.

In order to avoid "infinite" loops with casually written macros, an unsuccessful
Search( ) or Replace( ), by default, breaks out of the macro and gives the error
"CANNOT FIND...". For "quick and dirty" macros this is often just fine.

For more refined macros, you must use one of the command options
"ERRBREAK" or "NOERR". Here is how different Search( ) or Replace( )
options deal with an unsuccessful search/replace.

Search("string") If unsuccessful, breaks out of the
macro and gives the error "CAN-
NOT FIND".

Search("string",ERRBREAK) If unsuccessful, breaks out of any
current loop, just like the Break
command. No error message.

Search("string",NOERR) Error handling is completely sup-
pressed. You can only tell via the
return value or the internal values
Error_Flag or Error_Match
whether the search was successful.

This variation of a previous example displays all lines that contain the word
"teeth", but doesn't end with the error "CANNOT FIND":

Begin_Of_File( )
repeat (ALL) {

Search("teeth",ERRBREAK)
Type(0) Type( )
Line( )

}

If your macro, upon an unsuccessful search, needs to take some special action,
use the "NOERR" option. You must then test the results of the search. The
following equivalent macro fragments illustrate two ways of doing this:

Flow Control Chapter 3 Programming Guide 67



if ( Search("teeth")==0 ) goto error1
...
error1:
Message('Cannot find "teeth".\n')

Search("teeth")
if (Error_Match) goto error1
...
error1:
Message('Cannot find "teeth".\n')

The first example uses the return value from Search( ) which is 0 (zero) if
unsuccessful. The second example uses the command (internal value)
Error_Match which is 1 (TRUE) if unsuccessful.

Error_Match is used instead of Error_Flag because Error_Match is only
set/reset by search commands whereas Error_Flag is set/reset by every
command. Therefore, Error_Match returns the result of the last search.

Using Visual Mode in Command Loops
Search and replace operations are often used in conjunction with the Visual
Mode to edit the region, or to confirm that the replacement was done correctly.
For example, the following command searches for all occurrences of the word
"temporary" and lets those regions of the text be edited in Visual Mode.

repeat (ALL) { Search("temporary",ADVANCE) V }

The following command could be used with a form letter to change "-name-"
to the desired name, check that it was done correctly in Visual Mode and, if
necessary, make any additional changes.

repeat (ALL) { Replace("-name-","Mr. Jones") V }

The Visual Mode has two ways of exiting back to Command Mode in order to
work with iteration loops. [VISUAL EXIT] (<Ctrl-F10>) simply exits and
lets any command iteration continue. [VISUAL ESCAPE] (<Alt-F10>) exits
to Command Mode, but also aborts any command loop or command macro.
The latter is used when you realize that the command loop is not doing what
was intended and you want to abort it. For example, to change all occurrences
of the word "and" to "or", the following command may have been given:

repeat (ALL) { Replace("and","or") V } Not quite right!

You might then see in Visual Mode that the word "sand" was changed to "sor",
which was not the intention. Pressing [VISUAL ESCAPE] stops the com-
mand macro, and the following correct command can then be given:

repeat (ALL) { Replace("and","or",WORD) V } Right.

68 Chapter 3 Programming Guide Flow Control



Numeric Capability
VEDIT has extensive numeric capabilities. "Numbers" used almost anywhere
in VEDIT can be "constants", "variables" and algebraic "expressions".

HINT: The "on-line calculator" lets you evaluate any numeric constant,
variable or expression by simply typing it at the "COMMAND:"
prompt preceded by a "." (period). Or precede it with "$" to display
the result in hexadecimal.

Numeric Constants
There are four types of numeric constants. There is a distinction between
"Integer" and "Signed Integer" because some commands take simple integers
while others take signed integers.

Types of Numeric Constants
Type Example Description

Integer 345 A simple integer in the range 0 to 2,147,483,647.

Signed Integer -239
-59021

A signed integer in the range +/- 2,147,483,647.
(Integers are 32 bits wide.)

ASCII Constant 'A'
^B

(Quote A Quote)
(Caret B) The value of an ASCII or control char-
acter can be used as a numeric constant. The first
example gives the value of the letter "A", the sec-
ond the value of <Ctrl-B>.

Reserved-word MAXNUM This is a shorthand for the maximum integer
2,147,483,647. All reserved words are numeric
constants.

Examples - Numeric Constants
Many VEDIT commands take a numeric argument. For example, the Type( )
command types (displays) lines of text:

Type(12) Type the next 12 lines of text.

Type(-23) Type the previous 23 lines of text.

Type(ALL) Type the rest of the file.

The following example shows one way to insert a <Ctrl-S> into the text: (Type
"^" and then "S")

Ins_Char(^S) Insert a <Ctrl-S> into the text.

Numeric Capability Chapter 3 Programming Guide 69



Numeric Registers (Variables)
There are 128 numeric registers or "variables" named "#0" thru "#127". #0 thru
#99 are for general purpose use. Similar to the corresponding text register
numbers, #100 thru #127 are reserved for special purposes, such as keystroke
macros and event macros.

The "=" assignment operator is used to assign values to the numeric registers:

#20 = 754 Sets numeric register 20 to the value 754.

Several numeric registers can easily be set to the same value as the following
example illustrates:

#21 = #22 = #24 = #24 = #25 = 0

Set numeric registers 21 thru 25 to 0 (zero).

You can display the value of a numeric register by entering its name at the
"COMMAND:" prompt. The on-line calculator feature will then display its
value.

It is very common to add a number to a numeric register. This could be done
as follows:

#20 = #20 + 123 Add 123 to numeric register 20.

The following is a shorthand for this common operation. It also executes faster.

#20 += 123 Shorthand — add 123 to numeric register 20.

VEDIT supports four assignment shorthands that can be used with numeric
registers.

+= Add a number to a numeric register.
-= Subtract a number from a numeric register.
*= Multiply the numeric register by a number.
/= Divide the numeric register by a number.

The "++" and "--" operators make it easy to increment or decrement a numeric
register:

#30++ Increment the value of numeric register 30.

#40-- Decrement the value of numeric register 40.

When a numeric register is part of a numeric expression, the "++" and "--"
operators increment/decrement the register after its original value is used.

#10 = 100
#11 = #10++

Following these statements, register 10 will have
value 101 and register 11 will have value 100.

NOTE: Although there are 127 numeric registers; registers 100 thru 127
are reserved for keystroke macros and special purposes and you
should not expect them to maintain their value for longer than one
keystroke. Appendix G and the on-line help topic "USAGE" list for
what purpose these registers are reserved.

70 Chapter 3 Programming Guide Numeric Capability



Numeric Register Indirection (Arrays)
Numeric registers are usually specified with a constant, e.g. "#20" is always
register twenty. Occasionally it is useful to use a variable register number.

#@10 Indirect specification of a numeric register. E.g. if
numeric register 10 contains 95, then "#@10"
specifies numeric register 95.

This allows setting up a (small) array of numbers. For example, let's say you
wanted to count the capital letters in a file. You could use numeric register 0
to count "A", register 1 to count "B" and so on; register 25 would count "Z".

The following macro commands would find the next capital letter and count
it:

Search("|U")
#99 = Cur_Char-'A'
#@99++

Search for the next capital letter and count it
using the array consisting of numeric registers
0 through 25.

Internal Values (Commands)
Each command executed returns a numeric value. A large number of com-
mands perform no function other than to return a value, usually some type of
internal status information. These commands are called "internal values". You
can think of them as read-only numeric variables.

The on-line help gives a brief description of all commands that can be
considered internal values. Chapter 4 (Command Reference) gives a detailed
description of each command.

Some commands such as Block_Begin( ) perform a dual purpose. If an
argument is specified, it sets the block-begin marker. If no argument is
specified, it only returns the value of the current block-begin marker.

Block_Begin(100) Set the block-begin marker to file posi-
tion 100. Returns the value of the new
block-begin marker.

Block_Begin Only returns the value of the current
block-begin marker (-1 if not set).

While Block_Begin(n) and similar commands return their new value, the
Config(name,n) command returns its previous value. This makes it easy to
save the previous configuration value and restore it later.

#90 = Config(W_RT_MARG,70)
...
Config(W_RT_MARG,#90)

The right margin is set to col-
umn 70; the original value is
saved in numeric register 90.
The original right margin value
is later restored.

Numeric Capability Chapter 3 Programming Guide 71



Numeric Expressions
VEDIT computes both "numeric expressions" (similar to a calculator) and
"conditional expressions" which evaluate to a truth value (TRUE or FALSE)
for use with flow control statements.

All expressions are a sequence of "operands" and "operators". "Numeric
expressions" evaluate to a signed integer, while "conditional expressions"
evaluate to just two numeric values — "1" which represents TRUE and "0"
which represents FALSE. "Operands" can be numeric constants, variables
(registers), commands (internal values) or can themselves be expressions.
"Operators" are the functions such as addition, subtraction, multiplication and
division.

There are three types of operators — two evaluate to a numeric value and one
evaluates to a conditional value.

Numeric operators Take one or two numeric operands and evaluate to
a signed integer.

Relational operators Take two numeric operands and evaluate to "1"
meaning "TRUE" or "0" meaning "FALSE".

Logical operators Take one or two conditional operands and evaluate
to TRUE or FALSE.

Examples of the three types of operators are:

12 / 3 + 7 (Numeric) The operators are "/" and "+"
and the expression value is 11.

35 > 14 (Relational) The operator is ">" and the
expression value is 1 or TRUE.

(35 > 14) && (17 == 23) (Logical) The logical operator is "&&"
(AND) and the expression value is 0 or
FALSE.

A complex expression may contain all three types of operators and the
expression type is determined by the last operator evaluated. Any operator
could be used with any operand, but it is usually not meaningful to use
conditional operands with numeric or relational operators.

Most important is how the evaluated numeric value is used by the following
command or flow control statement. If a command expects a numeric expres-
sion, but is given a conditional expression, the command will only see the two
values "0" and "1". If a numeric expression is used where a conditional is
expected, the numeric values "1" and "0" will be interpreted as TRUE and
FALSE. Generally, any other positive value will also be interpreted as TRUE,
while any negative value will be interpreted as FALSE.

72 Chapter 3 Programming Guide Numeric Expressions



Numeric Operators
The numeric operators are:

+ Addition
- Subtraction (also performs unary minus function)
* Multiplication
/ Division
% Remainder of division
& Bitwise AND
| Bitwise OR
^ Exclusive OR (XOR)
<< Left Shift
>> Right Shift
~ Bitwise complement (also called 1's complement)

Examples of these operators and the resulting values are:

12 + 19 31

54 - 36 18

-4 * 16 -64

14 / 4 3

14 % 4 2

14 & 7 6

14 | 7 15

14 ^ 7 9

100 << 4 1600

256 >> 4 16

~25 -26

In integer division "14 divided by 4" equals "3" with a remainder of "2".
Following any division the remainder can be found in the internal value
Remainder. If you are only interested in the remainder, use the remainder
operator "%", which returns a signed remainder with the same sign as the
quotient.

The "-" operator performs subtraction when between two operands, or may
precede an operand to change its sign.

NOTE All numeric values have a range of +/-2,147,483,647 (32 bit accu-
racy). If a calculation falls outside of this range, division by zero is
attempted, or if the expression is incorrectly written, the entire
expression evaluates to zero (0).

Numeric Expressions Chapter 3 Programming Guide 73



Relational Operators
Relational operators are used in virtually every decision making function and
every conditional expression must contain at least one relational operator. The
relational operators are:

< Less than
<= Less than or equal to
== Equal to
!= <> Not equal to (Either "!=" or "<>" can be used.)
>= Greater than or equal to
> Greater than

Examples of these operators and the resulting values are:

4 < 12 1 or TRUE

-13 <= -4 1 or TRUE

#1 == #1+5 0 or FALSE

-9 != 9 1 or TRUE

-5 >= 0 0 or FALSE

10 > 10 0 or FALSE

NOTE!!! Don't use "=" when you need "==". The statement "#10==90" tests
if numeric register 10 contains 90. The statement "#10=90" assigns
90 to numeric register 10 and is always TRUE. This is a very
common mistake made in both C and VEDIT programming.

Logical Operators
The logical operators are:

&& AND - TRUE only if both operands are TRUE.
| | OR - TRUE if either operand is TRUE.
! NOT - Flips the truth value of the following operand.

The following examples show how the operators are used:

1 && 1 1 or TRUE

1 && 0 0 or FALSE

0 && 0 0 or FALSE

1 | | 1 1 or TRUE

1 | | 0 1 or TRUE

0 | | 0 0 or FALSE

! 1 0 or FALSE

! 0 1 or TRUE

74 Chapter 3 Programming Guide Numeric Expressions



Logical operators are used with conditional operands as in the following
examples. Numeric variables are used to make the examples more realistic.
Note that numeric variables can be used as conditional operands when they
contain only the values "1" or "0".

For the following examples assume: #1 = 12, #2 = -7, #4 = 0 , #5 = 1

(#1 > 10) && (#2 <= -7) 1 or TRUE

(#2 != 0) && #4 0 or FALSE

(#1 == #2) | | #5 1 or TRUE

(#1 == #2) | | (! #5) 0 or FALSE

! (#4 && #5) 1 or TRUE

Operator Precedence
In expressions with two or more operators, the operators are not necessarily
evaluated left to right, but rather in the order determined by a rigid precedence.
You can override the precedence by using parentheses. Everything inside the
parentheses will be evaluated before the entire parenthesized expression is
itself used as an operand. Additional parentheses can be used to improve the
readability of an expression since it is not always obvious what the precedence
of operators is (unless C was your mother language). With operators of the
same precedence, the leftmost one will be evaluated first.

Table of Operator Precedence

Highest: ! ~ ++ -- + - Unary
* / % Multiplication, Division, Remainder
+ - Addition, Subtraction
<< >> Shift
< > == etc. Relationals
& Bitwise AND
| ^ Bitwise OR, Exclusive OR (XOR)
&& Logical AND
| | Logical OR

Lowest: = Assignment

Numeric Expressions Chapter 3 Programming Guide 75



Additional Numeric Features

Displaying Numbers
The Num_Type( ) command is used to display numbers.

Num_Type(#10) Display the value of numeric register 10,
right justified..

Num_Type(#10,LEFT) Display the value of numeric register 10,
left justified.

Num_Type(#10,FILL) Use leading "0" for any padding instead
of spaces.

Num_Type(#10,NOCR) Suppress the "newline" (CR+LF) follow-
ing the number.

Num_Type(#10,HEX) Display the number in hexadecimal, left
justified, in the format "0Xhhhh: hhhh"
with as many 'hh' hex digits as needed.

Num_Type(#10,HEX+NOMSG) Display the number in hexadeci-
mal, left justified, in the format
"hhhhhhhh" with as many 'hh'
hex digits as needed; the "0X"
and ":" are suppressed.

Insert (Line) Numbers into Text
Similar to the Num_Type( ) command, Num_Ins( ) inserts the number into
the text at the edit position. For example, the following macro inserts 200 lines
of the form "This is line number nnnn", where `nnnn' increments for each line:

for (#1 = 1; #1 <= 200; #1++) {
Ins_Text("This is line number ")
Num_Ins(#1)

}

Some applications require line numbers at the beginning of each text line. The
following command macro adds line numbers starting with 100 and with an
increment of 10. Of course, you could choose any other starting number and
increment.

#1 = 100
Begin_Of_File( )
repeat (ALL) {

Num_Ins(#1,NOCR)
Ins_Char(' ')
Line(1,ERRBREAK)
#1 += 10

}

//Set starting line number
//Goto BOF
//Start a Repeat-forever loop
//Insert line number for this line
//Need extra space
//Goto beginning of next line
//Add the increment
//End of Repeat loop

76 Chapter 3 Programming Guide Additional Numeric Features



Reading Numbers in Text
The Num_Eval( ) command reads and evaluates the number at the edit
position. The command can read and evaluate numeric constants only or entire
numeric expressions.

#10 = Num_Eval() Read and evaluate the numeric ex-
pression at the edit position and save
it in numeric register 10.

#10 = Num_Eval(ADVANCE) Advance the edit position past the
evaluated numeric expression.

#10 = Num_Eval(SUPPRESS) Read and evaluate the simple nu-
meric constant at the edit position
and save it in register 10.

If the edit position were at the text "12345ABCDE", use of the "SUPPRESS"
option would make no difference. However, it would make a difference if the
text were "12345+6789ABCDE".

Command Return Values as
Numeric Arguments

A powerful feature of the C language duplicated in VEDIT is for the return
value of one command to be the numeric argument of another command. The
following example illustrates this:

#90 = Buf_Switch(Buf_Free)
...
Buf_Switch(1)
...
Buf_Switch(#90) Buf_Close( )

The first line switches to an unused edit buffer. The command (internal value)
Buf_Free returns the number of a free buffer. This is used as the argument to
Buf_Switch( ). Since Buf_Switch( ) returns the ID number of the new edit
buffer, it can be saved in numeric register 90 for later use.

Since the value of an assignment statement is the assigned value, the first line
could also be written as:

Buf_Switch(#90 = Buf_Free)

Additional Numeric Features Chapter 3 Programming Guide 77



Numeric Register Stack (Technical)
Similar to the text register stack, there is a numeric register stack on which a
macro can save numeric registers and later restore them. This is often done by
subroutine macros that don't want to disturb their parent macro's registers. Up
to 100 values can be "pushed" (saved) on this stack.

NOTE: Unlike the text registers, saving numeric registers on the stack does
not change or empty their contents.

The command to save numeric registers on the stack is Num_Push(x, y) where
'x' is the first register to be saved and 'y' is the last register to be saved. Similarly,
the command Num_Pop(x, y) restores the specified numeric registers.

Num_Push(10,19) Save numeric registers 10 through 19 on the
stack.

Num_Push(30,30) Save the single register 30 on the stack.

Num_Push(0,99) Save all registers on the stack.

Num_Pop(0,99) Restore all registers from the stack.

Num_Pop(30,30) Restore the single register 30 from the stack.

Num_Pop(10,19) Restore registers 10 through 19 from the stack.

The Num_Pop( ) commands should normally occur in the reverse order from
the Num_Push( ) commands.

78 Chapter 3 Programming Guide Additional Numeric Features



Interactive Input and Output
Macros can be written to interact with a user. Messages, menus and prompts
can be displayed on the screen, on the status line or in separate windows.
Macros can accept input from the user in the form of single keystrokes,
numbers, or entire lines of text. For fancier interaction, "forms entry" macros
can be written.

Screen Display Commands
Messages can be displayed on the screen with the Message( ) command. This
command is abbreviated as M( ). Messages and prompts can have embedded
"\n" to display multiple line messages.

Message("text ") Display 'text' in the current window. Since the
'text' may be several lines long, detailed menus
can be displayed.

M("Part 1 is done") Display a message on screen.

M("Line 1\nLine 2\n") Display a two line message on the screen. The
message ends with a "newline".

Message( ) is the primary command for displaying messages such as user
prompts and menus. It can also be used to display progress messages or
debugging messages during the execution of command macros.

Messages can temporarily be displayed on the status line:

M("text ",STATLINE) Briefly display 'text' on the status line. text' can
only be one line long.

The status line will be restored when VEDIT is ready for the next keystroke.
Alternatively, you can leave the message on the status line for one keystroke:

Statline_Message("text ") Display 'text' on the status line for
one keystroke.

Spaces and "newlines" can also be displayed:

Type_Space(n) Display 'n' spaces.

Tab_Out(n) Display spaces out to column 'n'. If already at
or past column 'n', display two spaces.

Type_Newline(n) Display 'n' "newlines".

Single characters can be written to the screen with the Char_Dump( ) com-
mand. Its primary purpose is to display a character whose value is in a numeric
register.

Char_Dump(n) Displays (dumps) the single character with
decimal value 'n' followed by a "newline".

Char_Dump(n,NOCR) Displays (dumps) the single character without
the "newline".

Interactive Input and Output Chapter 3 Programming Guide 79



Char_Dump(#1,NOCR) Display the character in numeric register
"1"; suppress the "newline".

Char_Dump( ) can also be used to display special control and graphic
characters since they are "dumped" to the screen and are not expanded.

Char_Dump(1)
Char_Dump(129)

Display two graphic chars with values 1 and
129.

The "cursor" at which the following text will be displayed can be positioned
anywhere in the current window.

Win_Hor(n) Moves the cursor horizontally to column 'n'.

Win_Vert(n) Moves the cursor vertically to line 'n'.

By first moving the cursor, new text can be displayed anywhere within the
window, instead of just at the bottom of the window. This is useful for "forms
entry" macros which paint the full screen and then move the cursor from one
field to another.

For additional screen control, all or part of a window can be erased. The erased
parts of the screen use the "erase attribute" set with the Win_Color( )
command.

Win_Clear( ) Erases the entire window and moves the cur-
sor to the upper left corner ("home" position).

Win_EOL( ) Erases from the cursor to the end of the
window (screen) line.

Win_EOS( ) Erases from the cursor to the end of the
window (screen).

Several "internal values" assist when manipulating windows inside of macros.
Win_Cols and Win_Lines return the size of the current window. Win_Hor
and Win_Vert, without arguments, return the current cursor position in the
window. Win_Color returns the color attribute for the text in the current
window. You may want to save this value in a numeric register before changing
colors so that you can restore the original color later.

Changing Screen/Window Color
The Win_Color(n) command changes the color attribute of the text in the
current window to 'n'. Different windows can be displayed in different colors.
The initial colors are set during configuration.

For non-IBM PC versions, Win_Color(1) sets reverse video and
Win_Color(0) sets normal video.

For monochrome IBM PC, Win_Color(112) sets reverse video and
Win_Color(7) sets normal video. Other values set screen attributes such as
intense and underline.

The complete list of color attributes is available in the on-line help for
{CONFIG, Colors}.

80 Chapter 3 Programming Guide Interactive Input and Output



Details About Command Mode Output
Many commands such as Directory( ), Num_Type( ) and Message() display
output. While this output usually is simply displayed in the current window,
VEDIT sometimes switches to another window to display the output.

For example, when a keystroke macro with Command Mode commands is run
from within Visual Mode, VEDIT attempts to display it in a Command Mode
window.

These rules determine exactly where Command Mode output is displayed:

1. If no windows exist (e.g. during startup), the Command Mode window
"$" is created, and the output goes to this window.

(You will notice this if you "vpw -xwildfile.vdm".)

2. If the current window already has Command Mode output, it continues to
use this window. (This is rather obvious).

It also uses the current window if it was just selected with the
Win_Switch( ) command.

Else, the current window is being used for Visual Mode, and...

3. If the dedicated Command Mode window "$" exists, it switches to this
window.

4. If there is another Command Mode window, it switches to the last used
window. However, it does not switch to the status line.

Else, there are no Command Mode windows, and...

5. It converts the current (Visual Mode) window into a Command Mode
window, scrolls to the bottom and displays the output.

(This is always the case if you only have one window.)

If needed, use the Win_Switch( ) command to force output to the desired
window.

If there are no Command Mode windows, the current Visual Mode window is
converted to a Command Mode window. Upon reentering Visual Mode, you
will get the "Press any key to continue..." prompt so that you can see the
Command Mode output. (The command Visual_Macro(NOMSG) can be
used to suppress the prompt.)

Interactive Input and Output Chapter 3 Programming Guide 81



Input Commands
Macros can accept keyboard input using three commands. Each input com-
mand includes a "prompt" to the user.

Table of Input Commands
Command Type of Input Example of Input

Get_Key("prompt") Single Keystroke Y
Function key [CURSOR DOWN]

Get_Num("prompt") Number -123
Expression (123 + 345) / 18 - 1

Get_Input(r,"prompt") Text String newfile.txt

The "prompt" can be one or more lines long. A multiple line prompt can be
entered on multiple lines or the "prompt" can include "\n" to indicate
"newlines".

The command option "STATLINE" on these commands causes the prompt to
appear on the status line. In this case the 'prompt' must be a single line long.

Sometimes it is more convenient to prompt with the Message( ) command. In
this case the non-existent prompt can be entered as two quotes "" without any
characters between them, or it can be left off completely.

Get_Num( ) and Get_Input( ) require pressing <Enter> following the input
line. The input line can also be edited in the normal fashion and [CURSOR
UP] will recall previous input lines.

Get_Key("prompt ") Prompts on a new line with 'prompt'. Returns
the value of the next keyboard character or
function code. Simple keys have value 00 -
255. Function-codes have value > 255.

Get_Num("prompt ") Prompts on a new line with 'prompt'. Returns
the value of the number (or numeric expres-
sion) that was entered.

Get_Input(r,"prompt ") Prompts on a new line with 'prompt'. The
user's input line including the <Enter> is
stored in text register 'r'. <Enter> is converted
to the "newline" character(s).

Get_Input( ) is often used to prompt the user for a filename.

Get_Input(10,"Enter filename: ",STATLINE)
File_Open(@10)

Prompt user on the status line for a filename;
save it in register 10 and then open that file.

The "newline" can be left off the stored line by using the command form:

Get_Input(r,"prompt ",NOCR)

Store the input line in text register 'r', but
without the "newline".

82 Chapter 3 Programming Guide Interactive Input and Output



Lines may be "appended" to the text register with the command form:

Get_Input(r,"prompt ",APPEND)

Append the input line to register 'r'.
A default input string can be specified and the length of the input string can be
limited.

Get_Input(10,"Enter up to 8 chars: ","Default",COUNT,8)

Prompt with a default input string of "Default", the
maximum input string length is 8 chars.

NOTES: The topic "Edit Function Codes" in the Appendices lists how each
edit function is decoded by the Get_Key( ) command. Each has a
two letter code and an equivalent numeric code, e.g.
[CURSOR UP] is coded as "CU" and 'C'+'U'*256 = 21827. All
unused function keys are decoded as "B4" = 13378.

The internal values Key_Status and Previous_Key are also re-
lated to reading keyboard input.

Checking for Valid User Input
It is often important for a program to check that the user has entered a valid
response to a prompt. For example, if the program prompts the user to enter
"1" through "4", it should check that other numbers or characters were not
entered.

A command loop is typically used to wait for valid input. The following
example prompts for a "Yes/No" response and waits for a valid response.

Message("\nSelect [Y]es or [N]o : ")
Repeat(ALL) {

#80=Get_Key("") & 0xDF
if (#80=='Y' | | #80=='N') { Break }
Alert()

}

Notice that the prompt is displayed with the Message( ) command instead of
with Get_Key( ). This has the advantage that the prompt is only displayed once
in case invalid entries are made. Otherwise it would be re-displayed on
following screen lines after each invalid entry.

The line "#80=Get_Key("") & 0xDF" reads the next key into numeric register
80. The "& 0xDF" converts lower case letters into upper case for simpler
testing. If the response is valid, it breaks out of the loop; otherwise the loop
executes Alert( ) to give a beep and waits again for the next keyboard character.

The following example gets a valid numeric input between "1" and "4".

Interactive Input and Output Chapter 3 Programming Guide 83



Message('Enter "1" - "4" : ')
while ( (#80=Get_Key(""))<'1' | | #80>'4' ) {

Alert( ) }
Char_Dump(#80)

The condition of the While loop reads the next key into numeric register 80.
If it is invalid, the condition is TRUE and the Alert( ) command is executed
to give an error beep. A valid input is accepted and echoed to the screen with
the Char_Dump(#80) command.

The following example shows a typical way of prompting the user for a file
name and ensuring that the file exists. The Repeat loop repeatedly prompts
the user until a valid file name is entered. This example then simply displays
the specified file.

repeat (ALL) {
Get_Input(10,"Enter filename: ")
if ( File_Exist(@10) ) { Break }
Message("Cannot find file! Try Again.\n")

}
Type_File(@10)

Select Filename with a Dialog Box
Files can be selected from a dialog box with the Get_Filename( ) command.

Get_Filename(r,"filespec")

Select a filename using a dialog box. 'filespec' is
the initial "filter". When selected, the complete
drive, directory and filename is placed into text
register 'r'.

The following program fragment illustrates how Get_Filename( ) is used:

Get_Input(10,"Enter filename: ")
Get_Filename(10,@10)
if ( ! Reg_Size(10) ) {

goto error
}
File_Open(@10)

//Prompt for filename
//If wildcards, select from dir
//If no filename...
// Goto error handler

//Open file for editing

Get_Filename( ) only displays the dialog box if 'filespec' contains the wildcard
characters "*" or "?". If it does not, Get_Filename( ) simply copies the
'filespec' into register 'r'.

84 Chapter 3 Programming Guide Interactive Input and Output



Custom Dialog Boxes (Windows only)
In the Windows version, a macro can prompt for user input with a true
"Windows" dialog box by using the flexible Dialog_Input_1( ) command. It
can create a dialog box with a title, text, up to ten buttons, and optional check
boxes, radio buttons and input strings.

The dialog box is dynamically sized according to the specified text, the number
of buttons, and the other specified items. The text can be one or more lines
long; about 2000 characters should be considered a practical upper limit. The
dialog box can be precisely positioned with respect to the screen or the VEDIT
application window.

The command has a very detailed syntax which is fully described in the on-line
help.

The command returns the number of the button pushed (1 - 10) or 0 if <Esc>
was pressed to cancel the dialog box. Furthermore, text register 'r' is set to the
text entered in the first optional input line. (If there is no input line, 'r' must
still be specified, but the register will not be changed.)

Consider the following example from the VEDIT installation program:

#103=DI1(20,^`VEDIT 6.0 Installation`,
`What drive (and/or directory) are you installing from?`,
`??Source:`,
`[&Ok]`,`[Cancel]`^,@(1),APP+CENTER,0,0)

It will display the following dialog box:

After the user makes a selection, numeric register 103 will be set to 1 is "[OK]"
was selected, 2 if "[Cancel]" was selected, or 0 if <Esc> was pressed. Text
register 20 will be set to the user's input line, which defaults to "a:\".

Many of the supplied macros use the Dialog_Input_1( ) command, usually
abbreviated as DI1( ), including color.vdm, compile.vdm,
detab.vdm, keyedit.vdm, runshell.vdm and sallbuff.vdm.
Refer to these files and especially installw.vdm for useful examples..

Interactive Input and Output Chapter 3 Programming Guide 85



Input (keyboard) Redirection
The input to the Get_Input( ), Get_Key( ) and Get_Num( ) commands nor-
mally comes from the user typing on the keyboard. However, it can also come
from an "input redirection file". This allows you to fully automate a process
which otherwise requires keyboard input from a user.

The input redirection file simply consists of the desired input lines. Two special
"command" characters can occur at the beginning of a line:

% Specifies that the "newline" (CR+LF or LF) at the end of the line
is to be ignored. This allows single characters to the Get_Key( )
command to be entered on a separate line.

! Specifies a comment line; the entire line is ignored.
%%
!!

Use "%%" when a literal "%" is needed at the beginning of a line.
Similarly, use "!!" when a literal "!" is needed.

Furthermore, an input line can be followed with a comment by entering one or
more spaces/tabs, "!" and the comment. In this case the whitespace preceding
the "!" is considered part of the comment and is ignored.

The Redirect_Input("file") command starts the input redirection using the
specified file. Input redirection stops when the end of the input redirection file
is reached or the Redirect_Input(CLEAR) command is executed.

For example, let's say that we need to regularly change the string "<Italic>" to
"<Bold>" in all the ".txt" and ".prn" files in a particular directory. The
WILDFILE.VDM macro is ideal for this; it only prompts for the "wildcard"
filenames and the search and replace strings. To fully automate the process,
we can feed the following input redirection file, named typeset.inp to the
WILDFILE macro.

! VEDIT input redirection file for WILDFILE macro
!
! Replace "<Italic>" with "<Bold>" in all
! c:\typeset\*.txt and c:\typset\*.prn files.
!
c:\typeset\*.txt ! Select first group of files
c:\typeset\*.prn ! Select next group of files

! Blank line ends file selection
%r ! Select [R]eplace
<Italic> ! The search string
<Bold> ! The replace string
%d ! Select [D]isplay
%n ! Select [N]o to "More" option

! Press any key to continue
3 ! Select [3] to exit macro

The following command starts VEDIT and runs the WILDFILE macro with
an input redirection file. ("rinp" is the short name for Redirect_Input.)

vpw -e -c'rinp("typeset.inp") call_file(100,"wildfile.vdm")'

A Windows user could create an icon for the command above and thereby
perform the entire search/replace by simply clicking on the icon.

86 Chapter 3 Programming Guide Interactive Input and Output



Block Operations

Determining File Position
The current edit position in the file is accessed with the command (internal
value) Cur_Pos. This position is an "offset" from the beginning of the file,
with the first character having a position of 0 (zero). You can easily display
the current edit position by using the on-line calculator feature at the "COM-
MAND:" prompt:

Cur_Pos Display current edit position as an "offset" from the begin-
ning of the file.

You can save the current edit position in either a block marker, text marker or
numeric register. This is very similar to setting a text marker or block marker
in Visual Mode. For example:

Block_Begin(Cur_Pos) Save current edit position as the block-be-
gin marker.

Set_Marker(1,Cur_Pos) Save current edit position in text marker
"1".

#4 = Cur_Pos Save current edit position in numeric reg-
ister "4".

The command Goto_Pos(n) moves the edit position to the 'n'th position in the
file. Therefore, Goto_Pos(0) is equivalent to Begin_Of_File( ). Goto_Pos( )
is often used to move to the position saved in a text marker:

Goto_Pos(Marker(2)) Move the edit position to the position
saved in text marker 2.

Setting Block and Text Markers
The block-begin and block-end markers used by the {BLOCK} menu can be
set and cleared in Command Mode. Similarly, the text markers can be set and
cleared in Command Mode.

Block_Begin(n) Set the block-begin marker to position
(offset) 'n' in the file.

Block_Begin(Cur_Pos) Set the block-begin-marker to the current
edit position.

Block_Begin(CLEAR) Clear both the block-begin and block-end
markers. (Any negative value clears the
markers.)

Block_End(n) Set the block-end marker to position (off-
set) 'n' in the file.

Block_End(CLEAR) Clear only the block-end marker.

Block Operations Chapter 3 Programming Guide 87



Set_Marker(m, n) Set text marker 'm' to position 'n' in the
file.

Set_Marker(m, CLEAR) Clear text marker 'm'.

The block markers can be accessed via the internal values Block_Begin and
Block_End and the text markers can be accessed via Marker(m).

The text and block markers are "relative" positions in the file that "stick" to
particular characters. They adjust automatically as text is inserted or deleted.
Therefore, if you need to save positions in the text while inserting and deleting,
you must save them in either the text or block markers. In this case numeric
registers cannot be used because they contain "absolute" positions.

Block Commands
VEDIT has a variety of block oriented commands. Blocks of text are defined
by two file positions (offsets) - a beginning position 'p' and an end position 'q'.
A non-columnar block includes the character at position 'p' and all characters
up to (but not including) position 'q'.

Block_Copy(p,q) Copy a block of text to the current edit
position.

Block_Move(p,q) Move a block of text to the current edit
position.

Block_Fill(ch,p,q) Fill a block with spaces or another char-
acter.

Case_Lower_Block(p,q) Convert all upper case letters in the block
to lower case.

Del_Block(p,q) Delete a block of text.

Detab_Block(p,q) Convert all tabs in the block of text to
spaces.

Print_Block(p,q) Print a block of text.

Reg_Copy_Block(r,p,q) Copy a block of text to register 'r'.
Strip_High(p,q) Strip Bit 8 (high bit) from a block of text.

Translate_Block(p,q) Translate all characters in the block using
the built-in or user loadable translation
table.

Type_Block(p,q) Type (display) a block of text.

Write_Block("file",p,q) Write a block of text to the file 'file'.

Some simple complete examples of block commands are:

Del_Block(4,9) Delete the block consisting of the 5th
through 9th characters in the file. (Count-
ing starts at zero.)

88 Chapter 3 Programming Guide Block Operations



#1 = 123
#2 = 234
Reg_Copy_Block(7,#1,#2)

Copy the 124th through 234th characters
in the file into text register "7".

Type_Block(CurPos,CurPos+24) Type out the next 24 characters.

The counting scheme used here may seem a little unnatural because it starts at
zero and excludes the character at the end position. However, there are good
reasons for doing it this way (other than that computer people love counting
from zero). In practice the block positions are often set from Cur_Pos
following a Line( ) or Search( ) command. Everything then works out very
well.

Using "0,File_Size" as the block parameters selects the entire file. This is
similar to selecting {BLOCK, Select all}.

Translate_Block(0,File_Size) Translate the entire buffer (file).

NOTE: The examples in this manual assume that the first block argument
'p' is less than the second argument 'q'. In practice they can be
reversed. Just remember that the character at the "larger" position
(further into the file) is excluded from normal "character" blocks.

Columnar Blocks
Most of the block commands take the command options "COLUMN" or
"COLSET" to select a columnar block operation similar to those in Visual
Mode. With the option "COLUMN", 'p' and 'q' specify both the beginning and
end of the block, and the left and right columns for the block. In other words,
they specify the "corners" of the block.

Block_Copy(p,q,COLUMN) Copy a columnar block of text to the
current edit position. 'p' and 'q' spec-
ify the corners of the block.

Block_Move(p,q,COLUMN) Move a columnar block of text to the
current edit position.

Del_Block(p,q,COLUMN) Delete a columnar block of text.

Type_Block(p,q,COLUMN) Type (display) a columnar block of
text.

Reg_Copy_Block(r,p,q,COLUMN) Copy a columnar block of
text to register 'r'.

Write_Block("file",p,q, COLUMN) Write a columnar block of
text to the file 'file'.

Columnar blocks can also be selected with the "COLSET" option, which is
followed by two explicit column numbers 'c1' and 'c2'. In this case 'p' and 'q'
specify the first and last lines of the block, and 'c1' and 'c2' specify the columns
(inclusive) of the block. 'p' and 'q' are still file positions, but they can be
anywhere on the line; they do not need to be in the corners.

Block Operations Chapter 3 Programming Guide 89



The following example locates a block beginning with "first" and ending with
"last". It then copies columns 10 through 40 (inclusive) in the block, including
from the lines containing "first" and "last", to text register "9".

Search("first")
Block_Begin(Cur_Pos)
Search("last",ADVANCE)
Block_End(Cur_Pos)
Reg_Copy_Block(9,BB,BE,COLSET,10,40)

Line-range Blocks
Most of the block commands take the command option "LINESET" to select
a block consisting of entire lines. In this case, the block parameters are not file
positions, but rather line numbers. We refer to them as 'l1' and 'l2'.

This option is very useful when you need to operate on entire lines and know
their line numbers. For examples:

Write_Block("part1.txt",100,199,LINESET)

Write line numbers 100 through 199 (inclusive) of the
current buffer (file) to the new file "part1.txt".

Block_Copy(1,10,LINESET)

Copies (duplicates) the first 10 lines of the current buffer
(file) at the beginning of the current line.

Case_Upper_Block(101,MAXNUM,LINESET)

Converts to upper case all text starting with line 101
through the end of the file.

"LINESET" can be used in conjunction with "COLSET" to specify a columnar
block by line numbers and column numbers. For example:

Reg_Copy_Block(9,10,20,LINESET+COLSET,30,40)

Copy the columnar block consisting of lines 10 through
20 and columns 30 through 40 to text register 9.

Using "LINESET" is similar to marking blocks in Visual Mode with
{BLOCK, Set line marker}. When copied to a text register, it is saved as a
"line" block; therefore, when it is inserted, it is always inserted at the beginning
of the current line.

NOTE: Block commands using "LINESET" take longer to process because
VEDIT must calculate line numbers. However, you would only
notice the difference when performing many commands on multi-
megabyte files.

90 Chapter 3 Programming Guide Block Operations



Overriding Text Register Block Type
The Reg_Ins( ) command inserts stream, columnar and line blocks just like
{BLOCK, Insert register}. Normally, a block that is copied to a register is
inserted as the same type of block. For special purposes, the command options
"RAW", "COLUMN" and "LINEBLOCK" let you override this. Note: the
option is not "LINESET".

Reg_Ins(r) Insert register 'r' at the current edit position.
Insert the same type of block (stream, column
or line) as was saved.

Reg_Ins(r,COLUMN) Insert register 'r' as a columnar block even if
it was saved as a stream or line block.

Reg_Ins(r,RAW) Insert register 'r' as a stream block even if it
was saved as a columnar or line block.

Reg_Ins(r,LINEBLOCK) Insert register 'r' as a line block at the
beginning of the current line, even if it
was saved as a stream or columnar block.

Setting Block Markers by Searching
The Search( ) command is often used to find some text, whose position is
saved for further processing. A typical application is using one search to find
the beginning of a block of text, saving the position, using a second search to
find the end of the block, and then moving the block into a text register.

As an in-depth example, consider the task of extracting all mailing list entries
with the name "Smith". Assume that the list is in the form used by the SORT
macro:
Smith, Charles
3219 Space Ct.
Albany, NY 14311
-Broadcast Producer

Burnett, Tammie
642 Sunset Blvd.
Miami, FL 32103
-Travel Consultant

All such entries are to be appended to text register 4 and deleted from the
current edit buffer.

First we need to find the word "Smith". This is a simple command:

Search("Smith") Find the word "Smith" in the current edit
buffer.

Since this positions the edit position at the first character of "Smith", we can
save the current position as the block-begin marker:

Block Operations Chapter 3 Programming Guide 91



Block_Begin(Cur_Pos) Set the block-begin marker to the begin-
ning of "Smith".

Next, we need to find the end of the entry, noting that entries are separated
from each other by at least one blank line. Therefore, we could search for two
"newlines":

Search("|L|L") Search for a blank line, leaving the edit
position at the end of the previous line.

However, the edit position is not where we need it for setting the block-end
marker. It precedes the blank line and the block should include the blank line.
We could use the command Block_End(Cur_Pos+Chars_Matched). How-
ever, it is preferable to use the search option "ADVANCE" which advances
the edit position past the matched text.

Search("|L|L",ADVANCE) Search for a blank line, leaving the
edit position past the blank line.

This position can now be used as the block-end marker:

Block_End(Cur_Pos) Set the block-end marker past the record
including the blank line.

With the beginning and ending positions of the desired block of text saved, we
are ready to append it to text register 4:

RegCopyBlock(4,BlockBegin,BlockEnd,APPEND+DELETE)

Append the entry to register 4.

The "APPEND" option causes the block to be appended to the existing contents
of the register. The "DELETE" option causes the block to be deleted from the
edit buffer.

Finally, using a Repeat loop to repeat this operation for all occurrences of
"Smith", we have the command sequence (we have used some abbreviation):

Reg_Empty(4)
repeat (ALL) {

Search("Smith",ERRBREAK)
Block_Begin(Cur_Pos)
Search("|L|L",ADVANCE)
Block_End(Cur_Pos)
RCB(4,BB,BE,APPEND+DELETE)

}

//Empty T-Reg 4
//Begin loop
//Find "Smith"
//Save beginning position
//Search for a blank line
//Save ending position
//Append entry to T-Reg 4
//End of loop

The option "ERRBREAK" on the Search("Smith",ERRBREAK) command
causes the macro to break out of the Repeat loop when no more occurrences
of "Smith" are found.

92 Chapter 3 Programming Guide Block Operations



Text Register Commands

Reading Environment Variables
DOS/Windows, UNIX/XENIX and QNX have environment variables. The
DOS "SET" command is used to create environment variables and give them
values. As described in the VEDIT User's Guide, VEDIT uses the optional
environment variables "VEDIT" and "VEDPATH" ("VEDIT_PATH" under
QNX). A command macro can read these and any other environment variables
with the Get_Environment( ) command.

Get_Environment(r,"name") Read the value of environment vari-
able 'name' into text register 'r'.

This feature allows a command macro to alter its operation according to how
an environment variable is set.

Text Register Stack
(This is a moderately technical topic for advanced programmers.)

The contents of any desired text registers can be saved on a special stack. This
allows a macro to save the contents of text registers that it needs for its own
purposes and, when the macro is done, restore the original contents. (This
implements what programmers call "local variables".) Saving text registers is
particularly important when writing low level "sub-routine" macros which are
called from other macros. It allows low level macros to be written without
concern for which registers a higher level macro is using. Up to 128 registers
can be saved on this special stack.

NOTE: The registers saved on the stack are also emptied unless the "SET"
option is used. Edit buffers cannot be saved on the stack.

The command to save text registers on the stack is Reg_Push(r, s) where 'r' is
the first register to be saved and 's' is the last register to be saved. Note that a
range of registers is specified — the "lowest" possible register is "0" and the
"highest" is "124".

After saving, the text registers are normally emptied. However the command
form Reg_Push(r,s,SET) maintains the registers.

Similarly, the command Reg_Pop(r,s) restores the specified text registers.
Note that a range of registers is specified — the "lowest" possible register is
"0" and the "highest" is "109".

Reg_Push(10,19) Save registers 10 through 19 on the stack.

Reg_Push(20,20) Save the single register 20 on the stack.

Reg_Push(0,99) Save all general purpose registers on the stack.

Text Register Commands Chapter 3 Programming Guide 93



Reg_Pop(0,99) Restore all general purpose registers from the
stack.

Reg_Pop(20,20) Restore the single register 20 from the stack.

Reg_Pop(10,19) Restore registers 10 through 19 from the stack.

It is up to the programmer to "push" and "pop" the registers in the correct order
— in particular the Reg_Pop( ) commands should appear in reverse order from
the Reg_Push( ) commands. For example, the commands to save registers 4-8,
20-25 and 101-109, and later restore them are:

Reg_Push(4,8)
Reg_Push(20,25)
Reg_Push(101,109)

Save registers 4 through 8.
Save registers 20 through 25.
Save registers 101 through 109.

...

...

Reg_Pop(101,109)
Reg_Pop(20,25)
Reg_Pop(4,8)

Restore registers 101 through 109.
Restore registers 20 through 25.
Restore registers 4 through 8.

Experienced programmers can use Reg_Push( ) and Reg_Pop( ) that are not
in reverse order to achieve special effects. For example, the following com-
mands quickly move the contents of registers 20 through 25 to registers 30
through 35:

Reg_Push(20,25)
Reg_Pop(30,35)

This "trick" copies registers 20-25 to registers
30-35. It also empties registers 20-25.

Registers can be saved more than once on the stack. Attempts to "pop" more
registers than were "pushed" are ignored. Reg_Push, without arguments,
returns the number of registers currently pushed on the stack.

Registers 123 and 124, corresponding to the {TOOLS} and {USER} menus,
can be saved on the register stack when used with the "SET" option. This
allows a macro to save the current menus, change them for use during the
macro, and then restore the menus, when the macro is done.

The Key_Cfg_Push( ) and Key_Cfg_Pop( ) commands save and restore the
current keyboard layout on the text register stack. Similarly, Win_Cfg_Push( )
and Win_Cfg_Pop( ) save and restore the current window layout.

Key_Cfg_Push( )
Win_Cfg_Push( )
Reg_Push(123,124,SET)
Reg_Push(10,20)
...
...
...
Reg_Pop(10,20)
Reg_Pop(123,124)
Win_Cfg_Pop( )
Key_Cfg_Pop( )

//Save keyboard layout
//Save window arrangement
//Save {USER} and {TOOLS}
//Save locally used regs

//Body of macro

//Restore original regs
//Restore {USER} and {TOOLS}
//Restore window arrangement
//Restore keyboard layout Return

94 Chapter 3 Programming Guide Text Register Commands



Match and Compare
The Match( ) command compares the text at the edit position against a "search
string". The comparison can be for "equality" or lexical "greater than" or "less
than". The search string can also contain pattern matching codes or, if the
"REGEXP" option is specified, regular expressions.

Match("string") Compares the text at the edit position with 'string'.
The comparison can be quite sophisticated because
'string' may contain pattern matching codes or
regular expressions. Match( ) has a form and op-
tions similar to the Search( ) command. Returns
{0,1,2,3} according to the results of the compari-
son.

The comparison is successful or "equal" when 'string' completely matches the
text at the edit position. The text strings are considered "equal" even though
the edit buffer can clearly be longer than 'string'. For Match("string",
COUNT, n), the 'string' must match 'n' times in a row. If the strings do not
match completely, the internal values Error_Flag and Error_Match are set
to TRUE. The results of the comparison are returned and saved in
Return_Value:

0 If successful.

1 If the text is lexically "greater than" 'string'.

2 If the text is "less than" 'string'.

3 If the match failed on a pattern match code or regular expression. This is
needed because "greater than" or "less than" are meaningless with pattern
matching.

When successful, the internal value Chars_Matched is set to the number of
text characters that were matched.

Match( ) Command Return Values
Edit Buffer 'string' Result Return Chars_Matched Error_Flag

biggest... big Equal 0 3 0

bigger... big dog Greater 1 - 1

bigger... biggest Less 2 - 1

biggest... big|A Equal 0 4 0

big dog... big|A Not Equal 3 - 1

The command option "ADVANCE" moves the edit position past the matching
characters, but only if the entire match is successful.

Match("|W",ADVANCE) If the edit position is at any whitespace
(spaces and tabs), advance past it and
return 0. Else just return non-zero.

Match and Compare Chapter 3 Programming Guide 95



It may be helpful to consider how the Match( ) and Search( ) commands are
different:

● Match( ) does not search through the text trying again if the match at the
current edit position is unsuccessful.

● If Match( ) is unsuccessful, no error message is given. Therefore, the
option "NOERR" is not applicable.

● The return value of Match( ) is the result of the comparison. The return
value of Search( ) is the number of successful matches, particularly when
the "ALL" or "COUNT" options are used.

The Compare( ) command is similar to the {SEARCH, Compare buffers}
function. It performs a character by character comparison between the current
edit buffer and a text register or edit buffer. There is no pattern matching or
regular expressions. The comparison does not distinguish between upper and
lower case letters unless the "CASE" option is used.

Compare(r) Compares the text at the edit position with the text
register (or edit buffer) 'r'. Performs a simple char-
acter by character comparison. Advances the edit
position past all matching characters. Returns
{0,1,2} according to the results of the comparison.

If 'r' is a simple text register, the entire register must match for the comparison
to be successful. If 'r' is an edit buffer, the comparison starts from 'r's edit
position and the rest of the buffer must match for the comparison to be
successful. The result of the comparison {0,1,2} is returned and saved in
Return_Value as with the Match( ) command.

0 If successful — the text matches the entire contents of 'r'.
1 If the text is lexically "greater than" 'r'.
2 If the text is "less than" 'r'.
Unlike the Match( ) command, Compare( ) always moves the edit position
past those characters that match, regardless of whether the entire comparison
is successful. The internal value Chars_Matched is set to the number of
characters that matched; it is set to 0 (zero) when the very first character does
not match.

Compare(20) Compare the text at the edit position with
text register 20. Return {0,1,2} according
to the result of the comparison. Advance
the edit position.

Compare( ) is useful for moving the edit positions in two edit buffers past all
characters which match, even if the two edit buffers don't completely match.
It is an important command in the compare.vdm file comparison macro.

Compare(2+BUFFER) Compare the text at the edit position with
the text at the edit position of edit buffer
2. Advance the edit positions in both buff-
ers over all matching characters. Return
{0,1,2} according to the result of the com-
parison.

96 Chapter 3 Programming Guide Match and Compare



If you want to compare text against a text register, but want the characteristics
of the Match( ) command (e.g. pattern matching), use the command form
Match(|@(r)).
The Reg_Compare(r,"text") command performs a simple character by char-
acter comparison between the entire text register 'r' and 'text'. The comparison
is not case sensitive unless the "CASE" option is used.

Reg_Compare(r,"text") Compare the contents of text register 'r'
with 'text'. This is a character by character
comparison without Pattern matching or
Regular expressions. 'r' cannot be an edit
buffer.

The result of the comparison {0,1,2} is returned and saved in Return_Value
as with the Match( ) command.

0 If successful — register 'r' contains 'text'.
1 If register 'r' is lexically "greater than" 'text'.
2 If register 'r' is "less than" 'text'.

Reg_Compare( ) can be used after a Get_Input( ) command to test what the
user entered.

Reg_Compare(10,"yes") Returns 0 if text register 10 contains
"yes"; case is not important. Else returns
non-zero.

Reg_Compare(10,@11) Returns 0 if text registers 10 and 11 have
the same contents; else returns non-zero.

Match and Compare Chapter 3 Programming Guide 97



Additional Commands

Displaying Input/Output Filenames
Name_Read( ) displays the input (read) filename and Name_Write( ) dis-
plays the output (write) filename on the screen. Name_File( ) displays both
the input and output filenames. The filenames are preceded by the messages
"Input file:" and "Output file:" respectively and are followed by a "newline".
The preceding message can be suppressed with the "NOMSG" option and the
following newline with the "NOCR" option.

Name_Write Display output filename and a "newline".

Name_Write(NOMSG) Display output filename without preced-
ing message.

Name_Write(NOMSG+NOCR) Display output filename without
preceding message and without
a "newline".

The predefined string values "PATHNAME", "FILENAME" and
"FILE_EXT" permit a macro to access the full pathname, just the filename or
just the filename extension with any command that takes a string argument.

Directory( ) Command
The Directory( ) command displays the current drive name and directory
followed by the filenames in four (4) columns. The option "NOMSG" sup-
presses the drive and directory line and displays the files one per line.

Dir("",NOMSG) Display files one per line; suppress header.

Dir("",NOMSG) is often used in conjunction with Out_Ins( ) to insert the
directory into the edit buffer. This way a command macro can determine what
files are on disk and automatically edit those files. For example, the command
sequence to insert all filenames with an extension of ".ASM" into the edit
buffer is:

Out_Ins( ) Dir("*.asm",NOMSG) Out_Ins(CLEAR)

Insert all ".asm" filenames into the edit buffer,
one per line.

The directory display normally includes subdirectories plus "hidden" and
"system" files. The command option "SUPPRESS" prevents these types of
files from being included.

The command File_Exist(filespec) tests for the existence of the file(s) 'filespec'
and returns the number of files that matched the file specification. It returns 0
if no files were found. It is primarily used inside macros that must know if a
particular file exists.

98 Chapter 3 Programming Guide Additional Commands



Sound Generation
The Alert( ) command creates the default "beep" on the IBM PC speaker as
long as the configurable "Beep level" is not set to zero.

Alert( ) Create the default "beep" on the IBM PC speaker.

Under Windows 3.1/95/98 (but not NT) and DOS, programmable sounds of
any desired frequency and duration can also be created.

Sound(n,k) Creates a sound (tone) of frequency 'n' hertz and
duration 'k' milliseconds.

Sound(n,k,EXTRA) The sound is followed by 30 milliseconds of si-
lence.

Sound(262,1000) Plays the note "middle C" for one second.

The supplied macro file marylamb.vdm is an example that plays a simple
tune.

WordStar Files (Strip 8th bit)
WordStar (tm) files and files from other word processors often contain char-
acters which have their "High" or "8th" bit set. These are often difficult to edit
with VEDIT because the high bit characters are displayed as graphics charac-
ters. Such files can be converted to normal text files with the Strip_High( )
command which "strips" the 8th bit:

BOF( ) Strip_High(ALL) Strip the 8th bit from every character in
the file.

Strip_High(10) Strip the 8th bit from all characters in the
next 10 lines.

If the paragraphs from the word processor are justified, they are easier to edit
if you first "unjustify" them to remove the extra spaces between words. This
is described in the VEDIT User Guide (Chapter 4, Word Processing Func-
tions).

The supplied wordstar.vdm macro converts a normal text file into a
WordStar file. It changes all single carriage-returns into "soft carriage-returns"
which have their high bit set. Multiple carriage-returns between paragraphs are
left unchanged. It also ensures that each soft carriage-return is preceded by at
least one space.

Modify Keyboard Layout
The keyboard layout can be modified with commands. Keystroke macros can
be added and deleted, the basic Edit Function assignments can be changed and
the entire keyboard layout can be saved to disk and loaded from disk.

Additional Commands Chapter 3 Programming Guide 99



The Key_Save( ) and Key_Load( ) commands are similar to the {CONFIG,
Keyboard Layout, Save to Disk} and {CONFIG, Keyboard Layout, Load
from Disk} functions.

Key_Load("file") Load new keyboard layout from the file 'file'.

Key_Save("file") Save current keyboard layout, including any
keystroke macros, in "text" format to the file
'file'.

Key_Save("file",BINARY) Save the keyboard layout in "binary"
format.

The Key_Add( ) command provides more flexibility in adding keystroke
macros than {CONFIG, Keyboard Layout, Add Keystroke Macro}.

Key_Add("Key-seq","Edit-seq") Add the key assignment to the
end of the keyboard layout table.

Key_Add("Key-seq","Edit-seq",OK)

Skip confirmation to overwrite any
existing assignment to 'Key-seq'.

Here are some examples:

Key_Add("Alt-A","[VISUAL EXIT] Line(0) Block_Copy(1)")

Add a keystroke macro which defines <Alt-A> to be
a function which duplicates the current line of text.

Key_Add("F1","[HELP]",OK)

Define <F1> to be the basic Edit Function [HELP];
any previous assignment to <F1> is removed without
confirmation.

The command option "INSERT" inserts the new key assignment at the begin-
ning of the keyboard layout; it also permits multiple assignment to the same
Function/control key. In the case of multiple assignments, VEDIT will use
the first one in the keyboard layout. The primary use for the "INSERT" option
is to make a temporary change to the layout without disturbing the original
layout. The Key_Pop( ) command is then usually used to remove these
temporary assignments.

Key_Add("Key-seq","Edit-seq",INSERT)

Insert the key assignment at the beginning of the
keyboard layout table.

Key_Pop(n) Pops (removes) the first 'n' key assignments from the
beginning of the keyboard layout table.

For example, a menu might prompt the user to make a selection by pressing
"1" through "4" or pressing <F1> through <F4>. One way of handling this is
by temporarily assigning digits to the function keys.

100 Chapter 3 Programming Guide Additional Commands



Key_Add("F1","1",INSERT)
Key_Add("F2","2",INSERT)
Key_Add("F3","3",INSERT)
Key_Add("F4","4",INSERT)
#1 = Get_Key('Press "1" - "4" or <F1> - <F4> : ')
Key_Pop(4)

When using Key_Pop( ), it is important to pop (remove) the correct number
of key assignments, otherwise the original layout will be disturbed. You may
find the command Key_Pop(ALL) useful for removing all key assignments,
in effect initializing the keyboard layout.

NOTE: After any change to the keyboard layout, VEDIT ensures that at a
minimum, the functions [RETURN] and [ESCAPE] are defined. If
necessary, they are assigned to <Enter> and <Esc> respectively.
This ensures that you can always exit from Visual Mode and save
your files. Press <Esc> to bring up the {ESCAPE} menu, press
<Space Bar> to select the desired item and press <Enter>.

You can also remove single key assignments from anywhere in the keyboard
layout with the Key_Delete( ) command. In the case of multiple assignment
to the same Function/control key, it will delete the first one in the table.

Key_Delete("Key-seq") Delete the keyboard assignment to
'Key-seq'.

Key_Delete("Key-seq",NOERR)

Suppress error if 'Key-seq' not assigned.
Key_Delete("Alt-A",NOERR)

Delete any key assignment to <Alt-A>.

Save / Restore Edit Position
A macro often needs to save the current edit position so that it can come back
to it later. This could be done with the text markers, but this would interfere
with markers that have already been set. It is often easier to use the Save_Pos( )
and Restore_Pos( ) commands.

Save_Pos( ) Save the current edit position on a special
stack of "text markers". You can save up to 5
positions on the stack.

Restore_Pos( ) Restore the edit position from the most recent
position saved with Save_Pos( ). If the stack
is empty, the command has no effect.

Restore_Pos(RESET) Empty (reset) the edit position stack. Use this
when your macro may have lost track of how
many positions have been saved on the stack.

Additional Commands Chapter 3 Programming Guide 101



Technical Topics

File Buffering in Command Mode
File buffering in Command Mode is normally performed automatically. How-
ever, explicit read/write and file open/close commands — File_Read( ),
File_Write( ), File_Open_Read( ), File_Open_Write( ) and
File_Truncate () — give the experienced user additional flexibility. For
example, these commands permit complex file splitting and merging by giving
precise control over how many lines are read from and written to disk.

File_Open( ) always reads in the entire file from disk or until the edit buffer
is nearly full. File_Save( ), File_Close( ) and Buf_Close( ) always perform all
necessary reading and writing to properly save files regardless of their size.

Explicit Read/Write Commands
The command File_Open_Read( ) opens a file for reading, but does not
actually read anything in. The file can be read with File_Read ( ). Similarly,
the command File_Open_Write( ) opens a file for writing, but does not write
anything out. Text can be written out with File_Write( ). Forward file buffer-
ing in Command Mode, therefore, can be done with successive File_Read( )
and File_Write( ) commands.

The File_Read(n,REVERSE) and File_Write(n, REVERSE) commands
give you explicit control over backward file buffering. (See "Appendix A -
File Management" in the VEDIT User's Manual.) The command
File_Write(n,REVERSE) writes out 'n' lines of text from the end of the edit
buffer to the temporary ".rR$" file, creating it if necessary. Its main purpose
is to make more memory space available for File_Read(n, REVERSE) which
then reads back 'n' lines of text that was written earlier to the output file.

CAUTION: Because of the complexity of the File_Read( ) and
File_Write( ) commands, we suggest you not use them until
you are thoroughly familiar with VEDIT's file handling. Gen-
erally, the Begin_Of_File( ), End_Of_File( ), Line( ), and
Search( ) commands can perform any additional file buff-
ering you will need in Command Mode.

Although auto-buffering will make memory space available in the edit buffer
for large insertions, you can also manually free additional memory with the
Mem_Free( ) command. It takes three forms:

Mem_Free(n) Buffers out to disk until 'n' bytes of memory are
free.

Mem_Free(1) Buffers out to disk until the current file is reduced
in size to approximately 8 Kbytes.

Mem_Free Only returns the number of bytes currently free in
the edit buffer.

102 Chapter 3 Programming Guide Technical Topics



Mem_Free( ) does not buffer out any text which is within 2000 bytes of the
edit position. If you specify too large a value, Mem_Free( ) will not be able
to make the total requested amount of memory free, but will make as much
free as possible. The returned value is the actual number of bytes free. Or use
Mem_Status( ) to see how much memory actually is free.

Mem_Free(40000) Perform forward and/or backward file buffer-
ing to make 40,000 bytes of memory free in
the edit buffer (if possible).

Undo in Command Macros
Edit changes made in command macros can be undone (when enabled) with
the commands Undo_Delete( ), Undo_Edit( ) and Undo_Line( ), which are
equivalent to the functions in the {EDIT, Undo, Delete} menu.
While the Undo facility is always enabled during Visual Mode, it can be fully
or partially disabled in command macros with Config(CM_E_UNDO, n). By
default, you can undo all commands except for Call( ) (macro execution).

The only reason to disable the Undo is to gain a little speed, which is not
significant in Visual Mode. However, since most command macros will easily
overflow even 1000 undo levels, nothing is lost by disabling Undo during
macro execution.

Anytime the Undo is disabled, it will also reset itself because it is not possible
to leave some editing steps out. Therefore if you completely disable Undo in
command macros with Config(CM_E_UNDO,0), each time you get the
COMMAND: prompt, the Undo (in the current edit buffer) will be reset for
both Command and Visual Modes.

In Command Mode, each command line executed is considered a single edit
operation which can be undone with one Undo_Edit( ) command.

Should any command sequence overflow the Undo buffer, the Undo will
automatically disable itself for the duration of the command sequence. This
gains speed and prevents you from undoing just a portion of the command
sequence, which may not be meaningful.

Each "edit level" can undo one basic edit operation such as a Line( ),
Ins_Text( ), Del_Line( ) or Search( ) command. However the Replace( )
command uses three undo levels for each replacement. Format_Para( ) uses
three undo levels for each line in the paragraph. Reg_Insert( ) with a columnar
block uses a minimum of three undo levels per line inserted, and even more if
spaces are converted to tabs. Therefore, it is possible that a single Reg_Ins( )
command (or equivalent {BLOCK, Register insert} function) could overflow
and reset the Undo facility. (A non-columnar Reg_Ins( ) uses only one undo
level.)

Any keystroke macro executed from Visual Mode that contains macro lan-
guage commands can be undone (assuming enough levels are available),
except those which contain a Call( ) command. Also the {MISC, Execute
Macro} and {MISC, Load/Execute Macro} functions, which internally use
the Call( ) and Call_File( ) commands, can generally not be undone.

Technical Topics Chapter 3 Programming Guide 103



Search/Replace Multiple
Files

This is an in-depth example of how to use command macros to automate the
process of performing a large search and replace operation on several files. (In
practice it would be easier to use the supplied WILDFILE macro; however this
example will give you an idea of how the WILDFILE macro works.)

NOTE: The following macro is supplied in the file multi-sr.vdm.

This example assumes you have a long report written as ten separate files and
that you have consistently misspelled 20 words. Correcting this could be a very
time consuming job, but it can be automated with a command macro. The
macro begins with a main macro and is followed by a subroutine macro. The
main macro contains the commands to edit each of the ten files and, for each
file, execute the subroutine macro which contains the global search/replace
commands for each of the 20 words. Once the macro is entered and begins
executing, all 200 (10 times 20) operations are automatically performed.

SUGGESTION ALWAYS make a backup copy of the files before running
complex macros. It is very easy for a small syntax error or
other problem to destroy the files being processed!

For this example, the macro will be created in edit buffer 9. Use the {FILE,
Buffer switch} function or Buf_Switch( ) command to switch to edit buffer
9 and enter the following macro from Visual Mode: ("word1" is the first
misspelled word and "fix1" is its correct spelling, etc.)

File_Open("file1.txt")
Call("fixup")
File_Close( )
File_Open("file2.txt")
Call("fixup")
File_Close( )
........
File_Open("file10.txt")
Call("fixup")
File_Close( )
Return( )

:FIXUP:
Replace("word1","fix1",BEGIN+ALL+NOERR)
Replace("word2","fix2",BEGIN+ALL+NOERR)
Replace("word3","fix3",BEGIN+ALL+NOERR)
.......
Replace("word20","fix20",BEGIN+ALL+NOERR)
Return( )

104 Chapter 3 Programming Guide Search/Replace Multiple Files



It is a good idea to save newly entered macros to disk before using them because
it is possible, due to a programming error, for a macro to erase itself. Once a
macro works properly, you may also want to save it for future use.

� To save the newly entered command macro to disk.
1. Select {FILE, Save as}.
2. Enter the desired filename at the prompt. For this example, enter

"globalsr.vdm".

The macro works by opening each file, one at a time, performing all search/re-
place commands, and writing the file back to disk. It then continues with the
next file.

Each Replace( ) command uses three important options:

BEGIN Starts the search/replace at the beginning of the
file. Otherwise, it would start wherever the pre-
vious command left the edit position.

ALL Replaces all occurrences in the file. Otherwise it
would only replace the first occurrence.

NOERR Specifies that search errors are to be suppressed.
Otherwise, if any word is not found the entire
macro terminates.

You are now ready to execute the macro. While macros are usually loaded into
text registers and executed, you can also execute a macro in an edit buffer.
However, you cannot execute a macro in the current edit buffer; therefore, you
will first have to switch to another buffer. Here are the commands:

Buf_Switch(1) Switch to another buffer because a macro in the
current buffer cannot be executed.

Call(9+BUFFER) Execute the macro in buffer 9. The "+BUFFER" is
needed to distinguish between text registers and
edit buffers.

NOTE: The next topic "Multiple Replace in Huge Files" describes how to
optimize this macro for speed when editing very large files.

Search/Replace Multiple Files Chapter 3 Programming Guide 105



Multiple Replace in Huge Files
As described in the previous topic "Search/Replace in Multiple Files", to
perform a series of search and replace operations on a file, you could use the
commands:

Replace("word1","fix1",BEGIN+ALL+NOERR)
Replace("word2","fix2",BEGIN+ALL+NOERR)
Replace("word3","fix3",BEGIN+ALL+NOERR)
.......
Replace("word20","fix20",BEGIN+ALL+NOERR)

While this will work with large files, you will notice some delay, particularly
if you have many Replace( ) commands.

The reason for the delay is that VEDIT has to read/write the entire file from
disk for each search/replace operation. This is time consuming; on a 100+
megabyte file, each search/replace could take 10 minutes or more.

Although a bit more complex, a much faster way is to shuffle sections of the
file through memory just once and perform all search/replace operations on
each section. The following example illustrates this:

while (! AT_EOF) {
File_Read(0)
Replace("word1","fix1",BEGIN+ALL+NOERR+LOCAL)
Replace("word2","fix2",BEGIN+ALL+NOERR+LOCAL)
Replace("word3","fix3",BEGIN+ALL+NOERR+LOCAL)

.......
Replace("word20","fix20",BEGIN+ALL+NOERR+LOCAL)
File_Write(ALL)

}

NOTE: A fully documented and more up-to-date version of this macro is
supplied as the file huge-sr.vdm.

The key difference in the Replace( ) commands is the "LOCAL" option which
restricts the search to the portion (section) of the file currently in memory. It
also causes the "BEGIN" option to start the search at the beginning of the file
section currently in memory. In other words, the "LOCAL" option prevents
any disk read/write from being performed.

Explicit read/write command (see previous topic) perform all file buffering.
The File_Read(0) command reads into memory as much of the file as will fit.
File_Write(ALL) writes the entire file section in memory back to disk; the
next File_Read(0) will then read the next section of the file into memory. The
While loop repeats everything until all file sections have been processed and
the end-of-file is reached.

HINT: When processing huge files with VEDIT, it will be much faster if the
file resides on a local hard disk instead of on a network.

106 Chapter 3 Programming Guide Search/Replace Multiple Files



Event Macros
VEDIT has seven special macros that can automatically execute when a
specific "event" occurs:

File-Open
Configuration

The macro in text register 115 is executed immediately
after each file is opened. It is typically used to config-
ure VEDIT according to the filename extension. It is
set up by the startup.vdm file. This is fully de-
scribed under "File-open Configuration" in Chapter 4
of the User's Manual.

File-Open The macro in text register 110 is executed after each
file is opened and after the File-open configuration
macro in register 115 is run. It can be used to automat-
ically convert certain files whenever they are opened.
The four file-open/close macros must be enabled with
Config(F_E_F_MACRO).

File Close The macro in text register 111 is executed for each file
that is closed. It is executed just before the file is saved
to disk.

File Pre-Open The macro in text register 112 is executed just before
each file is opened. It is typically used to shell out and
inform a version control system that a file needs to be
checked out.

File Post-Close The macro in text register 113 is executed immediately
after each file is closed. It is typically used to shell out
and inform a version control system that the modified
file needs to be checked back in.

Buffer Switch The macro in text register 114 is executed immediately
after each buffer switch in Visual Mode or the macro
command Buf_Switch(r,EVENT).

Template Editing One or more Template-editing macros can be loaded
into VEDIT. The macro configured for the current
buffer is executed immediately after each text charac-
ter that is entered in Visual Mode. It must be enabled
with {CONFIG, Programming, Enable template
editing} or Config(PG_TEMPLAT).This is fully de-
scribed under "Template Editing" in Chapter 4 of the
User's Manual.

File-Open Event Macro
When multiple files are opened at once, e.g. invoking VEDIT with "vpw *.c",
the File-open event macro will be executed for each file. Any Config( )
commands in the event macros should include the "LOCAL" option so that
they only affect the current edit buffer.

Event Macros Chapter 3 Programming Guide 107



File-Close Event Macro
The File-close event macro is executed just before the file in the current buffer
is saved to disk. It can be used to perform almost any desired operation. For
example:

● Check that the last line ends in a "newline".
● Strip trailing spaces from the entire file.
● Translate the file. The File-open and File-close event macros can be used

together to translate a file for easier editing and then translate it back.

For example, the following File-close event macro (to be placed into text
register 111) checks if the last line ends in a "newline". If not, it prompts
whether it should be inserted.

End_Of_File()
Char(-Newline_Chars)
if ( Match("|L") != 0 ) {

End_Of_File()
Update( )
#109 = Get_Key('Insert missing "newline"? [Y]es [N]o ')
if (#109=='Y') { Ins_Newline( ) }

}

The following single command File-close event macro strips trailing
whitespace (spaces and tabs) from the file.

Replace("|W|>","",BEGIN+ALL)

File Pre-Open and Post-Close Event Macros
The File-pre-open" and File-post-close event macros are designed to facilitate
checking files out of and back into a version control system.

When the File-pre-open event macro runs, the predefined string value
PATHNAME is set to the name of the file about to be opened. The macro can
then shell out to DOS and past this filename to the version control program.
Similarly, when the File-post-close event macro runs, PATHNAME is still
set to the name of the file just closed.

The following (contrived) example illustrates how the File-pre-open and
File-post-close event macros could be used. (The DOS "attrib" command
roughly simulates what a version control program does.) Assume that the
ustartup.vdm file contains the following code to set up these macros:

108 Chapter 3 Programming Guide Event Macros



Reg_Set(112,`
System("attrib -r |(PATHNAME)",OK)

`) //Turn off Read-only attribute
Reg_Set(113,`

System("attrib +r |(PATHNAME)",OK)
`) //Turn Read-only attribute back on
Config(F_E_F_MACRO,1) //Enable file open/close event
macros

With this startup code, VEDIT can edit a file which has the Read-only attribute
set. (We didn't say that this example was a good idea.) After the file is closed
(saved to disk), it is set back to Read-only.

Template Editing Macro
The Template-editing macro is executed immediately after each normal text
character is entered in Visual Mode. It is often used to expand a shorthand
abbreviation, but it can be used for other purposes too.

To expand a shorthand abbreviation, the macro typically examines the last few
characters in the text, including the character just entered, and if recognized,
replaces the shorthand with the full expansion. To reduce incorrect expansions,
the abbreviation must typically be surrounded by "separators" — non-alpha-
numeric characters.

The Match( ) command is typically used to examine the characters in the file.
Alternatively, the internal value Previous_Key( ) can be used to examine the
last few keys pressed.

For example, the following Template-editing macro checks if the cursor
immediately follows the four characters "if (". If true, this is expanded to:

if ( ) {
...

}

The cursor is placed inside the "( )". Note that the Ins_Text( ) command inserts
a multi-line string argument.

Char(-5)
if (Match("|Sif (")==0) {

Char() Del_Char(4)
Ins_Text("if ( ) {
...

}
")

Char(-(12+3*Newline_Chars))
}
else { Char(5) }

Event Macros Chapter 3 Programming Guide 109



Event Macro Programming Guidelines
Since these special event macros execute without being explicitly called, you
must write them with additional care. It is easy to forget that they are executing
automatically and consequently not understand why a simple command macro
(or even keystroke macro) is not working properly.

It is particularly important to avoid conflicts between any text/numeric regis-
ters used by the event macros and other macros. For this reason we highly
recommend that you set aside the following resources for exclusive use by
event macros. This should nearly eliminate such conflicts. It also eliminates
the need for the event macros to save/restore these registers. However, if the
event macros need additional registers, they will have to be saved and restored,
e.g. with the Reg_Push( ) and Reg_Pop( ) commands.

● Text registers 107 through 109.
● Numeric registers 107 through 109.
● "Extra" edit buffer Extra_Buffer_4.

(Windows: buffer 103; DOS: buffer 36).

The following restrictions and guidelines should also be observed:

● Event macros cannot open files. Any required setup should be performed
by the ustartup.vdm macro.

● Event macros should not open and close normal edit buffers. However,
the "extra" edit buffers can be used.

● If an event macro switches between edit buffers and/or windows, it should
switch back to the original buffer/window before returning.

● The Template-editing macro must execute fast enough so that there is little
or no typing delay. If many abbreviations must be checked, the logic of
the macro may need to be optimized. For example, if the last character is
not a "space" the macro can immediately return.

110 Chapter 3 Programming Guide Event Macros



Developing Complex Macros

Writing Macros in Edit Buffers
When developing complex macros, it is often easiest to enter and modify the
macro as a normal file in an edit buffer. The macro can be executed in the edit
buffer; there is no need to first copy it to a text register. However, two
restrictions must be observed:

● The current edit buffer cannot be directly executed as a macro. Attempting
it gives the error message "INVALID EDIT BUFFER OPERATION". To
get around this, simply switch to another edit buffer that does not contain
macro commands (usually the main buffer #1), before performing the
Call( ) command or {MISC, Execute macro} function.

● Although a macro generally can issue a Buf_Switch(b) command to edit
another buffer, it may not issue the command if buffer 'b' is itself an
executing macro. Doing so stops execution and gives the error "MACRO
ERROR IN r" where 'r' is the register/buffer containing the offending
Buf_Switch( ) command.

Since the current edit buffer cannot be directly executed, the following key-
stroke switches to an "extra" buffer and then executes the original buffer. It
then switches back.

This macro is listed in key-mac.lib which details how to add a keystroke
macro to VEDIT. (Remember, it must be added as one line.)

[VISUAL EXIT]
#103=Buf_Num
Buf_Switch(Buf_Free(EXTRA))
Call(#103+BUFFER)
Buf_Switch(#103)

Alternatively, the macro could be added to the {USER} menu by adding the
following three line to "user.mnu". (The commands must be on one line.)

1
Execute current buffer
#103=Buf_Num Buf_Switch(Buf_Free(EXTRA))

Call(#103+BUFFER) Buf_Switch(#103)

Self-Modifying Command Macros
The above restrictions apply, because in general, VEDIT does not allow
self-modifying macros. In other words, a macro may not modify the contents
of its own text register.

A macro in one text register can perform a Call( ) to macros (analogous to
"subroutines") in other text registers. When this happens, the currently execut-
ing text register and the text register which "called" it are both considered to

Developing Complex Macros Chapter 3 Programming Guide 111



be "executing". (Actually, one macro may call a second, which calls a third,
etc., to a depth of 20.) The rule is:

● A macro cannot alter the contents of any text register which is currently
"executing", e.g. itself or a parent macro.

Attempting to violate this rule (see the exceptions below) results in the error
message: "MACRO ERROR IN r" where 'r' is the text register containing the
offending command. When possible, the error message also displays the
offending command.

Two exceptions allow a macro to empty the currently executing text register
or a register containing a parent macro.

Reg_Empty(r,EXTRA) Empty text register 'r', even if it is execut-
ing.

Break_Out(DELETE) Stop all macro execution and empty the
currently executing text register. This is a
convenient way to exit and delete a macro
at the same time.

However, it is common for a macro to create or modify a macro in a text register
which is not currently executing and, after modification, execute it. For
example, a "main" macro will often load "subroutine" macros from disk, or
enter them into text registers with the Reg_Set( ) command.

Chaining to a Command Macro
The Call(r) command performs a "call" to the "subroutine" macro in register
'r'. When the "subroutine" macro finishes, execution returns to any commands
following the Call( ). As an alternative, the Chain(r) command will "chain"
or "jump" to a macro in another register without returning.

Chain(r) Chain (jump) to the macro in register 'r' without
"returning" to the current macro after 'r' is done
executing. Don't follow Chain( ) with other com-
mands — they won't be executed.

The Chain( ) command is used in the supplied compare.vdm and
sort.vdm macros. These macros are first loaded into one text register,
generally register 100. (This can be done with auto-execution.) When exe-
cuted, the macro first sets up all of the needed text registers using the
Reg_Set( ) command. Last, the macro uses the Chain( ) command to "jump"
to the register containing the main macro. Register 100 is then emptied from
the main macro.

The similar Chain_File( ) command first loads a macro from disk into a text
register and then chains to it.

Chain_File(r,"file") Load 'file' into register 'r' and chain (jump) to
it; 'r' can be the currently executing register.
Don't follow Chain_File( ) with other com-
mands — they won't be executed.

112 Chapter 3 Programming Guide Developing Complex Macros



The Chain_File( ) command can be used to load and execute a succession of
start-up macros using only a single text register, typically register 100.

Using the "Extra" Edit Buffers
The Windows version of VEDIT has 99 general purpose edit buffers and 26
"extra" buffers. (The DOS version has 32 edit buffers and four "extra" buffers.)

1 - 99 General purpose edit buffers. Each can be used to edit a file.
100 - 102 "Extra" edit buffers that can be used by any macro. They are

generally not used to edit files, but are used as temporary buffers.
103 "Extra" edit buffer reserved for use by the File-open/close event

macros and the Template-editing macros.
104 - 125 More "Extra" edit buffers that can be used by any macro.

We highly suggest referencing the first four "extra" buffers by their names
Extra_Buffer_1, Extra_Buffer_2, Extra_Buffer_3 and Extra_Buffer_4, or
the abbreviations XBUF1, XBUF2, XBUF3 and XBUF1.

Complex macros often need a few temporary edit buffers for manipulating
blocks of text and performing operations too complex for text registers. You
can use the normal (1 - 99) buffers for this, but the "extra" buffers have some
advantages:

● The extra buffers cannot be accessed from Visual Mode. This protects
them from accidental alteration.

● The extra buffers don't appear in the pick list for {FILE, Buffer switch}.
This reduces confusion when a user is running a complex macro such as
the compiler support.

● The {FILE, Exit} function and Exit( ) command don't prompt whether
these buffers should be saved. (They can't!)

● The extra buffers are available even if a file is open in every normal buffer.

To open a file for editing in an extra buffer, you must use the command form
File_Open(file,FORCE). The "FORCE" option is a safety feature because
these buffers are not automatically saved.

Like all edit buffers, the extra buffers can be executed as command macros via
the command Call(r+BUFFER).

"Locked-in" Macros
When macro execution stops, either normally or due to an error, you are
normally returned to the "COMMAND:" prompt. Alternatively, you can have
the macro in a particular text register executed in place of the "COMMAND:"
prompt. This macro is often some type of a menu. This feature is used in many
of our supplied macros. It permits menu driven macros to be written in which
the user will never see the "COMMAND:" prompt, or even need to know
anything about VEDIT.

Developing Complex Macros Chapter 3 Programming Guide 113



The command Reg_Lock_Macro(r) sets text register 'r' to be the "locking-in"
macro. Only register 0 (zero) cannot be selected. In practice, registers 99, 100
or 101 are often used as the locked-in macro.

Reg_Lock_Macro(99) Lock-in the macro in register 99 to exe-
cute in place of the "COMMAND:"
prompt.

Reg_Lock_Macro(CLEAR) Disable the locked-in macro.

When a locked-in macro is enabled, anytime VEDIT would normally present
the "COMMAND:" prompt, it instead executes the specified text register.

NOTES: A "locked-in" macro must be used with care because it is possible
to get into an infinite loop that will require resetting the computer.
Be sure to provide a method of exiting the macro and/or VEDIT.
Pressing [CANCEL] (<Ctrl-C>) does not break out of a locked-in
macro! It is best to thoroughly test the macro before inserting the
Reg_Lock_Macro( ) command.

To help avoid infinite loops, the locked-in macro is automatically disabled if
syntax errors are encountered in a command macro. The command form
Reg_Lock_Macro(r,EXTRA) disables this safety feature; however you are
unlikely to ever need it.

On-Line Help and Web site
Remember to use the on-line help for more information about a particular
command. It is constantly updated and describes every command and every
command option, including any recent additions that are not in this manual.

It is organized differently from this manual and includes additional topics, and
examples.

In the non-Windows versions of VEDIT, the on-line help file vphelp.hlp
is just a text file; you can easily edit it and print any desired portions.

The "User Conference" on our web site at www.vedit.com has a section
devoted to macro language questions. You can ask questions here which we
or other users will answer.

114 Chapter 3 Programming Guide On-Line Help and Web site



Debugging Macros
Hopefully you will have the opportunity to write your own command macros.
Of course, if you write complex macros, sooner or later you will have to debug
a macro. The debugging of many macros is often obvious, involving just
correcting typing errors or simple syntax errors.

Unfortunately, there will occasionally be macros, especially long and complex
ones, whose flaws are not immediately visible. You know that a macro needs
to be debugged when:

● You receive an error message while a macro is executing.
● There is no error message, but the results of the macro are not what you

intended.

For those macros, VEDIT has several debugging features to help you. The most
useful feature is the ability to single-step through the macro execution, tracing
the commands one by one.

Many errors cause macro execution to stop and return you to the "COM-
MAND:" prompt. It may not be obvious which command caused the error. To
display the most recently executed commands type "??" in response to the
"COMMAND:" prompt. You can also press [CANCEL] (<Ctrl-\>) or
<Ctrl-C> or <Ctrl-Break> to abort a macro and display the most recently
executed commands.

?? Display the most recent commands executed, ending with the last
command executed. Be sure to enter "??" immediately following the
"COMMAND:" prompt. This helps you determine which command
caused the error and see its context. The message "(r)" is also
displayed, where 'r' is the text register containing the most recent
macro commands. If no macro was executing, "( )" is displayed.

Trace Mode
When the "??" command is not enough to determine the flaw in a macro, you
can trace (or single step) through the macro execution. The Trace mode is
enabled with the "?" command. You can place a "?" anywhere within a macro
from where you want to begin tracing execution. (However, the "?" cannot
appear within the arguments of a command.) In programming terminology,
placing a "?" within the macro is called "setting a breakpoint". You can also
set a "conditional breakpoint".

? Sets a breakpoint which enters trace mode when the "?" is
encountered in the macro.

?(expr) Sets a conditional breakpoint — if the expression 'expr' is
TRUE, it enters Trace mode; otherwise the macro continues
running normally. The "(" must immediately follow the "?".
'expr' is usually a conditional expression such as "#1>200" or
"!At_BOF", but it can also be the return value from a com-

Debugging Macros Chapter 3 Programming Guide 115



mand, such as "File_Exist(`output.tmp`)". You can think of
"?(expr)" as a shortcut for "if(expr) { ? }".

Examples are:

?( #1200 ) Enter Trace mode if numeric register 1 has a value
of greater than 200.

?( File_Exist(`output.tmp`) )

Enter Trace mode if the file "output.tmp" exists.

You can trace from the beginning of the macro by entering the following
command at the "COMMAND:" prompt:

? Call(r) Begin tracing (single stepping) from the beginning
of the macro in register 'r'.

When "?" is encountered, Trace mode is turned on and one command at a time
is executed. Before each command is executed, it is displayed on the screen,
followed by a list of each of its evaluated arguments. For each command, you
can control the tracing process by pressing one of the following keys:

<Enter> Process the current command and remain in Trace mode. This
"single steps" through the commands.

<Space> Same as <Enter> unless the current command is a Call( ), in
which case Trace mode is disabled while the "subroutine"
macro is executed; Trace mode is resumed when the macro
terminates. (Any "?" encountered in that macro will be ig-
nored). This allows skipping over a Call( ) command.

U Toggles the special "Update" mode on and off. When on, an
Update( ) command is performed after tracing each com-
mand. This is useful when the same editing window is used
for both displaying the buffer and for tracing. This Update
mode is usually not need if you are tracing with the special
Command Mode window.

V Enters Visual Mode to view the contents of the edit buffer(s).
If desired, you can also make any edit changes. Use
[VISUAL EXIT] (<Ctrl-E>) to return and continue tracing;
use [VISUAL ESCAPE] (<Ctrl-Shift-E> or <Alt-F10>) to
abort and return to the "COMMAND" prompt.
From Visual Mode use {HELP, Text registers} to view the
contents of the registers. If you switch to other edit buffers, be
sure to switch back to the original buffer before returning.

$ Creates the special Command mode window "$" as a 5-line
reserved window at the bottom of the screen, and continue
tracing in that window. Similar to selecting {ESCAPE, Com-
mand mode window}.

<Esc> Turns Trace mode off and resumes normal execution with the
current command.

[CANCEL] (<Ctrl-\> or <Ctrl-C>) Aborts processing and turns the Trace
mode off. Returns to the "COMMAND:" prompt.

116 Chapter 3 Programming Guide Debugging Macros



? Displays the next command line following the command
about to be traced. Each additional "?" displays an additional
line. Lets you preview the upcoming commands.

-OTHER- Any other character is ignored.

Debugging Hints
While it is impossible to predict everything that could go wrong in writing
command macros, here are a few hints to keep in mind when debugging.

● Did you use the assignment "=" when you meant to test for equality with
"= ="? This is a very common mistake in VEDIT (and C). For example,
the statement "if (#10=123) { ... }" is meaningless — it is always true;
perhaps you meant to have "if (#10==123) { ... }".

● Check for missing/incorrect string delimiters. This could allow commands
to be interpreted as text, or text to be interpreted as commands.

● Is the end-of-file condition being handled correctly? Is it a special case?
If it is, are you testing for the end of file properly? The internal value
At_EOF is useful here.

● Do your search operations handle an unsuccessful search properly? Are
the "NOERR" and "ERRBREAK" search options being used correctly?

● Be sure not to confuse If-then (else) statements with loops if you are using
the Break command or the "ERRBREAK" command option.

● Are the "special event" macros interfering? You may want to disable
{CONFIG, Programming, File-type specific config} and {CONFIG,
Programming, Enable template editing} to be sure.

● Are other features set up by thestartup.vdm file interfering? You may
want to invoke VEDIT with the "-ixxx" and "-g" options to disable the
startup.vdm macro and use the default configuration settings.
vpw -ixxx -g

● Remember that the Windows/DOS "newline" consists of the two charac-
ters Carriage-Return and Line-Feed; the UNIX "newline" consists of just
a Line-Feed; the Mac "newline" consists of just a Carriage-Return. The
internal value Newline_Chars should be used when a macro must know
how many characters there are in a "newline".

● Avoid using the braces "{" and "}" in string arguments or comments. See
the topic below.

● Using the incorrect relation operator, such as "Greater Than" in place of
"Greater Than or Equal" can lead to very subtle problems where the macro
"works most of the time".

Debugging Macros Chapter 3 Programming Guide 117



Using "{" and "}" in String Arguments
Since the macro language is interpreted (not compiled), VEDIT must often
scan for the "{" and "}" braces to process flow control statements. For the sake
of speed, a simple scan is made and extra braces that occur in string arguments
or comments confuse the process.

For example, the following macro, while perfectly valid, will confuse VEDIT:

if (#80==0) {
Ins_Text("Inserting a }")

}

This macro confuses VEDIT.

When the if condition is false, VEDIT will attempt to skip the "then" statement
by scanning for the closing "}". Unfortunately, the "}" in the argument for the
Ins_Text( ) command will be used. The following ")" will then give an
"Invalid Command" error.

There are two easy solutions to this problem:

if (#80==0) {
Ins_Text("Inserting a ")
Ins_Char(125)

}

Preferred solution.

if (#80==0) {
//Comment needed to match - {
Ins_Text("Inserting a }")

}

An alternative solution.

In the first and preferred solution, the "}" is removed from the string argument
and inserted into the text with the Ins_Char( ) command. In the second
solution, a comment is used to supply a matching brace that offsets the brace
in the following string argument.

Only unmatched braces in string arguments will cause problems. Therefore,
the following macro will cause no problems:

if (#80==0) {
Ins_Text("Matching { } are OK")

}

This macro causes no trouble.

118 Chapter 3 Programming Guide Debugging Macros



Cleanup/Converting Macros
Most macro language commands have both a full name and an abbreviated
name. The supplied macro cmd-conv can convert a command macro ".vdm"
file between these two forms. Commands with full names are generally easier
to read, while abbreviated names can save memory space, especially for
macros that are part of keystroke macros.

cmd-conv.vdm can also convert (reasonably sized) command macros into
the one-line format needed for keystroke macros.

� To run CMD-CONV from within VEDIT:
1. Open the macro that you wish to convert as a normal file.

If desired, use {FILE, Save as} to save the converted macro under a
different name.

2. Select {MISC, More macros, CMD-CONV}.. The macro then displays
a menu of the operations it can perform:

VEDIT MACRO COMMAND CONVERSION

[1] Convert Full Commands To Full Commands; Just clean up
[2] Convert Full Commands To Abbreviated Commands
[3] Convert Abbreviated Commands To Full Commands
[4] Convert Macro To A One Line Keystroke Macro
[5] EXIT, Do Not Convert

Item "[1]" cleans up a VEDIT macro by converting all commands to a uniform
syntax with only the first letter of each command word capitalized.

Item "[2]" converts all commands to their shortest possible abbreviation. Item
"[3]" converts all abbreviated commands to their full name.

Item "[4]" converts a command macro into a one line macro that can be used
as a keystroke macro. It precedes the macro with "[VISUAL EXIT]" and strips
all comments and unneeded whitespace to save memory space. It also converts
all commands to their shortest possible abbreviation. This converted macro
can then be pasted into a VEDIT.KEY file for loading as a keystroke macro.

Although VEDIT supports keystroke macros that are individually up to 4000
characters long, we don't recommend keystroke macros longer than about 500
bytes. A keystroke macro can use Call_File( ) to call larger macros.

Notes: The topic "VEDIT.KEY Layout File" in Chapter 8 of the VEDIT
User's Manual describes how to create and edit a VEDIT.KEY file.

cmd-conv.vdm should not be considered foolproof. Be sure to
keep a backup of any macro that you convert until you are sure that
it was correctly converted.

We would like to thank Peter Freed of Data Base Management
Systems, Inc. for writing cmd-conv.vdm and sharing it with us.

Cleanup/Converting Macros Chapter 3 Programming Guide 119



Preserving Your Files
VEDIT is designed to make it as unlikely as possible for you to accidentally
lose a file or your edited text. However, nothing is foolproof. The best
safeguard is to save your edited file to disk at least once an hour using {FILE,
Save} or {FILE, Save all} and backing up your work at the end of each day.

You can have VEDIT automatically perform {FILE, Save all} for you on a
regular basis by setting CONFIG, File handling, Auto-save interval} to the
desired interval in minutes. We highly recommend using this feature.

You should use the following commands with additional care:

● The {MISC, DOS shell} function and equivalent System( ) command let
you enter DOS for as long as you wish. However, it does not save the files
you are currently editing. Therefore, be sure to return to VEDIT (with the
DOS command "exit") to save your files. It is easy to forget that you are
still in VEDIT and turn the computer off — losing your edit changes. As
a safeguard, you should save your files using {FILE, Save all} or the
equivalent command File_Save(ALL) before entering DOS.

● The Buf_Empty( ) and Buf_Quit commands abandon the edit changes
you have just made. They are very useful, but you don't want to use them
when you really wanted to save your changes. These commands request
confirmation before abandoning your text. Also, they do not change or
erase the original files on disk.

● The File_Delete( ) command deletes files similar to the DOS "DEL"
command. File_Delete( ) is actually safer to use since it displays the
filenames about to be erased and requests confirmation.

● The rarely used File_Truncate( ) command is primarily intended for
splitting large files into smaller ones. File_Truncate is almost always
preceded by File_Write( ). Don't use File_Truncate( ) to quit or save
your editing. This command requests confirmation.

As an additional safeguard, VEDIT normally creates a "backup" when you
modify an existing file. The backup can be created by either copying the
original file to a backup directory, e.g. "c:\vedit\backup", or by renaming the
original file with a filename extension of ".BAK" in the same directory.

Therefore, if you accidentally erase an important file, you will still have the
backup (unless you explicitly erased it). To use the backup, just rename it to
the desired filename; it is best not to directly edit a ".BAK" file.

If desired, you can disable VEDIT's "backup" feature by setting {CONFIG,
File handling, Enable backup files} to "0". However, we highly recommend
that you keep the "backup" feature enabled.

120 Chapter 3 Programming Guide Preserving Your Files



Chapter 4

Command Reference

Alert( ) / Sound(n,k)
Options: EXTRA

Usage: Alert( ) Sound(400,500)

Description: Alert( ) sounds a "beep" on the IBM PC speaker. The command can
be used inside a command macro to alert the user to an upcoming
prompt, an error or other special condition.

Sound(n,k) generates a sound (tone) of frequency 'n' hertz and
duration 'k' milliseconds. Sound(n,k,EXTRA) adds 30 milliseconds
of silence after the sound. (DOS and Windows 95/98 only)

Notes: Alert( ) can be forced silent by setting {CONFIG, Misc, Beep level}
or Config(U_BEEP_LVL) to "0".

Examples: Alert( ) Create a "beep" on the IBM PC speaker.

Sound(262,1000) Plays the note "middle C" for one second.

APPH App_Height (Windows only)
APPW App_Width
APPX App_X_Org
APPY App_Y_Org
Usage: Internal Values

Description: App_Height and App_Width return the size of the VEDIT applica-
tion (program) window in pixels.

App_X_Org and App_Y_Org return the horizontal and vertical
pixel position of the upper left-hand corner of the VEDIT application
(program) window. The upper left corner of the screen is 0,0.

See Also: Commands: Desktop_Height, Desktop_Width, Win_Height,
Win_Width, Win_X_Org, Win_Y_Org, Win_Move( )

Examples: Win_Move(APP,App_X_Org+10,App_Y_Org,APPW,APPH)

Move the entire VEDIT program to the right
by 10 pixels.

Chapter 4 Command Reference 121



At_BOB / At_BOF / At_BOL
At_EOB / At_EOF / At_EOL

Usage: Internal Values

Description: At_BOB is the beginning-of-buffer flag. It returns 1 if the edit
position is at the beginning of the portion of the file currently in
memory. Otherwise, it returns 0.

At_BOF is the beginning-of-file flag. It returns 1 if the edit position
is at the beginning of the file. Otherwise, it returns 0.

At_BOL is the beginning-of-line flag. It returns 1 if the edit position
is at the beginning of a line (or record). Otherwise, it returns 0.

At_EOB is the end-of-buffer flag. It returns 1 if the edit position is
at the end of the portion of the file currently in memory. Otherwise,
it returns 0.

At_EOF is the end-of-file flag. It returns 1 if the edit position is at
the end of the file. Otherwise, it returns 0.

At_EOL is the end-of-line flag. It returns 1 if the edit position is at
the end of a line (or record) or at the end of the file. Otherwise, it
returns 0.

Return: Always returns a value of 1 or 0 (1 = TRUE, 0 = FALSE).

Examples: if (At_EOF) {Break_Out}

Test if the edit position is at the end-of-file. If it is, stop
the macro and return to Command/Visual mode.

Atoi(r)
NER Num_Eval_Reg(r)
Options: SUPPRESS

Usage: #11 = Atoi(10)

Description: Atoi(r) evaluates the numeric expression in text register 'r' and returns
its value. It performs an ASCII to Integer conversion.

The command evaluates not only simple integers, but also numeric
expressions. For example, if text register 9 contains the text
"123+45/5", then Atoi(9) will return 132.

Atoi(r,SUPPRESS) evaluates only the first unsigned integer. For
example, if text register 9 contains the text "123+45/5", then
Atoi(9,SUPPRESS) will return 123.

Return: Returns the value of the numeric expression evaluated.
Chars_Matched is set to the number of characters in the expression.

Notes: Atoi( ) and Num_Eval_Reg( ) are two names for the same command.

See Also: Commands: Itoa( ), Num_Eval( ), Name_Dir( )

122 Chapter 4 Command Reference



Examples: Get_Input(10,"Enter number: ")
#11 = Atoi(10)

Prompt the user to enter a number; convert it from
ASCII and place it in numeric register 11.

BOF Begin_Of_File( )
BOL Begin_Of_Line( )
Options: LOCAL

Usage: Begin_Of_File( ) Begin_Of_File(LOCAL) BOL( )

Description: Begin_Of_File( ) moves the edit position to the beginning of the file.
Begin_Of_File(LOCAL) only moves the edit position to the begin-
ning of the portion of the file currently in memory.

Begin_Of_Line( ) moves the edit position to the beginning of the
current line (or record). If the edit position is already at the beginning
of the line, the command is ignored.

Notes: {GOTO, Beginning of File} is identical to Begin_Of_File( ).

See Also: Commands: File_Save( ), End_Of_File( )
Topic: Backward File Buffering

Examples: Begin_Of_File(LOCAL)
Type(12)

Move the edit position to the begin-
ning of the edit buffer and type the
first 12 lines.

BB / BE Block_Begin(n) / Block_End(n)
CB / CE Column_Begin(n) / Column_End(n)
Options: CLEAR, EXTRA

Usage: Block_Begin(123) CE(Cur_Pos)

Description: Block_Begin(n) sets the block-begin marker to file position 'n'.

Block_End(n) sets the block-end marker to file position 'n'.

Block_End(CLEAR) clears the block-end marker while
Block_Begin(CLEAR) clears BOTH the begin and end markers.
These are the same block markers used in Visual Mode by the
{BLOCK} functions.

Block_Begin(CLEAR+EXTRA) only clears the markers if
{Config, Emulation, Block marker emulation mode} or
Config(E_BM_MODE) is set to "0". Otherwise, the command is
ignored and the block markers are unchanged.

Column_Begin(n) sets the block-begin marker's column to 'n'. Simi-
larly, Column_End(n) sets the block-end marker's column to 'n'.

Return: Without an argument, Block_Begin and Block_End return the file
position (offset) of the current block markers, or -1 if not set.

Chapter 4 Command Reference 123



Column_Begin and Column_End return the column position of the
current block markers, or 0 if not set.

See Also: Commands: Set_Marker( )
{BLOCK} menu
Topics: "Block Operations" in Chapter 3

Examples: Block_Begin(123) Set the block-begin marker at the 124th
character in the file. (Counting starts at 0).

BE(Cur_Pos) Set the block-end marker at the current
character.

BCP Block_Copy(p,q)
BMV Block_Move(p,q)
Options: Listed below

Usage: Block_Copy(123,456) Block_Move(BB,BE,COLUMN)

Description: Block_Copy(p,q) copies a block of text in the same buffer (file) to
the current edit position. The block consists of the text starting with
the 'p'th character in the file up to, but not including the 'q'th character.
The edit position is advanced past the inserted text.

Block_Copy(m) duplicates the following 'm' lines, while
Block_Copy(-m) duplicates the preceding 'm' lines.

Block_Move( ) is similar, but also deletes the original block of text
after it is copied.

Block_Copy/Move Command Options:

COLUMN Performs a columnar block copy/move. 'p' and 'q' define
the corners of the block.

COLSET, c1, c2 Perform a columnar block copy/move. 'p' and 'q' define the
first and last lines of the block, while 'c1' and 'c2' define
the first and last columns of the block.

l1, l2,LINESET Copy the block consisting of lines 'l1' through 'l2' (inclu-
sive) to the edit position.

LINESET+
COLSET

Copy the columnar block consisting of lines 'p' through 'q'
and columns 'c1' through 'c2' to the edit position.

BEGIN Forces the edit position to remain at the beginning of the
block of text that was copied/moved; otherwise it ad-
vances past the end of the block.

EXTRA Copy the block; the block and column markers are either
reset, maintained or moved to the new block, depending
upon the setting of {CONFIG, Emulation, Block
marker emulation mode}. Similar to [BLOCK COPY].

124 Chapter 4 Command Reference



OVERWRITE Overwrite the characters at the edit position with the block
of text being copied. The edit position is advanced past the
copied block.

DELETE Block_Copy(p,q,DELETE) is identical to
Block_Move(p,q).

DELETE+FILL Copy (move) the block; then replace (fill) the original
block with spaces.

Notes: Block_Copy(p,q) allows copying text without using a text register.
It is similar to the {BLOCK, Copy to cursor} function.

See Also: Commands: Reg_Copy( ), Reg_Ins( )
Topics: "Block Operations" in Chapter 3

Examples: Block_Copy(123,456)

Copy the block of text between the 123rd and 456th
positions in the file to the current edit position.

Block_Copy(BB,BE,COLUMN)
Copy the columnar block of text between the block-begin
and block-end markers to the edit position. The file posi-
tion of the block-begin and block-end markers specify the
"corners" of the columnar block.

Block_Copy(100,200,LINESET+COLSET,20,60)
Copy the columnar block consisting of lines 100 through
200 and columns 20 through 60 to the edit position.

BE Block_End - See Block_Begin

BFL Block_Fill(ch,p,q)
Options: COLUMN, COLSET, INSERT, LINESET, RESET

Usage: Block_Fill(' ',123,456) Block_Fill('x',BB,BE,COLUMN)

Description: Block_Fill(ch,p,q) overwrites the block of text between file positions
'p' and 'q' with character 'ch'. The edit position is not moved.

If 'ch' is a space and Config(E_EXP_TAB) is set to "0" - "3", the
filling is done with the optimum number of tabs and spaces. Other-
wise, only spaces are used.

The command options "COLUMN", "COLSET" and "LINESET"
specify a columnar or line-range block for filling.

Other Block_Fill Command Options:

NORESTORE The edit position is moved just past the end of the block.

RESET The Block_Begin and Block_End markers are cleared.

INSERT Insert 'q' - 'p' instances of 'ch' at file position 'p'. This inserts
a block consisting of fill characters.

Chapter 4 Command Reference 125



INSERT+
COLUMN

Insert a columnar block consisting of fill characters 'ch'.
File positions 'p' and 'q' define the "corners" of the colum-
nar block to be inserted. This is equivalent to {BLOCK,
Edit/translate, Insert empty block}.

See Also: Commands: Block_Copy( ), Reg_Copy( )
Topics: "Block Operations" in Chapter 3

Examples: Block_Fill(' ',20,30,LINESET+COLSET,9,16)

Blank out columns nine through sixteen on lines twenty
through thirty (inclusive).

BM Block_Mode
Options: CLEAR, COLUMN, LINEBLOCK

Usage: Block_Mode Block_Mode(CLEAR) Block_Mode(COLUMN)

Description: Block_Mode returns the type of block mode set for Visual Mode:
0="stream" mode, COLUMN="column" mode, LINEBLOCK=
"line" mode.

Block_Mode(CLEAR) sets "stream" mode for blocks in Visual
Mode. Block_Mode(COLUMN) sets "column" mode;
Block_Mode(LINEBLOCK) sets "line" mode.

Notes: Block_Mode does not affect how blocks are processed by macro
commands, it only affects how blocks are highlighted and processed
in Visual Mode. Its primary use is inside keystroke macros.

BMV Block_Move( ) - See Block_Copy( )

BSA Block_Save_As("file",p,q)
Options: COLUMN, COLSET, LINESET, OK

Usage: Block_Save_As("file1",0,Cur_Pos)
Block_Save_As("file2",#10,#20,COLUMN)

Description: Block_Save_As("file",p,q) copies the block of text starting with the
'p'th character up to, but not including, the 'q'th character to the file.
Counting starts with 0. The text in the edit buffer is unchanged.

If 'file' already exists, a confirmation prompt to overwrite the file is
given; Block_Save_As(...,OK) skips the confirmation prompt.

The command forms Block_Save_As("file",p,q,COLUMN) and
Block_Save_As("file",p,q, COLSET,c1,c2) copy columnar blocks
to the file. The operations of these options are explained in the
Reg_Copy_Block( ) command. During the copy, Tab characters are
expanded to spaces and short lines are padded with spaces — all lines
in the resulting file will have the same length.

Use the closely related Write_Line( ) to write lines of text to a file.

126 Chapter 4 Command Reference



Notes: Although VEDIT's text registers are limited in size (64K or 256K),
Block_Save_As( ) can write blocks of any size to disk. These blocks
can then be inserted into the same or another file with Ins_File( ). In
this way, you can use files as unlimited size "text registers".

See Also: Commands: Clip_Copy_Block( ), Ins_File( ),
Reg_Copy( ), Reg_Copy_Block( ), Write_Block( )
Topics: "Block Operations" in Chapter 3

Examples: Block_Save_As("part1",0,Cur_Pos)

Write the block from the beginning of the file up to the
current edit position to the file "part1".

BOL_Pos
EOL_Pos

Usage: Internal values

Description: BOL_Pos returns the file position at the beginning of the current line.
EOL_Pos returns the file position at the end of the current line, just
before the newline character(s).

These internal values make is easier to perform block operations on
the current line.

See Also: Commands: Begin_Of_Line(), End_Of_Line(), Cur_Pos
"Block Operations - Determining File Position" in Chapter 3.

Examples: Reg_Copy_Block(9,BOL_Pos,EOL_Pos)

Copy the current line without the final newline
character(s) to text register 9; the edit position can
be anywhere on the line.

Break
Break_Out

Options: EXTRA

Usage: if (Error_Flag) { Break } if (Error_Flag) { Break_Out }

Description: Break exits the current While, Do-while, For, or Repeat loop and
continues with any commands following the loop's ending "}".
Break only exits the innermost enclosing loop. In the case of nested
loops, any outer loops will continue executing. If there is no enclosing
loop, it does nothing. If-then (else) statements do not effect Break.

Break_Out stops all command macro execution and returns to the
"COMMAND:" prompt; if a "locked-in" macro is enabled, this macro
executes in place of the "COMMAND:" prompt. (Break_Out inter-
nally performs a Visual_Macro(CLEAR) to disable auto-returning
to Visual Mode.)

Chapter 4 Command Reference 127



Break_Out(EXTRA) stops all macro execution and returns to Vis-
ual Mode. (It internally performs a Visual_Macro(8) to force a return
to Visual Mode.)

Break_Out(EXTRA+CONFIRM) returns to Visual Mode with a
"Press any key to continue" prompt if the window contains Command
Mode output. (It internally performs a Visual_Macro(8+4).)
Break_Out(DELETE) stops all macro execution and empties the
currently executing text register. This is a convenient way to exit and
delete a macro at the same time.

See Also: Commands: Return( ), Continue, Goto, Visual_Macro( )
Topics: "Flow Control - Break-out Commands" in Chapter 3

Browse_Mode(n)
Options: CLEAR, SET

Usage: Browse_Mode(SET) Browse_Mode

Description: Browse_Mode(SET) enables browse mode, thereby not allowing
any modifications of the file in the current edit buffer.
Browse_Mode(CLEAR) disables browse mode (when possible),
allowing full editing operation.

Browse_Mode, without parameters, only returns the value of the
browse mode switch in the current edit buffer.

Return: Returns 0 (zero) if the current edit buffer is not in browse mode;
otherwise, the following masks (in hexadecimal) indicate why the
buffer is in browse mode:

80H: "-b" invocation option
20H: File currently open in browse-only mode
10H: Disk currently open in browse-only mode
08H: File has read-only attribute
02H: File was opened with File_Open("file",BROWSE)
01H: {FILE, Browse mode} or Browse_Mode(SET) enabled

BC Buf_Close
Options: ALL, CONFIRM, DELETE, EVENT, MAINBUF, NOEVENT,

NOMSG

Usage: Buf_Close( ) BC(NOMSG) Buf_Close(ALL)

Description: Buf_Close( ) saves and closes the file being edited in the current edit
buffer. It also exits the current edit buffer, unless it is the last open
buffer (at least one buffer is always open). If the edit buffer has been
altered, but has no assigned filename, it prompts for one.

Buf_Close(ALL) saves and closes all files/buffers being edited. Use
this with caution because it only saves those edit buffers that have

128 Chapter 4 Command Reference



assigned filenames. It also saves all buffers/files without prompting
before each is saved.

Buf_Close( ) normally gives the message "Saving: filename"; this
message can be suppressed with Buf_Close(NOMSG).
Buf_Close(CONFIRM) prompts whether a modified buffer is to be
saved. If the user selects [No-abandon], it performs a Buf_Quit( )
instead.

Buf_Close(DELETE) deletes all windows attached to the file(s)
being closed.

If Config(F_E_F_MACRO,1) is enabled, the "File Close" and "File
Post-Close" event macros will also run. Buf_Close(NOEVENT)
suppresses the file-close event macros, even if enabled.
Buf_Close(EVENT) executes the file-close event macros, even if
disabled.

When editing multiple files, Buf_Close( ) will switch to the next open
edit buffer. However, in practice it may be difficult to predict which
buffer this will be. Follow the Buf_Close( ) command with
Buf_Switch( ) to switch to the desired edit buffer.
Buf_Close(MAINBUF) always switches to the main edit buffer.

Notes: Buf_Close(CONFIRM+DELETE) is equivalent to the {FILE,
Close} function.

An unaltered file is not rewritten to disk.

While a "File Open" event macro is commonly used, "File Close"
event macros are rarely used.

The error "NO DISK SPACE" results if there is insufficient disk space
to save the entire file.

See Also: Commands: File_Close( ), File_Save( ), File_Open( ), Buf_Quit( ),
File_Open_Write( ), Buf_Empty( ), Is_Altered, Is_Open_Write
{FILE} menu
Topics: "Event Macros" in Chapter 3

Examples: File_Open("file.txt")
...
Buf_Close( )

A file is opened for editing. Any desired
editing is performed. The modified file is
then saved to disk.

BY Buf_Empty
FQ File_Quit
Options: EVENT, OK, NOEVENT

Usage: Buf_Empty( ) BE(OK)

Description: Buf_Empty( ) quits (abandons) the current file, without saving any
changes. However, unlike Buf_Quit( ), it stays in the same edit buffer
and is often followed by a File_Open( ) command to edit a new file.

Chapter 4 Command Reference 129



You are prompted for confirmation to abandon the file if it was
altered. Buf_Empty(OK) skips the confirmation prompt.

If Config(F_E_F_MACRO,1) is enabled and a file is open in the
buffer, the File-close event macro in T-Reg 111 is executed just
before the file is abandoned and closed. Buf_Empty(NOEVENT)
suppresses the file-close event macro, even if enabled.
Buf_Empty(EVENT) executes the file-close event macro, even if
disabled.

Buf_Empty( ) and File_Quit( ) are different names for the same
command. If a file is open in the buffer, it is more intuitive to use
File_Quit( ); if the buffer is only being uses as a scratchpad, it is more
intuitive to use Buf_Empty( ). However, you can use either com-
mand.

Notes: The notes for the Buf_Quit( ) command apply.

See Also: Commands: Buf_Close( ), Buf_Quit( ), File_Close( )

BF Buf_Free
BX Buf_Next
BN Buf_Num
BNA Buf_Num_Altered
BNW Buf_Num_Window
BPV Buf_Previous
BSTAT Buf_Status(r)
BT Buf_Total
BW Buf_Window
BWN Buf_Win_Next
BWP Buf_Win_Previous
Usage: Internal Values

Description: Buf_Free returns the ID number of the next available free edit buffer
in the range 1 - 99. Buf_Free(EXTRA) returns the ID number of the
next free "extra" buffer in the range 100 - 125. Returns "-1" if none
available.

Buf_Next returns the ID number of the next open edit buffer (which
is not currently executing as a command macro). Does not include
the "extra" buffers 100 thru 125. Returns the current buffer's ID
number if only one buffer is open.

Buf_Num returns the ID number of the current edit buffer: 1 - 125.

Buf_Num_Altered returns the total number of altered edit buffers.
It includes edit buffers that have no assigned filename. It does not
include any "extra" buffers 100 thru 125.

130 Chapter 4 Command Reference



Buf_Num_Window returns the number of windows attached to the
current edit buffer.

Buf_Previous returns the ID number of the previous open edit buffer
(which is not currently executing as a command macro). Does not
include the "extra" buffers 100 thru 125. Returns the current buffer's
ID number if only one buffer is open.

Buf_Status(r) returns the status of edit buffer 'r':
-1
0
'n'

'r' is not open
r' is open, but is not attached to any window
'r' is attached to window 'n'

Buf_Total returns the total number of open edit buffers. It includes
edit buffers that have no assigned filename. It does not include the
"extra" buffers 100 thru 125.

Buf_Window returns the current edit buffer's primary attached win-
dow ID number. This is the window in which the current buffer is
edited when in Visual Mode. Returns 0 if the buffer is not attached
to any window.

Buf_Win_Next returns the ID number of the next window attached
to the current edit buffer. If only one window is attached, it returns
the ID number of the primary window. See also Win_Next.
Buf_Win_Previous returns the ID number of the previous window
attached to the current edit buffer. If only one window is attached, it
returns the ID number of the primary window. See also
Win_Previous.

Examples: Buf_Switch(Buf_Next) Switch to the next open edit buffer.

Win_Switch(Buf_Win_Next,ATTACH)
Switch to the next window attached
to the current edit buffer and make it
the primary window.

BQ Buf_Quit
Options: ALL, DELETE, MAINBUF, OK

Usage: Buf_Quit BQ(OK) Buf_Quit(ALL)

Description: Buf_Quit( ) quits (abandons) the current file without saving any
changes. It also closes the edit buffer (except for the main edit buffer).
You are prompted for confirmation to abandon the file if it was
altered. Buf_Quit(OK) skips the confirmation prompt.
Buf_Quit(ALL) quits all edit buffers (abandons all files) after
prompting for confirmation. Buf_Quit(ALL+OK) skips the confir-
mation to abandon all files; use with caution!

When editing multiple files, Buf_Quit( ) will switch to the next edit
buffer. However, in practice it may be difficult to predict which buffer
this will be. Follow the Buf_Quit( ) command with Buf_Switch( )

Chapter 4 Command Reference 131



to switch to the desired edit buffer. Buf_Quit(MAINBUF) always
switches to the main edit buffer.

Buf_Quit(DELETE) also deletes all windows attached to the edit
buffer being closed.

Notes: Buf_Quit( ) is often used after examining a file that you don't want
to change. In this case it is safer to quit, rather than exit with
Buf_Close( ), in case you accidentally did change something.

Any existing backup (".BAK") file with the same filename as the
output file will have been deleted if any characters were written to
the (now abandoned) output file.

If you quit with a Buf_Quit( ) sometime after a File_Save( ) com-
mand, you will only abandon those changes made after the
File_Save( ) command. Those changes made before the File_Save( )
command will have already been saved on disk.

See Also: Commands: File_Save( ), Buf_Empty( )

Examples: File_Open("savefile.1")
...
Buf_Quit( )

You only want to examine the file
without changing it. When done, you
quit to leave the file unchanged.

BSTAT Buf_Status( ) - See Buf_Free

BS Buf_Switch(r)
Options: ATTACH, EVENT, EXTRA, LOCAL, NOMSG, SUPPRESS

Usage: Buf_Switch(4) BS(20,SUPPRESS) Buf_Switch(#1)

Description: Buf_Switch(r) switches to edit buffer 'r' and the file which may be
open in 'r'. If buffer 'r' is not already open, it will be opened as an
empty buffer.

Buf_Switch(r,ATTACH) switches to edit buffer 'r' and creates a new
overlapping window if the buffer is not already attached to a window.
The window is only created if {CONFIG, Screen display,
Auto-create windows for buffers} is enabled.

Normally, with sufficient memory, each edit buffer has its own
memory segment(s). However, with limited memory, buffers may
share a memory segment. When switching from one buffer to another
in the same memory segment, the old edit buffer is reduced in size to
approximately 8 Kbytes. Buf_Switch (r,LOCAL) switches to edit
buffer 'r' without performing any file buffering.

Buf_Switch(r,SUPPRESS) prevents VEDIT from grabbing more
memory when opening a new buffer. This form should be used when
the edit buffer is used for purposes other than editing an entire file.

Buf_Switch(r,EXTRA) causes VEDIT to grab additional memory
when switching to a new "Extra" buffer (33 - 36). Otherwise, "extra"
buffers share existing memory.

132 Chapter 4 Command Reference



Buf_Switch(r) executed from the "COMMAND:" prompt displays
the message "Editing buffer r"; Buf_Switch(r, NOMSG) suppresses
the message. However, when executed from within a command
macro, the message is automatically suppressed.

Buf_Switch(r,EVENT) executes the special "Buffer switch event
macro" in register 114 immediately after the switch is made.

Return: Returns the ID number of the new/current edit buffer.

Notes: Buf_Switch(r) only switches to a different edit buffer; it does not
itself switch to a different window although Visual Mode will use a
different window for the new edit buffer. Use the Win_Switch( )
command to switch to a different window; you may also need to use
the Win_Attach( ) command to attach a window to an edit buffer.

See Also: Commands: Mem_Free( ), Win_Switch( ), Win_Attach( ),
Buf_Num, Buf_Window
"Multiple File Editing" in Chapter 2, "Event Macros" in Chapter 3

Examples: Buf_Switch(4) Switch to edit buffer 4.

Buf_Switch(1,LOCAL) Switch to edit buffer1 without per-
forming any file buffering.

Buf_Switch(#98) Switch to the edit buffer specified by
the value in numeric register 98.

BSTAT Buf_Status - See Buf_Free
BT Buf_Total - See Buf_Free
BW Buf_Window - See Buf_Free

Cab_Extract("file.cab")
Usage: Cab_Extract("a:\vp-fils.cab")

Description: Cab_Extract("file.cab") extract all compressed files in the .CAB
'file.cab' into the current directory. .CAB files are similar to ".ZIP"
files. The installation disks of most Windows programs use .CAB
files as a way of compressing and organizing the files to be installed.
This command is used by the installw.vdm macro to install the
VEDIT files.

Notes: Although 'file.cab' can be a full pathname, the files are expanded into
the current directory. If necessary, precede this command with
Chdir( ) to change to the desired directory.

Examples: Chdir("c:\vedit")
Cab_Extract("a:\vp-fils.cab")

Extract the files in the floppy
disk file vp-fils.cab into
the "c:\vedit" directory.

Chapter 4 Command Reference 133



Call(r,"label")
Usage: Call(4) Call(20+BUFFER) Call("SEARCH")

Description: Call(r) executes the contents of text register 'r' as a command macro,
starting at the beginning of the register. A macro may invoke another
macro, which in turn may invoke another, up to a nesting depth of 25.
Call(r +BUFFER) allows edit buffer 'r' to be executed as a macro.

Call(r,"label") begins macro execution at the 'label' instead of at the
beginning of register 'r'.
Call("label") executes the "subroutine" macro 'label' in the current
text register or edit buffer.

The error "CANNOT MODIFY EXECUTING MACRO" results if a
macro attempts to change a text register that contains an executing
command macro.

Return: Always returns a value of 1. Use Return_Value to get the return
value of any macro that returned with a Return(n) statement.

See Also: Commands: Reg_Set( ), Chain( ), Reg_Load( ), Reg_Save( ),
Call_File( ), Macro_Num
Topics: "Command Macros" in Chapter 3
{MISC, Execute Macro} function

CALLF Call_File(r,"file")
Usage: Call_File(10,"print.vdm") CALLF(1,"compare")

Description: Call_File(r,"file") loads the file 'file' into text register 'r' and executes
it immediately as a command macro. Call_File(r,"file" ) is equiva-
lent to the commands Reg_Load(r,"file",EXTRA) and Call(r).
If the file is not found in the current directory, VEDIT will look for
it first in the User Macro Directory, then in the VEDIT Macro
Directory, and last in the VEDIT Home Directory.

The default extension ".VDM" may be omitted. Thus, Call_File(10,
"compare") executes the compare.vdmmacro. To load a file that
does not have an extension, you MUST include the "." (period). For
example, the command to load/execute the file filer in register 4
is Call_File(4,"filer.")

Return: Always returns a value of 1. Use Return_Value to get the return
value of any macro that returned with a Return(n) statement.

Notes: Call_File(r,"file") is similar to {MISC, Load/Execute Macro}.

See Also: Commands: Call( ), Chain_File( ), Reg_Load( )
Topics: "Command Macros" in Chapter 3

Examples: Call_File(10,"print") Load the print formatter macro
print.vdm into text register 10 and
execute it.

134 Chapter 4 Command Reference



CLB Case_Lower_Block(p,q)
CSB Case_Switch_Block(p,q)
CUB Case_Upper_Block(p,q)
Options: COLUMN, COLSET, LINESET, NORESTORE, RESET

Usage: Case_Lower_Block(BB,BE)
Case_Switch_Block(BB,BE,COLSET,CB,CE)

Description: Case_Lower_Block(p,q) converts all letters to lower case in the
block of text between file positions 'p' and 'q'. Non-letter characters
are not changed. The edit position is not changed.

Case_Switch_Block(p,q) switches the case of all letter.

Case_Upper_Block(p,q) converts all letters to upper case.

Case_Lower_Block(p,q,NORESTORE) moves the edit position
past the end of the converted block.

Case_Lower_Block(p,q,RESET) clears the Block_Begin and
Block_End markers (if they are set).

The command options "COLUMN", "COLSET" and "LINESET"
specify a columnar or line-range block for conversion.

See Also: Commands: Block_Copy( ), Reg_Copy( )
Topics: "Block Operations" in Chapter 3

Examples: Case_Lower_Block(0,File_Size)

Convert all letters in the current file (buffer) to lower case.

Chain(r)
Usage: Chain(10)

Description: Chain(r) jumps to execute text register 'r' as a command macro. It
differs from the Call( ) command in that command execution does
not return to the macro with the Chain( ) command. Therefore, there
should be no commands following the Chain( ) command because
they will never be executed. The text register with the Chain( )
command can later be overwritten or emptied.

See Also: Commands: Call( ), Reg_Empty( ), Chain_File( )
Topics: "Command Macros" in Chapter 2

Examples: Chain(10) "Jump" to execute text register 10 as a
command macro.

CHAINF Chain_File(r,"file")
Usage: Chain_File(20,"trans2.vdm")

Description: Chain_File(r,"file") loads 'file' into text register 'r' and then jumps
(chains) to 'r' and executes it as a command macro. It does not return

Chapter 4 Command Reference 135



to the register issuing the Chain_File(r,"file") command. No com-
mands should follow Chain_File(r,"file") because they will not be
executed.

If the file is not found in the current directory, VEDIT will look for
it first in the User Macro Directory, then in the VEDIT Macro
Directory, and last in the VEDIT Home Directory.

Chain_File(r,"file") is a special combination of the Reg_Load( )
and Chain( ) commands because 'r' can be the currently executing
text register.

Notes: Chain_File(r,"file") is a convenient way for a macro to chain to other
macros without needing additional text registers.

Examples: Chain_File(100,"trans2.vdm") Load the file TRANS2.VDM
into register 100 and execute it
as a command macro.

C Char(m)
Usage: Char(12) Char(-4) C(12000)

Description: Char(m) moves the edit position by 'm' characters. Movement is
forward if 'm' is positive or backward if 'm' is negative.

Notes: No error is given if Char(m) attempts to go beyond the limits of the
edit buffer or file.

Remember that every line normally ends in a "newline" which takes
up one (UNIX/Macintosh) or two (Windows/DOS) character posi-
tions. The internal value Newline_Chars returns the number of
characters in the "newline". With Windows/DOS text files, the "newl-
ine" is two characters (Carriage-Return and Line-Feed) and
Newline_Chars has a value of "2".

See Also: Commands: Chars_Matched(), Del_Char( ), Line( ), Goto_Pos( )

Examples: if (At_EOL) {
Char(Newline_Chars)

} else { Char( ) }

Simulate [CURSOR RIGHT] by
treating the "newline" as a single
character, even if it is two.

CD Char_Dump(n)
TC Type_Char(n)
Options: COUNT, NOCR

Usage: Char_Dump(132) CD(#10,NOCR) Char_Dump(Buf_Num)
Type_Char(205,COUNT,25)

Description: Char_Dump(n) dumps (displays) the character with ASCII value 'n'
followed by a "newline". Control and graphics characters are not
expanded; they are displayed literally.

Char_Dump(n,NOCR) suppresses the "newline".

136 Chapter 4 Command Reference



Type_Char(n) displays the character with ASCII value 'n'. Control
and graphics characters are displayed according to the window's
current display mode.

Type_Char(n,COUNT,x) displays the character 'x' times.

Notes: 'n' is often a numeric variable such as "#x".

Type_Char( ) is similar to Char_Dump(n,NOCR) and is usually
the preferred command. It is equivalent when the window's display
mode is "0".

See Also: Commands: Reg_Type( ), Out_OS( ), Message( )
Topics: "Screen Display & Keyboard Characters" in Chapter 4 of the
VEDIT User's Manual

Examples: Char_Dump(#1) Displays the character whose value is stored
in numeric register 1. It is followed by a
"newline".

Type_Char(205,COUNT,25)
Uses the IBM PC box drawing character to
display a double-line 25 columns wide.

CMAT Chars_Matched
Usage: Internal Value

Description: Chars_Matched returns the number of characters matched by
successful Search( ), Replace( ), and Match( ) commands. It also
returns the number of characters matched by Compare( ) and
Reg_Compare( ) and the number of characters scanned by
Num_Eval( ).

Examples: Char(Chars_Matched) Advance the edit position by the
number in Chars_Matched.

Chdir("path")
Options: NOMSG, NOCR

Usage: Chdir("d:\vedit") Chdir

Description: Chdir("d:\path") changes the "current" (logged in) drive and/or
directory to the specified one. This allows files to be accessed without
having to specify the drive and/or pathname each time.

Chdir without any arguments displays the current drive and direc-
tory, same as Name_Dir( ). Chdir(NOMSG) suppresses the "Cur-
rent directory:" heading. Chdir(NOCR) suppresses the following
"newline".

See Also: Commands: File_Open(file,CHGDIR), Name_Dir( )
The "[ ] Change directory" option in the File-open dialog box.

Examples: Chdir("c:\windows") Changes to the Windows directory.

Chapter 4 Command Reference 137



CCB Clip_Copy_Block(p,q) (Windows Only)
Clip_Ins( )

Options: COLSET, COLUMN, DELETE, FILL, INSERT, LINESET,
NORESTORE, RESET

Usage: Clip_Copy_Block(BB,BE) Clip_Ins(COLUMN)

Description: Clip_Copy_Block(p,q) copies the block of text starting with the 'p'th
character in the file up to, but not including, the 'q'th character to the
Windows clipboard.

Clip_Copy_Block( ) has the same COLUMN, COLSET,
DELETE, FILL, INSERT, LINESET, NORESTORE and
RESET options as the Reg_Copy_Block( ) command.

Clip_Ins( ) inserts the (text) contents of the Windows clipboard into
the edit buffer and advances the edit position.

Clip_Ins( ) has the same BEGIN, COLUMN, LINEBLOCK and
OVERWRITE options as the Reg_Ins( ) command.

Notes: The maximum block size is about 45% of the physical memory size.
The DOS version can use Reg_Copy_Block( ) and Reg_Ins( ) com-
mands with the CLIPBOARD option; however the maximum block
size is then only 64K.

Only text should be copied to the clipboard. Binary data should not
be copied; the copy will be truncated at the first Null character.

See Also: Commands: Reg_Copy_Block( ), Reg_Ins( )

Color_Highlight
Color_Prompt

Usage: Internal Values

Description: Color_Highlight returns a color suitable for highlighting selection
letters and keynames in a help window created with the macro
language.

(Windows) It returns Config(CW_HIGHLIGHT), which by default
is red on white (value 124).

(DOS) It returns the value of Config(C_HIGHLIGHT), which by
default is bright-white on grey (value 127).

Color_Prompt returns a color suitable for displaying prompts in
windows created with the macro language; the default is bright-white
on green (value 47). It return the value of Config(CW_PROMPT)
(Windows version) or Config(C_PROMPT).

See Also: The display.vdm and keyedit.vdm macros as examples.

Examples: Win_Color(Color_Highlight) Change the window's display
color.

138 Chapter 4 Command Reference



CB Column_Begin(n) - See Block_Begin( )
CE Column_End(n) - See Block_End( )

CM Column_Mode
Options: CLEAR, SET

Usage: Column_Mode Column_Mode(SET) Column_Mode(CLEAR)

Description: Column_Mode returns 1 (TRUE) if Visual Mode is currently set to
highlight a columnar block. Otherwise, it returns 0.

Column_Mode(SET) sets "column" mode for blocks in Visual
Mode. Column_Mode(CLEAR) sets "stream" mode for blocks in
Visual Mode.

Notes: Block_Mode is more versatile than Column_Mode and is the pre-
ferred command.

See Also: Commands: Block_Mode()

Examples: if (Column_Mode) {
Reg_Copy_Block(5,BB,BE,COLSET,CB,CE)

} else { Reg_Copy_Block(5,BB,BE) }
If the currently highlighted block is a colum-
nar block, copy it to register 5 as a columnar
block. Otherwise, copy it as a stream block.

Compare(r)
Options: CASE

Usage: Compare(8) Compare(20,CASE) Compare(2+BUFFER)

Description: Compare(r) compares (matches) the text at the edit position to the
contents of text register (or edit buffer) 'r'. It performs a character-by-
character comparison without pattern matching. If 'r' is a text register,
the comparison is with the entire register and the edit position is
advanced past all matching characters. If 'r' is an edit buffer, the
comparison starts at the edit position in buffer 'r' and both edit
positions are moved past all matching characters.

Compare(r,CASE) forces the compare to be case sensitive, other-
wise it is case insensitive.

Return: Results of the comparison are returned and saved in Return_Value:

0
1
2

The comparison is successful, the register/buffer matches.
The text is lexically "greater than" 'r' or 'r' is empty.
The text is lexically "less than" 'r'.

Chars_Matched is set to the number of matching characters; is set
to 0 (zero) if the very first character does not match. If 'r' is empty,
the command returns 1.

Chapter 4 Command Reference 139



Notes: Two differences between Match( ) and Compare( ) are that
Match( ) uses pattern matching and does not move the edit position
unless the entire match is successful. Compare(r) matches as much
as possible, advancing the edit position for a partial match.
Compare( ) is useful for moving the edit position in two edit buffers
past all characters which match, regardless of whether the two edit
buffers match completely.

See Also: Commands: Match( ), Return_Value, Chars_Matched
Topics: "Match and Compare" in Chapter 3

Examples: Compare(10+BUFFER) Matche text at the edit position with
the text at the edit position in edit
buffer 10 and move both edit posi-
tions past all characters that match.

CF Config(name,n)
Options: ALL, LOCAL

Usage: Config(F_AUTO_SAVE,20) Config(w)

Description: Config(name,n) accesses the configuration parameters described in
Chapter 8 of the VEDIT User's Manual. Refer there for a description
of the configuration parameter names accessed by these commands.

Config(name,n) changes the value of 'name' to 'n'. Config(name)
with no arguments returns the current parameter value.

For edit buffer-dependent parameters, Config(name,n) changes the
settings for the current edit buffer and all subsequently created edit
buffers. Config(name,n,LOCAL) changes the settings for the current
edit buffer only. Config(name, n,ALL) changes the settings for all
open and all subsequently created edit buffers.

Return: Config(name,n) returns the value of the 'name' parameter before it
was changed to 'n'. Config(name) returns the current setting of 'name'.

Notes: You must use {CONFIG, Save config} or the Config_Save( ) com-
mand to make any configuration changes permanent.

DOS: Use {CONFIG, Misc, Save into VEDIT} or the
Config_VEDIT( ) command to save the configuration changes into
the VEDIT.EXE file. Some of the hardware configuration parameters
(beginning with "H_") will not take effect until the next time VEDIT
is started up.

See Also: Commands: Config_Display( )
Topics: "Configuration" in Chapter 8 of the VEDIT User's Manual

Examples: Config(S) Display the screen configuration parameters.

Config(C_MENU,31) Change the color of the pull-down menu
to bright white on blue.

140 Chapter 4 Command Reference



CFD Config_Display
Options: EXTRA, GLOBAL, LOCAL, SHORT, SUPPRESS

Usage: Config_Display()

Description: Config_Display( ) displays all configuration parameters including
strings and the tab stops. For edit-buffer dependent values, it displays
the buffer's "local" value.

Config_Display(EXTRA) displays all parameters as complete
"Config(...)" commands with the descriptive text.

Config_Display(EXTRA+SHORT) displays short "Config(...)"
commands without the descriptive text.

Config_Display(EXTRA+SUPPRESS) suppresses some parame-
ters (mostly DOS version hardware parameters) that should not be
save in the vedit.cfg file. It is used internally by the
Config_Save( ) command.

Config_Display(GLOBAL) displays the current value of all con-
figuration parameters. For edit-buffer dependent values, it displays
the "global" value. Each newly opened buffer will initially have the
"global" values.

Config_Display(LOCAL) only displays the edit-buffer dependent
"local" values.

See Also: Commands: Config( )
Topics: "Configuration" in Chapter 8 of the VEDIT User's Manual

CFL Config_Load("file")
CFSAV Config_Save("file")
Options: NOERR, OK

Usage: Config_Load("myvedit.cfg",NOERR)
Config_Save("tempved.cfg")

Description: Config_Load("file") loads new configuration parameters from the
file 'file'. If 'file' is not found in the current directory, the VEDIT Home
directory will be searched.

Config_Load("file",NOERR) suppresses the error message if 'file'
is not found; in this case Error_Flag is set.

Config_Save("file") saves the entire configuration to the file 'file'. If
'file' exists, a prompt is displayed to confirm the overwrite. The 'file'
is a command macro containing all of the Config(name) parameters.
The 'file' is saved as a text file which can be easily edited.

Config_Save("file",OK) skips the confirmation prompt when 'file'
already exists.

Notes: See the notes for the Config( ) command

Chapter 4 Command Reference 141



See Also: Topics: "Configuration" in Chapter 8 of the VEDIT User's Manual

Examples: Config_Save("myvedit.cfg",OK)

Save the current configuration settings to the text file
myvedit.cfg. If the file exists, it is overwritten.

Config_Load("myvedit.cfg")
Load the configuration file MYVEDIT.CFG.

CFS Config_String(name,"text")
Usage: Config_String(HOME,"c:\editors\vedit") CFS

Description: Config_String(name,"text") changes the configuration string 'name'
to "text". CFS, without arguments displays the current value of all
configuration strings. Chapter 8 of the VEDIT User's Manual and the
on-line help describe all configuration strings.

Config_String(SYN_NAME,"file.syn") configures the current
buffer to the color syntax highlighting file 'file.syn'. The .SYN file
will be loaded the next time the user enters Visual Mode.

Config_String(VTM_NAME,"file.vtm") configures the current
buffer to the template editing macro file 'file.vtm'. The .VTM file will
be loaded the next time the user enters Visual Mode.

Notes: SYN_NAME and VTM_NAME are typically set by the "File-open
Configuration" feature.

See Also: Commands: Config_Display( )
Topics: Appendix D "String Arguments" of this manual
"File-open Configuration" in Chapter 5 of the VEDIT User's Manual

Examples: Config_String(HOME,"c:\editor")

Change the configuration string HOME (the
VEDIT Home Directory) to "c:\editor".

CFT Config_Tab(n)
Options: ALL, LOCAL

Usage: Config_Tab(20,40,60,80,100,120) CFT(8;LOCAL)

Description: Config_Tab(n) changes the tab stops used for displaying Tab char-
acters and, when {CONFIG, Emulation, Expand <Tab> with
spaces} is set, for expanding the <Tab> key. Up to 33 explicit tab
stops in the range 1 - 254 may be set. If only one number 'n' is given,
uniform tab stops at every n'th column are set.

Config_Tab with no arguments displays the tab stops.

Each edit buffer has its own tab stops. Config_Tab(n) changes the
tab stops for the current edit buffer and all subsequently opened edit
buffers. Config_Tab(n;LOCAL) changes the tab stops only for the

142 Chapter 4 Command Reference



current edit buffer. Config_Tab(n;ALL) changes the tab stops for all
open and all subsequently opened edit buffers.

Notes: Counting starts at 1 (not at zero). Therefore the normal tab positions
at every 8 columns are:

9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 ...

In order to use command options, they MUST be preceded with a ";"
(semicolon).

The tab stops can also be changed with {CONFIG, Tab stops}.
If you set the tab stops to anything other than every 8, you may find
that other programs will not display your text properly because most
programs have fixed tabs at every 8 columns.

See Also: Commands: Next_Tab_Stop
Topic: Chapter 8 "Configuration" in the VEDIT User's Manual

Examples: Config_Tab(8) Set standard tab positions for the current and
subsequently opened edit buffers.

CFV Config_Vedit("file") (DOS only)
Options: KEYBOARD

Usage: Config_Vedit("vedit.exe")

Description: Config_Vedit("file") saves the current configuration permanently
into 'file' (usually VEDIT.EXE).

Config_Vedit("file", KEYBOARD) also saves the entire current
keyboard layout into 'file'.

See Also: Topics: "Configuration" in Chapter 8 of the VEDIT User's Manual

Continue
Usage: if (Error_Match) { Continue }

Description: Continue stops the current iteration of the current While, Do-while,
For, or Repeat loop, causing the loop to be re-tested. If there is no
loop, the command is ignored.

See Also: Commands: Goto_Pos( ), Break, Return( ), Goto label
Topics: "Flow Control - Break-out Commands" in Chapter 3

Examples: See the topic "Flow Control" in Chapter 3 for examples.

Chapter 4 Command Reference 143



CC Cur_Char Cur_Char(m)
CN Cur_Col
CL Cur_Line
CP Cur_Pos
CRN Cursor_Col
Usage: Internal Values

Description: Cur_Char returns the value of the character at the edit position. At
the End-Of-File it returns 26 (<Ctrl-Z>). For example, with the cursor
on an "A", it returns 65.

Cur_Char(m) returns the value of the 'm'th' next/previous character.
Cur_Char(0) is the same as Cur_Char.

Cur_Col returns the horizontal column number for the character at
the edit position. It accounts for the "width" of each character in the
current display mode.

Cur_Line returns the line number in the file of the current line of the
edit position. This is the "LINE:" number displayed on the status line.

Cur_Pos returns the edit position (offset) in the file. The position of
the first character in the file is 0 (zero). This is probably the most used
internal value.

Cursor_Col returns the column number corresponding to the cursor
position in Visual Mode. This is the "COL:" number displayed on the
status line. It is greater than Cur_Col when the cursor is positioned
past the end-of-line. It can be used to specify the columns for an
upcoming columnar block command.

Examples: Block_Begin(Cur_Pos) Set the block_begin marker at the
current edit position.

Column_End(Cursor_Col) Set the column_end marker at the
same column as the Visual Mode
cursor.

Cur_Char(-1) Return the value of the previous
character.

Cur_Char(BOL_Pos-Cur_Pos)
Return the value of the character at
the beginning of the current line.

Cur_Char(File_Size-Cur_Pos-1)
Return the value of the last character
in the file.

144 Chapter 4 Command Reference



Date( )
Time( )

Options: BEGIN, EXTRA, NOCR, NOMSG, VALUE

Usage: Date( ) Time(EXTRA) Date(NOCR)

Description: Date( ) displays the system date as mm-dd-yyyy preceded by the
header "Date:" and followed by a "newline".

Date(BEGIN) displays the date as dd-mm-yyyy.

Date(BEGIN+VALUE,'.') displays the date as dd.mm.yyyy.

Date(NOCR) suppresses the "newline", and Date(NOMSG)
suppresses the header.

Time( ) displays the system time preceded by the header "Time:" and
followed by a "newline". Time(EXTRA) displays the time with 1/18
second resolution.

Time(NOCR) suppresses the "newline" and Time(NOMSG)
suppresses the header.

See Also: Commands: Time_Tick

Time(EXTRA+NOCR) Display the system time with 1/18 second
resolution and suppress the "newline".

Out_Ins Date(NOCR) Out_Ins(CLEAR)
Insert the date into the text.

DB Del_Block(p,q)
Options: COLUMN, COLSET, LINESET, NORESTORE, RESET

Usage: Del_Block(Block_Begin,Block_End) Del_Block(1,80)

Description: Del_Block(p,q) deletes the block of text starting with the 'p'th char-
acter in the file up to, but not including the 'q'th character. If the edit
position is within the deleted block, it will be moved to the character
following the deleted text; otherwise, the edit position is not moved.

Del_Block(p,q,NORESTORE) always moves the edit position to
the character following the deleted text.

Del_Block(p,q,RESET) clears the Block_Begin and Block_End
markers if they are set.

The command options "COLUMN", "COLSET" and "LINESET"
specify a columnar or line-range block for deletion.

Notes: Use the Del_Line( ) command to delete entire lines of text.

See Also: Commands: Char( ), Del_Line( ), Del_Char( ), Block_Copy( )
Topics: "Block Operations" in Chapter 3

Chapter 4 Command Reference 145



Examples: Del_Block(Block_Begin,Block_End,COLUMN)

Delete the columns of text between the Block_Begin
marker and the Block_End marker.

Del_Block(BB,BE,COLSET,20,30)
Delete the text between columns 20 and 30 on the lines
from the Block_Begin marker (BB) to the Block_End
marker (BE).

DC Del_Char(m)
Usage: Del_Char(12) Del_Char(-4)

Description: Del_Char(m) deletes 'm' characters from the text. If 'm' is positive,
the 'm' characters immediately at and following the edit position are
deleted. If 'm' is negative, the 'm' characters preceding the edit position
are deleted.

Fewer than 'm' characters are deleted (without error) if the limits of
the edit buffer/file are reached.

Notes: Use the Del_Line( ) command to delete entire lines of text.

See Also: Commands: Char( ), Del_Line( ), Del_Block( )
Topics: "Block Operations" in Chapter 3

DL Del_Line(m)
Usage: Del_Line(4) DL(-3) Del_Line(0)

Description: Del_Line(m) deletes the next/previous 'm' lines. Del_Line(n) deletes
all text from the edit position up to and including the 'n'th "newline".
Del_Line(-n) deletes the previous 'n' lines and all text preceding the
edit position on the current line. Del_Line(0) deletes all text (if any)
preceding the edit position on the current line.

Fewer than 'm' lines are deleted (without error) if the limits of the edit
buffer/file are reached.

See Also: Commands: Del_Char( ), Type( ), Reg_Copy( )
Topics: "Block Operations" in Chapter 3

Examples: Repeat (ALL) {
Search("temp line")
Del_Line(0) Del_Line(1)

}

Delete all lines that contain the
string "temp line".

Reg_Copy(6,100)
Del_Line(100)

Save the following 100 lines of
text in text register "6" and then
delete them from the edit buffer.

146 Chapter 4 Command Reference



DTH Desktop_Height (Windows only)
DTW Desktop_Width
Usage: Internal Values

Description: Desktop_Height and Desktop_Width return the size of the screen
in pixels, e.g. 600 x 800 or 768 x 1024.

See Also: Commands: App_Height, App_Width, Win_Move( )

DTAB Detab_Block(p,q)
RTAB Retab_Block(p,q)
Options: COLUMN, COLSET, LINESET, NORESTORE

Usage: Detab_Block(BB,BE) Retab_Block(BB,BE,COLUMN)

Description: Detab_Block(p,q) converts all tab characters in the block of text to
spaces according to the current tab stops. The edit position is left as
close to its original position as possible.

Detab_Block(p,q,NORESTORE) sets the edit position past the end
of the converted block.

Retab_Block(p,q) converts spaces in the block of text to the optimum
number of tabs and spaces according to the current tab stops. Only
sequences of two or more spaces are converted; single spaces are
never converted to tabs.

The command options "COLUMN", "COLSET" and "LINESET"
specify a columnar or line-range block for conversion.

Notes: These commands are similar to {BLOCK, Edit/translate, Detab}
and {BLOCK, Edit/translate, Retab}.

See Also: Commands: Block_Copy( ), Reg_Copy( ), Translate_Block( )
Topics: "Block Operations" in Chapter 3

Examples: Detab_Block(0,File_Size) Convert all tabs in the entire
buffer (file) to spaces.

DI1 Dialog_Input_1("...") (Windows only)
Options: See below.

Description: Dialog_Input_1(r,"string",OPTIONS,x,y) creates a dialog box with
a title, text, up to ten (push) buttons, and optional check boxes, radio
buttons and string input boxes.

The dialog box is dynamically sized according to the specified text,
the number of buttons, and the other specified items. The dialog box
can be precisely positioned with respect to the screen or the VEDIT
application window.

Chapter 4 Command Reference 147



The command returns the number of the button selected (1 - 10) or 0
if <Esc> was pressed to cancel the dialog box.

The dialog box items are specified in the 'string' one after another in
their displayed order from top to bottom. Default spacing is added
between each item; however, items can also be displayed side-by-
side, and the vertical and horizontal spacing can be increased or
decreased from the default spacing.

NOTE: Refer to the on-line help for a detailed description of the 'string'
items and their many options.

If check boxes or radio buttons are used, 'r' is the numeric register
corresponding to the first check box or radio button. The second check
box or radio button corresponds to numeric register 'r'+1, and so on.
The numeric register(s) are used both for setting the initial value and
returning the final value. Therefore, the numeric register(s) must be
initialized before the Dialog_Input_1( ) command.

If string input boxes are used, 'r' is the text register corresponding to
the first input box. The second input box corresponds to text register
'r'+1, and so on. The text register(s) are used for returning the final
string. They are optionally used for setting the default input string(s),
in which case they must be initialized.

Dialog_Input_1(r,"string","default-input-1", OPTIONS, x,y) is an
optional way of specifying the default text for the first input string.

Command options:

SET Set the default text for the string input boxes from the
corresponding text registers. Otherwise, the default
text for the first input box will be set from
'Default-input-1', if specified.

COUNT,n Limit the maximum number of characters in each
string input box to 'n' characters.

APPEND Append the input box string(s) to the existing contents
of the corresponding text register(s).

INSERT Insert the input box string(s) at the beginning of the
existing contents of the corresponding text register(s).

The default dialog box position is centered horizontally in the screen
and 1/3 down from the top. However, the dialog box can be precisely
positioned.

Specify one option for the frame of reference:

SCREEN (Default) relative to the entire screen.

APP Relative to the VEDIT application program.

WORKAREA Relative to VEDIT, but not including the toolbar,
status line and any reserved windows.

148 Chapter 4 Command Reference



Also specify up to two non-conflicting orientations:

TOP
BOTTOM
LEFT
RIGHT
CENTER

TOP and LEFT refer to the top and left edges of the
dialog box and the top and left of the reference frame.
Use positive 'x' and 'y' values to move the box right and
down.

BOTTOM and RIGHT refer to the bottom and right
edges of the dialog box and the reference frame. Use
negative 'x' and 'y' values to move the box left and up.
CENTER applies both horizontally and vertically, but
is overridden vertically with TOP or BOTTOM, and
horizontally with LEFT or RIGHT. It refers to the
center of the dialog box and the center of the reference
frame. Therefore "CENTER,0,0" exactly centers the
dialog box.

x,y Specifies a pixel offset from the top, bottom, left, right
or center orientation. 'x' is the horizontal offset; 'y' is
the vertical offset. Positive values move the dialog box
right or down; negative values move it left or up.
If SCREEN, APP or WORKAREA is specified, both
the 'x' and 'y' offsets must be specified; use "0,0" if no
offset is desired. If SCREEN, APP or WORKAREA
is not specified, 'x' and 'y' must be omitted and the only
allowed orientation option is CENTER.

Return: Returns the number of the button pushed (1 - 10) or 0 if <Esc> was
pressed to cancel the dialog box.

See Also: Commands: Get_Input( ), Get_Key( ), Get_Num( )
The on-line help describes the dialog box items in detail.

Examples: #1=Dialog_Input_1(5,"`This is the Title`,
`This is line one of the text`,
`This is line two of the text`,
`??Input:`,
`This is line three of the text`,
`[Button&1]`,`[Button&2]`,`[Button&3]`,`[Cancel]`",
"a:\",SCREEN+CENTER,0,0)

#70 = DI1(#95,^`Wildfile Wizard`,
`Enter list of filenames to process.`,
`??`,
`[]&Search subdirectories`,
`[&Ok]`,`[&More]`,`[Cance&l]`^,
SCREEN+CENTER,0,0)

Chapter 4 Command Reference 149



DIR Directory("fspec")
Options: COUNT, NOERR, NOMSG, SHORT, SUPPRESS

Usage: Directory("b:*.txt") Dir("C:\*.*",NOMSG+SUPPRESS)

Description: Directory("fspec") displays a list of files and subdirectories on any
desired drive/directory. Optional wildcard characters "?" and "*" may
be specified to list only those files that match 'fspec'.

Directory("fspec -s") includes files in all subdirectories. A header
line is displayed for each subdirectory. Subdirectories are not in-
cluded in the list of matching files.

Directory("fspec",COUNT,n) displays the directory in 'n' columns
instead of the normal 4 columns.

Directory("fspec",NOERR) suppresses the error message if 'fspec'
doesn't match any files; it sets Error_Flag to "2". Also suppresses
the error message if pathname contains a non-existent directory; it
sets Error_Flag to "3".

Directory("fspec",NOMSG) omits the header line consisting of the
current drive and directory; it also displays the filenames one per line.

Directory("fspec",SUPPRESS) omits displaying subdirectory
names and hidden/system files.

Directory("fspec",SHORT) displays long filenames in the short 8.3
format. The filename and extension are lined up into columns.

Return: Returns the number of displayed filenames. The return value is also
saved in Return_Value.

See Also: Commands: Chdir( ), Name_Dir( )

Examples: Directory("b:*.txt") Display the directory of all files with ex-
tension ".txt" on drive B.

Dir("b:\letters\") Display the directory of all files in direc-
tory "letters" of drive B. Note the final "\".

Out_Ins( ) Directory("*.*",NOMSG) Out_Ins(CLEAR)
Insert the directory into the edit buffer,
one file per line.

DKF Disk_Free(drive)
DKS Disk_Size(drive)
Usage: Internal Values

Description: Disk_Free(drive) returns the amount of free space on the specified
logical disk drive in Megabytes. One Megabyte = 1048576 bytes.

Return_Value is set to the exact remaining free bytes. Therefore,
Disk_Free * 1048576 + Return_Value is the exact number of bytes

150 Chapter 4 Command Reference



free; however VEDIT's 32-bit math cannot calculate this number
correctly past 2 Gigabytes.

Disk_Size(drive) returns the total size of the specified logical disk
drive in Megabytes.

Examples: Disk_Free Display the available disk space on the current drive.

Disk_Size('c:') Display the total size of logical drive "C:" in
megabytes.

DOV Do_Visual("vm-codes")
Usage: Do_Visual("\CD\\CD\\CD\") DOV("\ME\EC")

Description: Do_Visual("vm-codes") executes Visual Mode functions from
within a command macro. The "Edit Function Codes" in Appendix
A lists the two letter codes for each edit function. They must be
surrounded by "\ \" and must appear within the explicit delimiters.
Normal displayable characters can also be included — they are NOT
surrounded by "\ \".

Notes: Do_Visual( ) is a very powerful and flexible command. It can be used
within keystroke macros to fine-tune existing editing functions. It
permits decision making — selecting which Visual Mode function to
perform based on a condition, such as the type of character at the
cursor, or the number of block markers set.

Examples: Do_Visual("\CD\\CD\\CD\")

Perform three [CURSOR DOWN] from
within a command macro.

DOV("\ME\EL") Center a line by selecting this function from
the menu system.

EOF End_Of_File( )
EOL End_Of_Line( )
Options: LOCAL

Usage: End_Of_File( ) EOF(LOCAL) End_Of_Line( )

Description: End_Of_File( ) moves the edit position past the last character in the
file. End_Of_File(LOCAL) only moves the edit position to the end
of the portion of the file currently in memory.

End_Of_Line( ) moves the edit position to the end of the current line,
typically to the "newline". If the edit position is already at the
end-of-line or at the end-of-file, the command is ignored.

See Also: Commands: Begin_Of_File( ), At_EOF, At_BOF
Topics: "File Buffering in Command Mode" in Chapter 3

Examples: End_Of_File( ) Line(-100) Move the edit position to the 100th
line before the end of the file.

Chapter 4 Command Reference 151



EOL_Pos - See BOL_Pos

EF Error_Flag
EM Error_Match

Error_OS
Usage: Internal Values

Description: Error_Flag returns the current value of the error flag. The flag is
reset before each command is executed. It is set (value 1) by
Search( ), Replace( ), Match( ) and Match_Parentheses( ) by an
unsuccessful search/match. It is also set by other selected commands.

Error_Match returns the value of the search/match error flag. It is
set/reset only by the Search( ), Replace( ), Compare( ), Match( ),
Match_Parentheses( ), and Reg_Compare( ) commands. It allows
testing the results of these commands many commands later.

Error_OS returns the write error flag set/reset by the last disk write
operation. It returns 1 if there was a write error; 0 if no write error.

Notes: Since Error_Flag is reset by each command, it must be tested
immediately after the command.

Examples: if (Error_Match > 0) { Goto ERROR }

If the last search/match/compare was unsuccessful,
jump to the label "ERROR".

Escape_Mode(vm-code)
Usage: Escape_Mode('M'+'E'*256)

Description: Escape_Mode(vm-code) programs the [ESCAPE] function to per-
form an alternative to popping up the {ESCAPE} menu. Any of the
edit functions listed in Appendix A of the VEDIT Macro Language
Reference Manual are acceptable.

Examples: Escape_Mode('V'+'E'*256) Force the [ESCAPE] function to
perform [VISUAL EXIT].

Exit
XALL
QALL / QALLY

Usage: XALL Exit( ) QALL

Description: Exit exits VEDIT, similar to {FILE, Exit}, prompting the user to
save or abandon each altered file/buffer. If an edit buffer has been
altered, but has no assigned filename, it prompts for one.

152 Chapter 4 Command Reference



XALL exits VEDIT, saving each altered file/buffer, but without
prompting for confirmation. This is a fast way to exit VEDIT, saving
all files. It only saves buffers with open files.

QALL exits VEDIT, quitting (abandoning) all files. The user is
prompted for confirmation. QALLY exits VEDIT, quitting all files,
but without the confirmation prompt. (This command should be used
with extreme care!)

The command forms Exit(n), Xall(n), Qall(n) and Qally(n) return
'n' to the operating system as VEDIT's "return code" instead of the
default value of zero. A DOS Batch file can test the return code with
"ERRORLEVEL".

See Also: Commands: File_Close( ), File_Quit( ), File_Save( )

Examples: vpw myfile.txt
[VISUAL EXIT]
Exit

The editor is invoked in the normal way
to edit a file in Visual Mode. The new file
is then saved on disk before exiting
VEDIT.

XBUF1 Extra_Buffer_1
XBUF2 Extra_Buffer_2
XBUF3 Extra_Buffer_3
XBUF4 Extra_Buffer_4
Usage: Internal Values

Description: Besides the normal edit buffers typically used to edit files, VEDIT
also has "extra" buffers which are often used by macros for processing
blocks of text and other purposes that require a temporary edit buffer.

The Windows version has 26 extra buffers with an ID number of 100
- 125. The DOS version has 4 extra buffers with an ID number of 33
- 36. Since the ID numbers are different for the Windows and DOS
versions, these internal values should always be used the extra buffers
are referenced, typically with the Buf_Switch( ) command. These
internal values are also more mnemonic.

Notes: Many macros use Buf_Free(EXTRA) to dynamically determine the
next free "extra" buffer.

Any text placed into an "extra" buffer, or any file opened in an "extra"
buffer is not automatically saved when VEDIT exits.

See Also: Commands: Buf_Free(EXTRA), Buf_Switch( )

Chapter 4 Command Reference 153



FA File_Attrib("file",n)
Options: RESET, SET

Usage: File_Attrib("archive.001",1,RESET)

Description: File_Attrib("file") returns the attributes (read-only, hidden, system,
etc.) of 'file'. Windows/DOS define the attributes as:

Mask 1
Mask 2
Mask 4
Mask 8
Mask 16
Mask 32

Read-only
Hidden
System
Volume label
Directory
Archive

File_Attrib("file",n) sets the attributes of 'file' to 'n'.

File_Attrib("file",n,SET) sets the attribute(s) (bits) 'n'.

File_Attrib("file",n,RESET) clears the attribute(s) (bits) 'n'.

Return: Returns the attributes of the specified file, or -1 if the file does not
exist. If changed, it returns the original attributes.

Examples: The following example removes the read-only attribute before editing
the file. After editing, it restores the read-only attribute.

File_Attrib("archive.sav",1,RESET)
File_Open("archive.sav")
File_Close()
File_Attrib("archive.sav",1,SET)

FCHK File_Check("file")
Usage: File_Check("myfile.txt")

Description: File_Check("file") checks if the specified file is currently open in
one of VEDIT's edit buffers and returns the buffer's ID number.

Return: If the file is not currently open, it returns -1. If the file is open, it
returns the ID number of the edit buffer in which the file is open. It
also returns the result of its check in Return_Value.

Notes: The macro wildfile.vdm uses this command to check if the next
file to be opened is already open. If it is open, it switches to the
corresponding edit buffer; if it is not open, it opens it in a new buffer.

See Also: Commands: File_Exist(EXTRA), File_Open( )

Examples: #10=File_Check("myfile.txt")
if (#10 > 0) {

Buf_Switch(#10)
} else {

Buf_Switch(1)
}

Check if the file "myfile.txt" is
already open. If it is, it switch to
the corresponding edit buffer. If
not, switch to the main buffer
#1.

154 Chapter 4 Command Reference



FC File_Close( )
Options: CONFIRM, EVENT, OK, NOEVENT, NOMSG

Usage: File_Close( ) FC(NOMSG)

Description: File_Close( ) saves and closes the file being edited in the current edit
buffer, without prompting, and remains in the same buffer in prepa-
ration for editing another file. It is often followed by File_Open( ) to
edit another file. If the edit buffer has been altered, but has no assigned
filename, it prompts for one.

File_Close( ) normally gives the message "Saving: filename"; this
message can be suppressed with File_Close(NOMSG).
File_Close(CONFIRM) prompts for confirmation to save or aban-
don the file if it has been altered. If the user selects [No-abandon], it
performs a Buf_Empty( ) instead.

If Config(F_E_F_MACRO,1) is enabled, the "File-close" and "File-
post-close" event macros will also run. File_Close(NOEVENT)
suppresses the File-close event macros even if enabled.
File_Close(EVENT) executes the File-close event macros even if
disabled.

Notes: File_Close( ) is not the same as {FILE, Close}. File_Close( ) saves
the current file (without confirmation) and remains in the current edit
buffer. {FILE, Close} gets confirmation to Save/Abandon the current
file and also closes the current edit buffer and all attached windows;
it is equivalent to Buf_Close(CONFIRM+DELETE).
{FILE, Open (More), Same Buffer} is a combination of the
File_Close(CONFIRM) and File_Open( ) commands.

While a "File Open" event macro is commonly used, "File Close"
event macros are rarely used.

See Also: Commands: Buf_Close( ), File_Quit( ), File_Truncate( ),
Is_Altered, Is_Open_Write
Topics: "Event Macros" in Chapter 3

Examples: File_Close( )
File_Open("newfile.txt")

The current file is saved on disk, and
the file "NEWFILE.TXT" is opened
in the same buffer.

FCP File_Copy("sfile","dfile")
FMV File_Move("sfile","dfile")
FREN File_Rename("sfile","dfile")
Options: NOERR, OK

Usage: File_Copy("data.001","data.sav") FREN("letter.bak","letter.txt")

Description: File_Copy("sfile","dfile") copies the file 'sfile' to 'dfile'. If 'dfile'
already exists, it prompts for confirmation to overwrite the file.

Chapter 4 Command Reference 155



File_Copy(...,OK) skips the confirmation prompt.

File_Copy(...,NOERR) suppresses the error message if 'sfile' does
not exist or the copy cannot be made.

File_Move( ) and File_Rename( ) are different names for the same
function. They move/rename the file 'sfile' to 'dfile'. If 'dfile' already
exists, they prompts for confirmation to overwrite the file.

File_Move(...,OK) skips the confirmation prompt.

File_Move(...,NOERR) suppresses the error message if 'sfile' does
not exist or the rename/move cannot be made.

Notes: These commands overwrite existing files without creating a backup.

A move/rename on the same logical drive is nearly instantaneous
because it does not need to be copied.

FDEL File_Delete("fspec")
Options: NOERR, OK, OK+EXTRA

Usage: File_Delete("file.txt") FDEL("*.bak")
File_Delete("c:\text\*.txt",OK+EXTRA)

Description: File_Delete("fspec") deletes the file(s) 'fspec' from disk. Wildcard
characters "?" and "*" may be used to delete more than one file. The
command first displays a directory of the files to be deleted and asks
for confirmation.

File_Delete("fspec",OK) skips the directory display and confirma-
tion prompt. Use just "OK" if you don't expect 'fspec' to contain the
"*" wildcard character.

File_Delete("fspec",OK+EXTRA) skips the confirmation prompt
even if 'fspec' contains the "*" wildcard character. USE WITH CARE
-- a small oversight in your macro could delete many files!

File_Delete("fspec",NOERR) suppresses the "FILE NOT
FOUND..." error message if the specified file(s) is not found.

Return: Returns the number of files successfully deleted; 0 if none. Sets
Error_Flag if the file(s) is not found.

Notes: Never delete any ".r$$" or ".rR$" files from within VEDIT! These
are the temporary files VEDIT is using. Do not attempt to delete the
files begin edited.

See Also: Commands: Directory( )

Examples: File_Delete("c:\oldfile.txt") Delete the file "oldfile.txt" from the
root directory of drive C:.

FDEL("*.bak") Delete all files with a filename extension of
".bak" from the current directory.

156 Chapter 4 Command Reference



FEXIST File_Exist("fspec")
Options: NOERR, SUPPRESS

Usage: File_Exist("myfile.txt") FEXIST("*.*",SUPPRESS)

Description: File_Exist("fspec") tests for the existence of the file(s) 'fspec' and
returns a value of 1 if the file exists, 0 if it does not. If wildcard
characters are used in 'fspec', the return value is the number of files
matching the specification. 'fspec' can be the name of a directory or
a system/hidden file.

File_Exist("fspec",SUPPRESS) omits checking for directory
names and system/hidden files.

File_Exist("fspec",NOERR) suppresses the error message if the
pathname contains a non-existent directory. In this case the return
value is "0" and Error_Flag is set to "3".

Return: Returns the number of filenames matching 'fspec'. (0 if none.)

See Also: Commands: Chdir( ), File_Check( ), Return_Value, Name_Dir

Examples: .File_Exist("c:\windows")

Display the number of files in the "c:\win-
dows" directory.

if ( File_Exist("startup.vdm") ) { Exit }
Test for the existence of the file "startup.vdm".
If found, it exits the editor.

FMD File_Mkdir("dir")
FRD File_Rmdir("dir")
Options: NOERR

Usage: File_Mkdir("c:\newdir") File_Rmdir("c:\oldir",NOERR)

Description: File_Mkdir("dir") makes (creates) the new directory 'dir'. This is
equivalent to the DOS/NT "md or mkdir" commands.

File_Mkdir("dir",NOERR) suppresses the error message if the
directory cannot be created, e.g. if it already exists.

File_Rmdir("dir") removes (deletes) the empty directory 'dir'. This
is equivalent to the DOS/NT "rd or rmdir" commands or the UNIX
"rm -R" command. Note that the directory must be empty, i.e. not
have any files, before it can be removed.

File_Rmdir("dir",NOERR) suppresses the error message if the
directory cannot be removed, e.g. if it contains files.

Return: File_Mkdir( ) returns TRUE (1) if the directory was created, and
FALSE (0) if the directory was not created.

Chapter 4 Command Reference 157



File_Rmdir( ) returns TRUE (1) if the directory was removed, and
FALSE (0) if the directory was not removed.

Notes: The File_Delete("*.*") or File_Delete("*") command can be used
to delete all files in a directory.

See Also: Commands: File_Delete( )

Examples: Ensure that the directory "c:\data\april" exists, creating it if necessary:

if (File_Exist("c:\data")==0) {
File_Mkdir("c:\data")

}
if (File_Exist("c:\data\april")==0) {

File_Mkdir("c:\data\april")
}

FMV File_Move( ) - See File_Copy( )

FO File_Open("fspec")
Options: ATTACH, BROWSE, CHGDIR, EVENT, FORCE, MRU,

NOEVENT, NOMSG, OVERWRITE

Usage: File_Open("file.txt") File_Open('"origfile.txt" -a "newfile.txt"')
File_Open("a long filename") File_Open('"file1","file2"')

Description: File_Open("fspec") opens the specified file(s) for editing and reads
as much of it into memory as possible. If the file does not exist, it is
created. The file is opened in the current buffer if the current buffer
has no open file. Otherwise, it is opened in the first available edit
buffer. If the specified file is already open in another buffer, the
command simply switches to that buffer.

Long
Filenames

Long filenames with embedded spaces or commas must be
enclosed in double-quotes; if multiple files are specified, or
the "-a", "-l" and "-t" options are used, the entire string must
be enclosed in other delimiters, typically single-quotes.

Two or more files can be specified; a group of files can be specified
using the wildcard characters "*" and "?". Each additional file is
opened in an additional edit buffer. Each file may include the "-a",
"-l" and "-t" options.

The "-a asfile" option following a filename saves the file as 'asfile'.
The "-l nnn" option sets the initial edit position on line 'nnn'. The
"-t nnn" option sets the File type to 'nnn', i.e. it sets
Config(F_F_TYPE,nnn).

File_Open("file",ATTACH) creates a new overlapping window for
each opened file. The windows are only created if {CONFIG, Screen
display, Auto-create windows for buffers} (or equivalent
Config(WIN_AUTO_CRE)) is enabled (default).

158 Chapter 4 Command Reference



File_Open("file",BROWSE) opens the specified file in browse-
only mode; it cannot be altered.

File_Open("file",CHGDIR) changes the "current" directory to the
directory containing the file.

File_Open("file",FORCE) allows a file to be opened in an "extra"
buffer. Note that files opened in "extra" buffers are not automatically
saved, nor are you prompted to save them. Use with care. See the
wildfile.vdm macro for an example.

File_Open("file",MRU) adds the filename to the "Most-Recently-
Used" list in the {FILE} menu when the file is closed. If VEDIT is
exited with "Quit all" or the Qall command, files are not added to the
MRU list.(Windows version only)

File_Open("file",OVERWRITE) suppresses creating a backup
file, even if backup files are enabled.

The message "New file" is displayed if the file does not already exist
and is therefore created; the message can be suppressed with
File_Open("file",NOMSG).
If Config(F_E_AUTO_CFG) is enabled, the "File-open configura-
tion" macro is run. If Config(F_E_F_MACRO,1) is enabled, the
"File-pre-open" and "File-open" event macros will also run. The
command option "NOEVENT" suppresses the File-open event mac-
ros, even if enabled. The command option "EVENT" executes the
File-open event macros, even if disabled.

Notes: File_Open( ) is similar to the {FILE, Open} function.

{CONFIG, File Handling, Enable backup files}, equivalent to
Config(F_E_BACKUP), determines whether a backup file is main-
tained.

A "File-open configuration" macro is typically set up by the
startup.vdmmacro to configure several parameters according to
the file type (filename extension). A "File Pre-Open" event macro is
rarely used.

For each file that File_Open( ) opens, it performs the following steps
to determine in which edit buffer it will open the file:

1. It checks if the file is already being edited. If so, it simply switches
to the associated edit buffer.

2. If the current edit buffer is empty and has no open file, it opens
the file in the current buffer.

3. It switches to the next available (free) edit buffer and opens the
file in the new buffer.

After File_Open( ) opens two or more files, it returns to the edit
buffer of the first file opened.

Chapter 4 Command Reference 159



See Also: Commands: File_Write( ), File_Open_Read( ),
File_Open_Write( ), Is_Saveas
Topics: "File Editing Commands" and "Event Macros" in Chapter 3

Examples: File_Close( )
File_Open("*.txt")

The current file being edited is closed and all
files in the current directory with the ".txt" file
extension are opened for editing. The first file
is opened in the current edit buffer, and the
additional files are opened in additional edit
buffers.

File_Open('"part1.txt" -l 200')
The file "part1.txt" is opened and the edit
position is set to line 200.

File_Open("myfile|@(1)")
The file named "myfile" with the file exten-
sion contained in text register 1 is opened.

FOPENR File_Open_Read("file")
Usage: File_Open_Read("newfile.txt") FOPENR("myfile.asm")

Description: (This is a technical, rarely used command!)

File_Open_Read("file") opens the file 'file' for input (reading).
However, nothing is actually read into the edit buffer. The
File_Read( ) command or auto-buffering is used to actually read the
input file. If the same file was already open for input, the file is
"rewound", so that the file can again be read from the beginning.

The error "FILE NOT FOUND" is given if 'file' does not exist.

Notes: As soon as VEDIT reads the entire input file it closes the input file.
This allows the file to be accessed by other users on a multi-user or
network system.

See Also: Commands: File_Read( ), File_Open( ), File_Write( ),
Name_Read, Is_Open_Read
Topics: "Explicit Read/Write Commands" in Chapter 3

Examples: File_Open_Read("parts.inv")
File_Read(20)

The file "parts.inv" is opened for
input and twenty lines from it
are read into the current edit
buffer.

FOPENW File_Open_Write("file")
Usage: File_Open_Write("newdat.inv")

Description: (This is a technical, rarely used command!)

File_Open_Write("file") opens the file 'file' for output and sub-
sequent writing. No text is actually written by this command. An

160 Chapter 4 Command Reference



output file must be opened in order to save any text on disk. A file
can also be opened with the File_Open( ) command.

If a file is already open for output, the error "FILE IS ALREADY
OPEN IN THIS BUFFER" is given.

Note: The file opened is actually a temporary file with the same filename,
but with an extension of ".r$$" where 'r' is the ID number of the
current edit buffer. The file is not made permanent and given its true
name until it is "closed" with the File_Save( ), File_Truncate( ),
Buf_Close( ) or File_Close( ) commands. At that time, any existing
file on disk with the same name as the output file is backed up by
renaming it with an extension of ".BAK". Any existing backup file
with the same name is deleted when the first text is written to the
output file.

See Also: Commands: File_Write( ), File_Save( ), File_Truncate( ),
Buf_Close( ), File_Close( ), Is_Saveas, Is_Open_Write
Topics: "Explicit Read/Write Commands" in Chapter 3

FQ File_Quit( ) - See Buf_Empty( )

FR File_Read(n)
Options: REVERSE

Usage: File_Read(100) File_Read(0,REVERSE)

Description: (This is a technical, rarely used command!)

File_Read(n) appends the next 'n' lines from the input file to the end
of the edit buffer. Fewer lines are appended if there is insufficient
memory space for 'n' lines, or there are fewer than 'n' lines remaining
in the input file. File_Read(0) reads all of the input file or until the
edit buffer is almost full. File_Read(n) can be executed (with 'n' not
zero) after an auto-read to read in more of the file. The command is
ignored if no input file is open. The input file can be opened with the
File_Open( ) and File_Open_Read( ) commands.

File_Read(n,REVERSE) reads back 'n' lines from the output file to
the beginning of the edit buffer. File_Read(0, REVERSE) reads all
of the output file back or until the edit buffer is almost full. Nothing
is read back if there is no output file or it is empty. These commands
perform the reading necessary for backward file buffering.

Notes: No indication is given if fewer than 'n' lines were appended.

See Also: Commands: Mem_Status, File_Write( ), File_Open( ),
File_Open_Read( )
Topics: "Explicit Read/Write Commands" in Chapter 3

Examples: File_Open_Read("text.doc")
File_Read(0)

Open the file "text.doc" and read
it all in, or until the edit buffer is
almost full.

Chapter 4 Command Reference 161



File_Read(-0) Read back as much of the output
file as will fit into the beginning
of the edit buffer.

FREN File_Rename( ) - See File_Copy( )

FRD File_Rmdir( ) - See File_Mkdir( )

FS File_Save( )
FSA File_Save_As("file")
Options: ALL, BEGIN, NOMSG, OK

Usage: File_Save( ) FS(ALL) File_Save_As("newname.txt",OK)

Description: File_Save( ) saves the file being edited in the current edit buffer to
disk and keeps it open for continued editing. The edit position in the
file and any text markers are maintained.

File_Save(BEGIN) saves the file, but leaves the edit position at the
beginning of the file, after saving. It is equivalent to the command
sequence File_Save( )Begin_Of_File( ), but is much faster on huge
files.

File_Save(NOMSG) suppresses the normal "Saving ..." message.

File_Save(ALL) saves all modified files in all edit buffers to disk
and keeps them open for continued editing.

File_Save_As("newname.txt") saves the current file under the new
name 'newname.txt' and allows further editing.

File_Save_As("newname.txt", OK) suppresses the confirmation
prompt if 'newname.txt' already exists.

Notes: File_Save( ) writes the file to disk. Therefore, if you quit with
Buf_Quit( ) sometime after a File_Save( ) command, you will only
abandon those changes made after the File_Save( ) command. Those
changes made before the File_Save( ) command will have already
been saved on disk.

File_Save( ) is equivalent to {FILE, Save}.
File_Save(ALL) is equivalent to {FILE, Save all}.
File_Save_As( ) is equivalent to {FILE, Save As}.

See Also: Commands: Buf_Close( ), File_Close( ), Is_Altered

FSIZE File_Size
Usage: Internal Value

Description: File_Size returns the size of the file in the current edit buffer. (This
is the size the file would have if you now saved it.)

162 Chapter 4 Command Reference



Examples: Detab_Block(0,File_Size) Convert all tabs in the entire file
(buffer) to spaces.

FTRUNC File_Truncate( )
Options: OK

Usage: File_Truncate( ) FTRUNC(OK)

Description: (This is a technical, rarely used command!)

File_Truncate( ) truncates and closes the output file; it only saves
text that has ALREADY been written to disk. This command DOES
NOT actually write any text to disk. The user is prompted for
confirmation to close the file.

File_Truncate(OK) skips the confirmation.

WARNING: Use this command with care! You can easily erase the file you
are editing! In general, File_Truncate( ) is only used to split
large files into small ones and, for this, it is preceded by
File_Open_Write( ) and File_Write( ) commands.

Notes: Technically, a file has to be "written" and "closed" in order to save it
on disk. The commands Buf_Close( ) and File_Close( ) write text to
disk AND close the file. In contrast, File_Truncate( ) only closes the
file; it writes nothing. Text can be explicitly written to disk with the
File_Write( ) command.

Since the output file is initially opened with the file extension .r$$,
the .r$$ file is first closed, then any existing file on disk with the same
name as the output file is renamed to ".BAK" and, last, the ".r$$" file
is renamed to the true output filename. (See the File_Open_Write( )
command notes.)

See Also: Commands: File_Open_Write( ), Buf_Close( ), File_Close( )

Examples: File_Open_Write("save.txt")
File_Write(100)
File_Truncate(OK)

Write the first 100 lines of the
edit buffer to the file "save.txt"
and close it to save it.

FW File_Write(n)
Options: REVERSE

Usage: File_Write(20) FW(0) File_Write(1000,REVERSE)

Description: (This is a technical, rarely used command!)

File_Write(n) writes 'n' lines from the beginning of the edit buffer to
the output file, and deletes them from the buffer. File_Write(0) writes
out the entire edit buffer up to the current line.

File_Write(n,REVERSE) writes the last 'n' lines in the edit buffer
to a temporary ".rR$" file. File_Write(0,REVERSE) writes out the

Chapter 4 Command Reference 163



end of the edit buffer beginning with the current line. These com-
mands perform the writing necessary for backward file buffering.

If no output file is open, the error "NO ASSIGNED FILENAME" is
given and no text is written. The output file can be opened with the
File_Open_Write( ) or File_Open( ) commands.

Notes: No indication is given if less than 'n' lines were written.

See Also: Commands: File_Read( ), File_Open( ), Mem_Free,
File_Open_Write( ), Buf_Close( ), Is_Open_Write
Topics: "Explicit Read/Write Commands" in Chapter 3

Examples: File_Open_Write("part1.txt")
File_Write(24)
File_Truncate(OK)
File_Open_Write("part2.txt")
Buf_Close( )

Writes the first 24 lines of the
edit buffer to the file
"PART1.TXT"; writes the rest
of the edit buffer to file
"PART2".TXT", closing and
saving the files.

Font_Charset (Windows only)
FONTH Font_Height
FONTW Font_Width
Usage: Internal Values

Description: Font_Charset returns the character set for the current display font.
0 = ANSI, 255= OEM. The DOS version always returns OEM.

Font_Height and Font_Width return the pixel height and width of
one displayed character, based on the current display font. This
includes any additional "LineSpacing" set in the vedit.ini file.

Since VEDIT is designed for fixed-width fonts, the width of every
character is the same.

Notes: The only way to change the display font is with {VIEW, Font}. There
is currently no macro language equivalent.

See Also: Commands: Desktop_Height, Desktop_Width, Win_Height,
Win_Width
The topic "ANSI and OEM Characters" in Chapter 4 of the User's
Manual

FP Format_Para(n)
Usage: Format_Para( ) FP(1) Format_Para(10)

Description: Format_Para( ) re-formats the current paragraph of text using the
currently configured right margin. If {CONFIG, Word processing,
Format from beginning of paragraph} or
Config(W_F_BGN_PARA) is set, it re-formats from the beginning
of the paragraph. Otherwise (default), it re-formats beginning with

164 Chapter 4 Command Reference



the line containing the edit position. After formatting, the edit position
is advanced to the beginning of the next paragraph.

The paragraph will, by default, keep its current indentation. However,
if {CONFIG, Word processing, Format from left margin} or
Config(W_F_LF_MARG) is set, the leftmost column of the para-
graph will be indented to the left margin.

Format_Para(n) re-formats the paragraph using a left margin of 'n'.
Use Format_Para(1) to use a left margin of one (1), independent of
the current left margin.

Notes: Format_Para( ) is equivalent to the {EDIT, Format Paragraph}
function.

The paragraph will also be justified if {CONFIG, Word Processing,
Justify paragraphs} or Config(W_JUST_PARA) is enabled.

If left-margin > right-margin, the command is ignored and no error
given.

You must use a command loop to justify multiple paragraphs.

See Also: Commands: Margin_Left( ), Margin_Right( )
Topics: "Word Processing" in Chapter 4 of the User's Manual

Examples: Format_Para(5) Format the paragraph with the
left margin starting at column 5.

Repeat (8) { Format_Para( ) } Format eight paragraphs, using
the current margins.

GE Get_Environment(r,"name")
Usage: Get_Environment(9,"VEDPATH")

Description: Get_Environment(r,"name") reads the current value of environ-
ment variable 'name' into text register 'r'.

Return: Returns the number of characters placed into register 'r' (the length
of the environment variable), or 0 if the variable does not exist.

Examples: if (Get_Environment(9,"VEDPATH")==0) {
Message("\nError - VEDPATH is not defined!")

}
Read the value of environment variable
"VEDPATH" into register 9; displays an error
message if it is not defined.

GF Get_Filename(r,"filespec")
Usage: Get_Filename(9,"*.txt") Get_Filename(9,@10)

Description: Get_Filename(r,"filespec") makes a file selection dialog box avail-
able to command macros. If 'filespec' does not contain any of the
wildcard characters "*" or "?", 'filespec' is simply copied to text

Chapter 4 Command Reference 165



register 'r'. However if "*" or "?" are present, a file selection dialog
box is displayed. The full pathname of the file selected by the user is
then placed in register 'r'.

Return: Returns the number of bytes that were placed into register 'r'.

Notes: The dialog box is ONLY displayed if the 'filespec' contains "*" or "?".

The filename in register 'r' will be enclosed in double-quotes in order
to support long filenames with embedded spaces. The register can
then be used with the File_Open( ) command.

Examples: Get_Input(9,"Enter filename:",NOCR)
if (Reg_Size(9)==0) { Reg_Set(9,"*") }
Get_Filename(9,@9)
File_Open(@9)

Prompt for the name of the file to edit; if "*"
or "?" or just <Enter> are entered, the file can
be selected using a dialog box.

GI Get_Input(r,"mtext")
Options: APPEND, COUNT, INSERT, NOCR, STATLINE, TAB8

Usage: Get_Input(10,"Enter filename: ")

Description: Get_Input(r,"mtext") prompts on the screen with 'mtext' and then
reads the user's response line into text register 'r'. 'mtext' may be
multiple lines long or may include "\n" to indicate new lines.

Get_Input(r,"text",STATLINE) prompts on the status line —
'mtext' must then be a single line prompt.

Get_Input(r,"mtext",TAB8) expands any Tab characters in 'mtext'
assuming tab stops at every 8 columns.

The user ends the input line by pressing <Enter> which is also stored
in the text register as a "newline"; Get_Input(r, "text",NOCR) does
not store the "newline".

Get_Input(r,"mtext",COUNT,n) limits the length of the user's input
line to 'n' characters.

Get_Input(r,"mtext","default") prompts with an initial (default)
input line of 'default'.
The APPEND and INSERT options operate as with the Reg_Set( )
command.

Return: Returns the number of bytes that were placed into register 'r'.

See Also: Commands: Dialog_Input_1( ), Get_Key( ), Get_Num( )
Topics: "Input Commands" in Chapter 3

166 Chapter 4 Command Reference



Examples: Get_Input(20,"Enter Filename:",NOCR)
File_Open(@20)

Prompt for a filename and save the filename in
register 20. Then open the specified file for editing.

GK Get_Key("mtext")
Options: NOCANCEL, RAW, STATLINE, TAB8

Usage: #9=Get_Key("Press [CURSOR UP] or [CURSOR DOWN]:")

Description: Get_Key("mtext") prompts on the screen with 'mtext' and returns the
value of the next key pressed (or pending "key" character). 'mtext'
may be multiple lines long or may include "\n" to indicate new lines.

Normal characters return value 32 - 255. Function/control keys are
decoded and return their function code which are listed in Appendix
A. Unassigned function/control keys return the special two-letter-
code "\B4\" = 'B'+'4'*256 = 13378.

Get_Key("mtext",RAW) does not decode function/control keys.
Control characters return 0 - 31. Function keys return their hardware
"scan code" * 256.

Get_Key("text",NOCANCEL) allows even the [CANCEL] key to
be read (value = 'C'+'A'*256 = 16707); otherwise, [CANCEL] per-
forms its normal function of breaking out of any command macro.

Get_Key("mtext",STATLINE) prompts on the status line — 'mtext'
must then be a single line prompt.

Get_Key("mtext",TAB8) expands any Tab characters in 'mtext' as-
suming tab stops at every 8 columns.

Return: Returns the value of the next key pressed, as described above.

Notes: The next "key" is not necessarily the next key typed on the keyboard.
It can also be a pending character from a keystroke macro, a
[REPEAT] or [REPEAT LAST] function, an unprocessed keyboard
character or from the mouse. Use Key_Purge( ) if necessary to purge
all pending "key" characters.

See Also: Commands: Get_Input( ), Get_Num,( ), Message( ), Key_Purge( )
Appendix A for a list of function codes.
On-line for Get_Key( ) has another useful example.

Examples: #98 = Get_Key("Press [CURSOR UP] or [CURSOR
DOWN]:",STATLINE)

Give the prompt on the status line. Decode the next func-
tion key. Register 98 has value 'C'+'U'*256 = 21827 if
[CURSOR UP] was pressed; value 'C'+'D'*256 = 17475
if [CURSOR DOWN] was pressed.

Chapter 4 Command Reference 167



GN Get_Num("mtext")
Options: STATLINE, SUPPRESS, TAB8

Usage: #15=Get_Num("Enter Line Number: ")

Description: Get_Num("mtext") prompts on the screen with 'mtext' and returns the
value of the numeric expression that is entered. 'mtext' may be
multiple lines long or may include "\n" to indicate new lines.

The user normally ends the number (expression) with <Enter>, but
any invalid character also ends the number. Immediately pressing
<Enter> returns "0".

Get_Num("mtext",TAB8) expands any Tab characters in 'mtext'
assuming tab stops at every 8 columns.

Get_Num("mtext", STATLINE) prompts on the status line; 'mtext'
must then be a single line prompt.

Get_Num("text",SUPPRESS) returns the value of the simple deci-
mal number; e.g. if "123+456" is entered, it returns 123. The rest of
the input line is ignored.

Get_Num("text","default") prompts with an initial (default) input
line of 'default'.

Return: Returns the value of the numeric expression entered, as described
above. Chars_Matched is set to the number of characters evaluated;
e.g. for "123" Chars_Matched is set to 3.

Notes: The response line may be edited in the same way as a dialog string.

See Also: Commands: Chars_Matched, Dialog_Input_1( ), Get_Input( ),
Get_Key( ), Message( ), Num_Eval( )

Examples: #15=Get_Num("Enter Line Number:")
Goto_Line(#15)

Prompt for the desired line number. Then
moves the edit position to that line in the file.

Goto label
Usage: if (Return_Value==3) Goto EndMacro

Description: Goto label jumps to the label "label:" or ":label:" in the current text
register (buffer). It cannot jump into the middle of a While, Do-while,
For or Repeat loop. However, it can jump out of a loop or jump
within the loop. VEDIT searches from the beginning of the currently
executing text register (macro) for the label.

`label' can be a variable by using the contents of a text register as the
entire label name or just part of the label name. (See examples.)

Notes: Labels with both colons are preferred; they execute a little faster.

168 Chapter 4 Command Reference



See Also: Commands: Goto_Pos( ), Break, Return( ), Continue
Topics: "Flow Control - Break-out Commands" in Chapter 3
"Commenting Macros"

Examples: Goto ERROR1 Jump to the label "ERROR1:".

Goto @(9) Use the contents of T-Reg 9 as the entire
label name. E.g. if T-Reg 9 contains
"END", it jumps to the label "END:".

Goto OPTION-|@(9) Use T-Reg 9 as part of the label name.
E.g. if T-Reg 9 contains "A", it jumps to
the label "OPTION-A:".

GC Goto_Col(n)
GL Goto_Line(n)
GM Goto_Marker(m)
GP Goto_Pos(n)
Usage: Goto_Pos(100) Goto_Pos(#98) Goto_Marker(4)

Description: Goto_Col(n) moves the edit position as close as possible to column
'n' on the current line. If the desired column is in the middle of a Tab
or other expanded character, it moves to the next character. If the
desired column is past the end-of-line, it moves to the end of the line.
Characters have a "width" according to the current display mode.

Goto_Col(n,EXTRA) also forces the Visual Mode cursor to column
'n' so that Cursor_Col = 'n'. It can be positioned past the end of the
line. It should normally be immediately followed by Visual( ).
Goto_Line(n) moves the edit position to the beginning of line 'n'.

Goto_Marker(m) moves the edit position to the previously set text
marker 'm'.

Goto_Pos(n) moves the edit position to file position 'n'. 'n' is usually
the value of a text marker (Marker(n)), block marker (Block_Begin,
Block_End), or numeric register containing a computed position.
Position "0" is the first character in the file.

Notes: Goto_Col(n) is equivalent to {GOTO, Column #}.
Goto_Line(n) is equivalent to {GOTO, Line #}.
Goto_Marker(n) is equivalent to {GOTO, Goto text marker}.
Goto_Pos(n) is equivalent to {GOTO, File position}. Goto_Pos(0)
is equivalent to Begin_Of_File( ).

See Also: Commands: Char( ), Set_Marker( ), Cur_Pos

Examples: Goto_Pos(Marker(1)) Jump to the position in the file saved in
text marker "1".

Chapter 4 Command Reference 169



H Help( )
Usage: H Help("file_open") H("command")

Description: Help( ) starts up the on-line help system with the topic "Commands"
which gives a listing of all commands.

Help("topic") starts up the on-line help at the topic 'topic'.

Notes: The DOS/QNX/Linux version's vphelp.hlp file is user change-
able and expandable. See the on-line help topic "ONLINE" for
details.

Examples: Help("file_open") Starts up the on-line help and immediately
accesses the File_Open( ) command topic.

IC Ins_Char(n)
II Ins_Indent(n)
IN Ins_Newline(n)

Options:
COUNT, OVERWRITE

Usage: Ins_Char(12,OVERWRITE) IN(2) II(40)

Description: Ins_Char(n) inserts the character with decimal value 'n' at the edit
position. This is useful for inserting control characters with a decimal
value between 0 and 31 and extended/graphics characters with a
decimal value between 128 and 255.

Ins_Char(n,OVERWRITE) overwrites the existing character.

Ins_Char(n,COUNT,n2) repeats the insertion 'n2' times. The count
value can be zero -- it then inserts nothing.

Ins_Newline(n) inserts 'n' "newlines" (blank lines) and advances the
edit position. The actual "newline" depends upon the buffer's file type
and can be a single Carriage-Return (Mac), Line-Feed (Unix) or both
(Windows/DOS).

Ins_Newline(0) inserts nothing; therefore, Ins_Newline(c) will in-
sert a "newline" only if condition 'c' is TRUE.

Ins_Indent(n) inserts the optimum number of tabs and spaces to
reach column 'n'. If the edit position is already past column 'n', it does
nothing. If {CONFIG, Emulation, Expand <Tab> with spaces}
(Config(E_EXP_TAB)) has Mask-1 set, only spaces are inserted to
reach the indent column.

See Also: Commands: Ins_Text( ), Out_Ins( ), Newline_Chars
Topics: "Entering Control Characters" in Chapter 3
[ENTER CTRL] function

170 Chapter 4 Command Reference



Examples: Ins_Char(#20) Insert the character whose value is in numeric
register 20.

IC(132) Insert a graphics character into the text.

IM Insert_Mode(n)
Options: CLEAR, SET

Usage: Insert_Mode(SET) Insert_Mode

Description: Insert_Mode(SET) or Insert_Mode(1) enables "Insert" mode for
Visual Mode editing.

Insert_Mode(CLEAR) or Insert_Mode(0) puts Visual Mode into
"overstrike" mode.

Insert_Mode, without parameters, just returns the current value.

Return: Returns a value of 1 if in insert mode; 0 if in overstrike mode.

INSF Ins_File("file",n1,n2)]
Options: BEGIN, COLUMN

Usage: Ins_file("file.txt",1,100) INSF("file.txt")

Description: Ins_File("file") inserts a specified line number range of the file 'file'
at the current edit position. If no line range is specified, the entire file
is inserted. The edit position is advanced past the inserted text.

Ins_File("file",BEGIN) positions the cursor at the beginning of the
inserted text (the original edit position.)

Ins_File("file",1,ALL,COLUMN) inserts the file as a columnar
block.

VEDIT's automatic (virtual) file buffering normally allows even large
(multi-megabyte) files to be inserted with Ins_File( ).

Notes: The line numbers of a file can be displayed with Type_File( ).

See Also: Commands: File_Read( ), Type_File( ), File_Open_Read( )
Topics: "Using Text Registers in Filenames" in Chapter 2

Examples: Ins_File("library.asm",34,65)

Lines 34 through 65 of the file LIBRARY.ASM are
inserted at the current edit position.

II Ins_Indent( ) - See Ins_Char( )

IN Ins_Newline( ) - See Ins_Char( )

Chapter 4 Command Reference 171



IT Ins_Text("text")
Options: COUNT, OVERWRITE

Usage: Ins_Text("a word") Ins_Text(" ",COUNT,30)
IT("overlay",OVERWRITE)

Description: Ins_Text("text") inserts 'text' at the current edit position. 'text' may
be several lines long with <Enter> at the end of each line, which then
inserts the "newline" character(s), depending upon the current file
type. (Under Windows/DOS, the "newline" is normally two charac-
ters - Carriage-Return and Line-Feed.) The edit position is advanced
past the inserted text.

Ins_Text("text",OVERWRITE) overwrites the existing text with
the new text.

Ins_Text("text", COUNT,n) inserts the text 'n' times.

Notes: The <Tab> key is not expanded with spaces as is optional in Visual
Mode. It is often easier to insert control characters with the
Ins_Char(n) command.

See Also: Commands: Ins_Char( ), Out_Ins( )
Topics: "Entering Control Characters" in Chapter 2

Examples: Ins_Text("<Enter><Tab>",COUNT,200)

Insert 200 new lines, each beginning with a Tab
character. (The command is two lines long.)

Ins_Text("overwrite",OVERWRITE)
Overwrite the existing text at the current edit
position with the text "overwrite".

172 Chapter 4 Command Reference



IA Is_Altered
IAF Is_Altered_File
IAE Is_Auto_Execution
IDKO Is_Disk_Open

Is_Expired
Is_File_Selector

ILF Is_Long_Filename
Is_Mono

INF Is_New_File
IOR Is_Open_Read
IOW Is_Open_Write
IO Is_Option(x)

Is_OS2
Is_Quiet

ISRI Is_Redirect_Input
Is_Saveas

ISV Is_Startup_Vdm
Is_Support
Is_VSWAP
Is_Windows
Is_Win32_Version
Is_WinNT
Is_Zoomed

Usage: Internal Values

Description: Is_Altered returns 1 (TRUE) if the current edit buffer has been
altered since the last file save.

Is_Altered_File returns 1 (TRUE) if the current file (buffer) has been
altered since it was opened. Saving the file does not change this flag.

Is_Auto_Execution returns 1 (TRUE) if a "-x" invocation macro is
currently running.

Is_Disk_Open returns 1 (TRUE) if the current edit buffer is being
used for disk sector editing, i.e. a disk is open.

Is_Expired returns 1 (TRUE) if the support period for the VEDIT
product is expired, of if VEDIT is running as a trial version and the
trial period is expired.

Is_File_Selector returns 1 (TRUE) if the File-selector window is
currently displayed. It is enabled with {VIEW, File selector}.

Chapter 4 Command Reference 173



Is_Long_Filename returns 1 (TRUE) if long filenames are being
used, e.g. Windows 95. Long filename support can be turned off with
the "-d" invocation option.

Is_Mono returns 1 (TRUE) if VEDIT is using its monochrome screen
attributes (colors), i.e. if {CONFIG, Colors, Enable monochrome}
(Config(S_MONO)) is set. This is true if the adapter card is a
monochrome, if the "-m" invocation option was specified, or
Screen_Mono( ) was executed.

Is_New_File returns 1 (TRUE) if the current file was created, i.e. it
did not exist when it was opened.

Is_Open_Read returns 1 (TRUE) if the input file is open in the
current edit buffer. Note that the input file is closed when the end of
the input file has been read.

Is_Open_Write returns 1 (TRUE) if the output (write) file is open
in the current edit buffer.

Is_Option(x) returns 1 (TRUE) if invocation option "-x" was speci-
fied. This permits a macro to implement custom invocation options.
For example, if VEDIT was invoked with the "-y" option,
Is_Option(y) returns 1 (TRUE).

Is_OS2 returns 1 (TRUE) if VEDIT is currently running under the
OS/2 operating system.

Is_Quiet returns 1 (TRUE) if VEDIT was invoked with the "-q"
option and is therefore running quietly without any screen display. It
returns 2 if the Windows version is currently minimized.

Is_Redirect_Input returns 1 (TRUE) if "keyboard" input to the
macro language commands Get_Input, Get_Key, Get_Num, etc. is
being redirected from a file.

Is_Saveas returns 1 (TRUE) if the output file is different from the
input file due to opening the file with the "-a" option, using {FILE,
Save as} or using File_Open_Write( ).
Is_Startup_Vdm returns 1 (TRUE) if the startup.vdm macro
was loaded and executed at startup. This indicates that the configura-
tion settings loaded from VEDIT.CFG and VEDIT.KEY may have
been changed.

Is_Support returns the product support expiration date for an active
licensed VEDIT; the year is returned in the lower four hex digits, the
month in the next two hex digits. Is_VSWAP (DOS only) returns 1
(TRUE) if VEDIT detects that V-SWAP is installed in memory;
otherwise it returns 0 (FALSE).

Is_Windows returns the version number of the Microsoft Windows
operating system when running under Windows, e.g. 400 (Win95),
410 (Win98), 500 (Win2000) or 501 (WinXP). Otherwise, it returns
0 (FALSE).

174 Chapter 4 Command Reference



Is_Win32_Version returns 1 (TRUE) if the 32-bit Windows version
of VEDIT is running under Windows 95/98/ME or NT/2000/XP.
See also OS_Type.
Is_WinNT returns 1 (TRUE) if the 32-bit Windows version of
VEDIT is running under Windows NT/2000/XP.

Is_Zoomed returns 1 (TRUE) if the editing windows within VEDIT
are zoomed (maximized).

Itoa(n,r)
NS Num_Str(n,r)
Options: EXTRA, FILL, FORCE, HEX, LEFT

Usage: Itoa(#10,11) Itoa(369+454,11)

Description: Itoa(n,r) places the ASCII conversion of numeric expression ‘n‘ into
text register 'r'. I.e., it performs an integer to ASCII conversion.

It is similar to Out_Reg(r) Num_Type(n) Out_Reg(CLEAR); how-
ever no "newline" is appended to the end of the register.

The LEFT, FILL, FORCE, EXTRA and HEX options for the
Num_Type( ) apply to Itoa( ) too. They control how the ASCII
number will be formatted within register 'r'.

Return: Returns the number of character placed into register 'r'.

Notes: Itoa( ) and Num_Str( ) are two names for the same command.

See Also: Commands: Atoi(), Num_Eval( )

KA Key_Add("key-seq","Edit-seq")
Options: INSERT, OK

Usage: Key_Add("Alt-A","[VISUAL EXIT] BOL Block_Copy(1)")

Description: Key_Add("key-seq","Edit-seq") adds the new key assignment for
'key-seq' to the end of the keyboard layout table.

Key_Add(...,OK) skips the confirmation to overwrite an existing
assignment to 'key-seq'.

Key_Add(...,INSERT") inserts the key assignment at the beginning
of the keyboard layout table. This overrides any existing assignment
to 'key-seq', without removing the existing assignment.

Notes: Use {CONFIG, Keyboard layout, Save layout} or the Key_Save( )
command to make any keyboard layout changes permanent.

DOS: Use {CONFIG, Misc, Save into VEDIT} or the
Config_VEDIT ( ) command to save configuration changes into the
executable VEDIT.EXE file.

Chapter 4 Command Reference 175



See Also: Commands: Key_Delete( ), Key_Save( )
Topics: "Modify Keyboard Layout" in Chapter 3

Examples: Key_Add("Alt-A","[VISUAL EXIT] BOL Block_Copy(1)")

Add a keystroke macro which defines <Alt-A> to be a
function which duplicates the current line of text.

Key_Cfg_Pop( )
Key_Cfg_Push( )

Usage: Key_Cfg_Push( ) Key_Cfg_Pop( )

Description: Key_Cfg_Push( ) saves the current keyboard layout by "pushing" it
onto the same text register stack as used by Reg_Push( ).
Key_Cfg_Pop( ) restores the previous keyboard layout by "popping"
it from the text register stack.

Notes: These commands allow a macro to save the current keyboard layout,
modify it for the macro, and then restore the layout when the macro
is done.

These commands must be used with care, or you may crash VEDIT.
In particular, these commands must be balanced with any
Reg_Push( ) and Reg_Pop( ) commands.

In order to provide some protection again accidentally crashing
VEDIT, Key_Cfg_Pop( ) checks that the first two bytes about to be
popped are "02 FF" (hex); if not it gives a "NESTING (STACK)
ERROR".

These commands stop any keystroke macro that might be running.

See also: Commands: Reg_Push( ), Win_Cfg_Push( )

KD Key_Delete("key-seq")
Options: NOERR, REVERSE

Usage: Key_Delete("Alt-A") Key_Delete("[MENU]FS",REVERSE)

Description: Key_Delete("key-seq") deletes any keyboard assignment to 'key-
seq'. In case the keyboard layout table contains multiple assignments
to this key, only the first one in the table is deleted.

Key_Delete("key-seq",NOERR) suppresses the error, which is oth-
erwise given, if 'key-seq' is not assigned.

Key_Delete("edit-seq",REVERSE) deletes the keyboard layout en-
try which assigns any key to the specified "edit-sequence". (If the
layout contains multiple assignments to the same edit-sequence, only
the first is deleted.)

Notes: See the notes for Key_Add( ).

176 Chapter 4 Command Reference



See Also: Commands: Key_Add( ), Key_Save( )
Topics: "Modify Keyboard Layout" in Chapter 3

Examples: Key_Delete("Alt-A",NOERR)

Delete any key assignment to <Alt-A>.
Key_Delete("[MENU]FS",REVERSE+NOERR)

Remove any hot-key assigned to {FILE, Save}.

Key_Jam (DOS Only)
Usage: Key_Jam('A') Key_Jam(0x1600)

Description: Key_Jam( n) enters (jams) the keyboard character or scan-code 'm'
into the hardware keyboard buffer. Simulates a user typing. The
keyboard buffer can usually only hold 16 characters. Values are:

1 - 255
Scan-code * 256

Control, ASCII and graphics characters
Function keys.

See Also: Commands: Get_Key(), Key_Purge()
On-line help: Topic "USER" has a complete example.

Examples: Key_Jam('A') Simulates user typing "A".

Key_Jam(0x3B00) Simulates user typing <F1>.

Key_List( )
Usage: Key_List( )

Description: Key_List( ) displays (lists) the entire keyboard layout, including any
keystroke macros. It has the same format as the vedit.key file
saved with Key_Save( ).

See Also: Commands: Key_Add( )
Topics: "Modify Keyboard Layout" in Chapter 3

Examples: Buf_Switch(Buf_Free(EXTRA))
Out_Ins() Key_List() Out_Ins(CLEAR)
Search("|lt-T",BEGIN+NOERR)

Insert the keyboard layout into an "extra"
buffer and search for an assignment to
"Alt-T".

KL Key_Load("file")
Options: NOERR

Usage: Key_Load("special.lay") KL("vedit.key")

Description: Key_Load("file") loads a new keyboard layout table from the file
'file'. If the file is not found in the current directory, the VEDIT Home
Directory will be searched.

Chapter 4 Command Reference 177



Key_Load("file",NOERR) suppresses the error message if 'file' is
not found.

The loaded keyboard layout table can be in either the "text" or
"binary" format; the "binary" format loads much faster. When loading
a "text" formatted table, it is checked for syntactic errors. Errors are
reported as "Error in Keyboard file, Line # nnn".

Notes: A keyboard layout table is saved to disk with {CONFIG, Keyboard
Layout, Save to Disk} or with the Key_Save( ) command. It includes
any added keystroke macros. Keyboard layout tables saved in "text"
format can easily be edited as a normal file.

Loading a new keyboard table overwrites any existing keystroke
macros. Upon entering Visual Mode the keyboard table is checked
for validity. An invalid table gives the error "KEYBOARD LAYOUT
CORRUPTED".

See Also: Commands: Visual( ), Key_Save( ), Reg_Load( )
{CONFIG, Keyboard Layout} menu
Topics: "Modify Keyboard Layout" in Chapter 3

Examples: Key_Load("special.key") The file SPECIAL.KEY replaces the
current keyboard layout table includ-
ing any keystroke macros.

Key_Pop(n)
Usage: Key_Pop(5)

Description: Key_Pop(n) pops (removes) the first 'n' entries from the keyboard
layout table. These are normally "temporary" assignments inserted
with the Key_Add(...,INSERT) command; therefore 'n' is equal to
the number of these preceding Key_Add( ) commands.

Notes: Nothing prevents Key_Pop(n) from removing all or part of the
original keyboard layout. The command Key_Pop(ALL) removes
all key assignments, in effect initializing the keyboard layout.

See Also: Commands: Key_Delete( )
Topics: "Modify Keyboard Layout" in Chapter 3

Examples: See the example under "Modify Keyboard Layout" in Chapter 3.

Key_Purge( )
Usage: Key_Purge( )

Description: Key_Purge( ) purges any pending keystrokes. This includes not only
unprocessed keyboard characters, but pending characters due to a
keystroke macro, and the [REPEAT] and [REPEAT LAST] func-
tions.

Notes: Key_Purge( ) can be used before Get_Key( ) to ensure that
Get_Key( ) reads only the next keyboard character.

178 Chapter 4 Command Reference



Key_Purge( ) can be used after Get_Key( ) to purge extra characters
resulting from a keystroke macro.

KRM Key_Record_Mode( )
Usage: Key_Record_Mode(1) Key_Record_Mode

Description: Key_Record_Mode(n) sets the special [REPEAT LAST] record
mode to 'n'.The internal value Key_Record_Mode returns the cur-
rent value. The values are:

0 Keystroke recording is turned off; [REPEAT LAST] is disabled.

1 (Normal) Keystroke recording is automatically reset by each
Visual Mode editing operation. [REPEAT LAST] will replay
just the last Visual Mode editing operation.

2 Keystroke recording is enabled — all keystrokes are recorded
until Key_Record_Mode(0) is executed. [REPEAT LAST] will
replay all the recorded keystrokes.

Return: Returns the value of the special record mode.

Notes: [REPEAT LAST] can record up to 128 keystrokes. The special
modes are used in our "vi" editor emulation and probably have limited
use elsewhere.

KSAVE Key_Save("file")
Options: BINARY, OK

Usage: Key_Save("SPECIAL.KSR")

Description: Key_Save("file") saves the current keyboard layout table, including
any keystroke macros, in the file 'file'. It is saved in a "text" format
which is very easy to edit as a normal file. The command option
Key_Save("file",BINARY) saves the layout in a "binary" format
which is not easily edited, but loads much faster.

Key_Save("file",OK) skips the confirmation prompt when 'file'
already exists.

Notes: Key_Save( ) is similar to {CONFIG, Keyboard Layout, Save to a
file}.

See Also: Commands: Key_Load( )
{CONFIG, Keyboard Layout} menu
Topics: "Modify Keyboard Layout" in Chapter 3

Examples: Key_Save("VEDIT.KEY") Save the current keyboard layout and
keystroke macros to disk.

Chapter 4 Command Reference 179



KSTAT Key_Status
KT Key_Total
Usage: Internal Values

Description: Key_Status returns 1 if the keyboard has a character ready. Other-
wise, it returns 0. Note that "keystrokes" can also come from key-
stroke macros, and the [REPEAT] and [REPEAT LAST] functions.

Key_Total returns the total number of keyboard characters typed
since starting VEDIT.

See Also: Commands: Key_Purge( )

LSP Last_Search_Pos
Usage: Internal Value

Description: Last_Search_Pos returns the file position at the time of the last
Search/Replace. Go_Pos(Last_Search_Pos) returns to that position.

L Line(m)
Options: ERRBREAK, NOERR

Usage: Line(120) Line(-14) Line(0)

Description: Line(n) moves the edit position by 'n' lines, to the beginning of the
'n'th following line.

Line(-n) moves the edit position to the beginning of the 'n'th preced-
ing line.

Line(0) moves the edit position to the beginning of the current line.

Attempting to move past either end of file leaves the edit position at
the respective end and gives the error "END OF BUFFER
REACHED". Line(m,NOERR) suppresses the error and continues
with the next command.

Line(m,ERRBREAK) suppresses the error message and performs a
Break to exit any While, Do-while, For for Repeat loop.

Return: Always returns a value of 1. Sets Error_Flag if it attempts to move
past either end of file.

See Also: Commands: Char( ), Type( ), Cur_Line
Topics: "Processing End-Of-File Condition" in Chapter 3

Examples: Line(2200) Move down 2200 lines in the file. E.g., if
the edit position was at the beginning of
the file, this moves to the beginning of
line 2201.

Line(100-Cur_Line) Move to the beginning of line 100 from
anywhere in the file.

180 Chapter 4 Command Reference



MN Macro_Num
Usage: Internal Value

Description: Macro_Num returns the ID number of the text register currently
executing as a command macro. It returns buffer number +128
(+BUFFER) if an edit buffer is executing. It returns 127 if it is
executing from the "COMMAND" prompt. It returns 255 if it is
executing from a keystroke macro.

ML Margin_Left(n)
MR Margin_Right(n)
Usage: Margin_Left(10) ML(1) Margin_Right(70) MR(0)

Description: Margin_Left(n) sets the left margin to 'n' for just the current editor
buffer. Margin_Left(1) restores the default left margin of 1.

Margin_Right(n) sets the right margin to 'n'. Margin_Right(0) turns
off the right margin. Setting the right margin also enables word wrap.

Return: Margin_Left returns the value of the left margin setting.
Margin_Right returns the value of the right margin setting.

Notes: Margin_Left(n) and Margin_Right(n) are more convenient than the
equivalent commands Config(W_RT_MARG,n,LOCAL) and
Config(W_LF_MARG, n,LOCAL). However, to change margins
for all edit buffers, you must use the Config( ) command.

See Also: Commands: Config( )
Topics: "Word Processing Functions" in Chapter 4 of the VEDIT
User's Manual

Examples: Margin_Right(70) Set the right margin at 70 (which also
enables word wrap).

Marker(m)
Usage: Marker(9)

Description: Marker(m) returns the position of text marker 'm' in the file. It returns
-1 if the marker is not set. This can be set in Visual Mode or with
Set_Marker( ).

MW Mark_Word
Usage: Mark_Word()

Description: Mark_Word( ) marks the word at the edit position as a block of text,
setting both Block_Begin and Block_End. If the edit position is on
whitespace past a word, the block will include the whitespace, other-
wise whitespace after the word is not included.

Notes: This command is equivalent to {BLOCK, Select word}.

Chapter 4 Command Reference 181



Match("ss")
Options: Listed below

Usage: Match("align") Match("|<begin") Match("|W",ALL)

Description: Match("ss") compares (matches) the text at the edit position with
the search string 'ss' and returns the results of the match. The match
is only successful if the entire 'ss' matches. 'ss' may contain pattern
matching codes or regular expressions.

Match(@r) matches the text at the edit position with the search string
in text register 'r'. Notes: 'r' must not be empty or VEDIT will give a
"BAD PARAMETER" error. Unless 'r' contains pattern matching
codes, Compare(r) is usually preferable.

Match Command options:

ADVANCE Advances the edit position past the matching charac-
ters, but only if the entire match is successful.

CASE Match is case sensitive.

WORD Match is restricted to entire words (surrounded by
separators.

COUNT, n Match for the 'n'th occurrence of 'ss'.

REGEXP Match using regular expressions, using "minimal"
matching.

REGEXP+MAX Match using regular expressions, using maximized
matching.

ALL Matches as many consecutive occurrences of 'ss' as
possible. It is usually used together with the
ADVANCE option.

Return: The results of the comparison are returned and saved in
Return_Value:

0
1
2
3

The comparison is successful, the entire 'ss' matches.
The text is lexically "greater than" 'ss'.
The text is lexically "less than" 'ss'.
The mismatch occurred on a pattern matching code in 'ss'.

If the comparison is successful, Chars_Matched is set to the number
of matching characters. If not successful, Error_Flag and
Error_Match are set to 1 (TRUE).

Notes: Match("ss") is different from Search("ss") in that Search( ) will
search for the string, while Match( ) fails if it does not completely
match the text at the current edit position. Also, no error message is
given if Match( ) is unsuccessful. Use the command form
Match(@r) when the search/match string is contained in text register
'r'.

182 Chapter 4 Command Reference



See Also: Commands: Compare( ), Search( ), Reg_Compare( ),
Return_Value, Chars_Matched, Error_Flag
Topics: "Match and Compare" in Chapter 3

Examples: Match("|<Begin") Check if the edit position is at the beginning
of a line beginning with the word "begin".

MI Match_Item
Usage: Internal Value

Description: Match_Item returns the item number that matched in a search using
the "|{...}" pattern matching code. See Pattern Matching in the VEDIT
Users Manual. For example, if the command Search("|{cat,dog,
lion,mouse}") finds "lion", Match_Item returns 3.

MP Match_Paren( )
Options: ERRBREAK, NOERR

Usage: Match_Paren( ) MP(NOERR)

Description: Match_Paren( ) searches (forwards) for the next grouping character
— "{", "}", "[", "]", ">", "<", "(", ")". If the edit position is already at
one of these characters, it searches (forwards or backwards) for its
"matching" character. It supports nested "parentheses". The com-
mand is primarily useful for checking the syntax of structured pro-
gramming languages such as "C" and VEDIT macros.

Match_Paren(NOERR) suppresses the error message if no initial or
matching "parenthesis" can be found; in this case Error_Flag and
Error_Match are set.

Match_Paren(ERRBREAK) also suppresses the error message, but
performs a Break out of any command loop.

Notes: Match_Paren( ) is equivalent to{GOTO, Match Parentheses}.

Max(n,m)
Min(n,m)

Usage: Max(Block_Begin,Block_End) Min(Block_Begin,Block_End)

Description: Max(n,m) returns the greater of the two numeric values 'n' and 'm'.

Min(n,m) returns the lesser of the two numeric values 'n' and 'm'.

Notes: VEDIT can distinguish between the Max( ) command and the MAX
numeric value by its context.

Chapter 4 Command Reference 183



Examples: Min(Block_Begin,Block_End)

Return the position of the first character in the
highlighted block. This handles the case
where a block is highlighted in the reverse
direction, i.e. where Block_Begin is the end
of the block.

MF Mem_Free(n)
Usage: Mem_Free(40000) MF(1) Mem_Free

Description: Mem_Free(n) makes 'n' bytes of memory free in the edit buffer, if
possible, by buffering some of the file to disk. The command
Mem_Free(1) tries to squeeze the edit buffer down to approximately
8 Kbytes in size.

Mem_Free(n) does not buffer out any text which is within 2000 bytes
of the edit position. If the desired amount cannot be written to disk
with just forward file buffering, it will also use backward file buffer-
ing. If 'n' is too large, it will make as much memory free as possible.

Mem_Free, without parameters, only returns the number of bytes
free in the edit buffer.

Return: Returns the (new) number of bytes free in the current edit buffer, after
any buffering was performed.

Notes: No indication is given if the desired amount of memory could not be
made available. Use the returned value, to confirm how much is free.

The primary purpose for Mem_Free(n) is to maintain compatibility
with macros written for older versions of VEDIT. It was typically
needed to make a large block of memory free before certain edit
operations. However, the current VEDIT will generally perform the
equivalent file buffering automatically as needed.

See Also: Commands: Mem_Status, Buf_Switch( )
Topics: "Explicit Read/Write Commands" in Chapter 3

Examples: Mem_Free(40000) Make 40000 bytes free in the edit buffer.

MSTAT Mem_Status
Usage: Mem_Status MSTAT

Description: Mem_Status displays the number of memory bytes free in the current
edit buffer, followed by the number of bytes in the edit buffer,
followed by the combined number of bytes in all the text registers.

See Also: Commands: Reg_Status, Mem_Free

Examples: File_Read(100)
Mem_Status

An additional 100 lines from the input file are
appended and the remaining number of free
bytes displayed.

184 Chapter 4 Command Reference



M Message("mtext")
STATM Statline_Message("itext")
Options: EXTRA, STATLINE, TAB8

Usage: Message("Part 1 is done\n")
Message("Press \<CA> to Cancel",EXTRA)
Statline_Message("Processing is done.")

Description: Message("mtext") displays 'mtext' on the screen at the current win-
dow position. 'mtext' may be several lines long with <Enter> at the
end of each line or may contain "\n" to indicated new lines. The
command is often used in command macros to display messages,
menus, forms and prompts.

Message("...\<vm>...",EXTRA) displays and highlights the name
of the key assigned to the edit function 'vm'. This allows a prompt to
reflect the current keyboard layout. Appendix A lists the vm-codes.

Message("mtext",STATLINE) displays the text on the status line
— 'mtext' must then be a single line prompt.

Message("mtext",TAB8) expands any Tab characters in 'mtext' as-
suming tab stops at every 8 columns.

Statline_Message("itext") displays 'itext' on the status line; it will
remain until the next keystroke. 'itext' can contain "|@(r)" to use the
contents of text register 'r'.

Notes: The Win_Hor( ) and Win_Vert( ) cursor positioning commands can
be used to display the text at any position in the window.

See Also: Commands: Get_Input( ), Get_Key( ), Get_Num( ), Out_Print( )
Topics: "Interactive Input and Output" in Chapter 3

Examples: Out_Print Message("Chapter 1\n")

The header line "Chapter 1" is printed and the printer
is advanced to a new line.

Min( ) - See Max( )

Mouse_Active (DOS Only)
Usage: Internal Value

Description: Mouse_Active returns a non-zero value if the mouse is active. It
returns 0 if the mouse is not active, either because the mouse driver
is not installed or because {CONFIG, Misc, Mouse cursor} is set to
"0".

Chapter 4 Command Reference 185



ND Name_Dir( )
Options: NOMSG, NOCR

Usage: Name_Dir(NOMSG) ND

Description: Name_Dir( ) displays the current drive and directory. The command
option Name_Dir(NOMSG) omits the "Directory: " header, and the
option Name_Dir(NOCR) omits the following "newline".

Notes: The current directory can also be displayed with Chdir.

Examples: Out_Reg(20) Name_Dir(NOMSG+NOCR) Out_Ins(CLEAR)

Insert the current drive and directory into text
register 20.

NF Name_File( )
Options: EXTRA

Usage: Name_File( )

Description: Name_File( ) displays the names of both the input and output files.
Name_File(EXTRA) includes the complete drive and path of the
input and output files.

See Also: Commands: Name_Dir( )

NR Name_Read( )
NW Name_Write( )
Options: EXTRA, NOCR, NOMSG

Usage: Name_Read( ) NR(NOCR+NOMSG) NW(EXTRA)

Description: Name_Read( ) displays the current buffer's input filename.

Name_Write( ) displays the current buffer's output filename. The
command option "EXTRA" also displays the drive and path of the
file. The command option "NOMSG" omits the "Input/Output file:"
header, and the option "NOCR" omits the following "newline".

See Also: Commands: File_Open( ), Is_Open_Read
Topics: "Explicit Read/Write Commands" in Chapter 3

Examples: Out_Reg(50) Name_Read(EXTRA+NOMSG+NOCR)
Out_Reg(CLEAR)
Out_Reg(51) Name_Write(EXTRA+NOMSG+NOCR)
Out_Reg(CLEAR)

Insert the full path and filename of the current
input file into register 50, and the current
output file into register 51.

186 Chapter 4 Command Reference



NC Newline_Chars
NTS Next_Tab_Stop

N_Option
Num_All_Bufs
Num_Edit_Bufs

Usage: Internal Values

Description: Newline_Chars returns the number of characters expected in the
"newline" sequence at the end of each text line. It returns 1 when the
file type is set for UNIX or Macintosh; 2 when configured for
Windows/DOS; 0 for fixed-length records, e.g. record/binary mode.
The file type is determined by {CONFIG, File handling, File type}
(same as Config(F_F_TYPE)).
Next_Tab_Stop returns the column position of the next tab stop
based on the current value of Cur_Col. It returns 0 if no more tab
stops are defined.

N_Option returns the value of the number following the "-n" invo-
cation option. If "-n" was not specified, it returns -1. This is an easy
way to pass a numeric value to a macro when starting up VEDIT.

N_Option(n) forces the value of N_Option to 'n'. This is primarily
used when the macro called by Call_File( ) expects a parameter to
normally be set with the "-n" invocation option. E.g.

N_Option(80)
Call_File(100,"convert.vdm")

//Record length is 80
//Convert fixed length
//records to CR+LF

Num_All_Buffers returns the maximum number of all edit buffers
in VEDIT including "extra" buffers. It is 125 for the Windows version
and 36 for the DOS version. Permits a macro to account for future
versions of VEDIT which may have more buffers.

Num_Edit_Buffers returns the maximum number of normal edit
buffers in VEDIT that can be used for file editing. It is 99 for the
Windows version and 32 for the DOS version.

See Also: Commands: Config_Tab( ), Previous_Tab_Stop( )

NDS Num_Display(x,y)
Options: ALL, COUNT, NOMSG

Usage: Num_Display(0,109,ALL+COUNT,10)

Description: Num_Display(x,y) displays the non-zero numeric registers 'x'
through 'y' in the format "#xx = value", one register per line.

Num_Display(x,y,ALL) displays the registers even if their value is
zero. The command option "NOMSG" is the same as "ALL", but
omits the heading "#xx = ".

Chapter 4 Command Reference 187



Num_Display(x,y,COUNT,n) displays the registers in 'n' columns.

See Also: Commands: Num_Type( )

Examples: Num_Display(0,127,ALL+COUNT,10)

Display the values of all numeric registers in
ten columns.

NE Num_Eval( )
Options: ADVANCE, SUPPRESS

Usage: Num_Eval(ADVANCE)

Description: Num_Eval( ) evaluates the numeric expression at the edit position
and returns its value. For example, with the text "123+45/5",
Num_Eval( ) will return 132.

Num_Eval(ADVANCE) advances the edit position past the numeric
expression.

Num_Eval(SUPPRESS) limits evaluation to a simple number. That
is, with the text "123+45/5", it will return 123.

Return: Returns the value of the numeric expression evaluated.
Chars_Matched is set to the number of characters in the expression.

See Also: Commands: Atoi(), Get_Num() Num_Eval_Reg()

NED Num_Eval_Date( ) (Windows Only)
NID Num_Ins_Date(n)
Options: ADVANCE, BEGIN, EXTRA, NOCR, VALUE

Usage: Num_Eval_Date( )

Description: Num_Eval_Date( ) evaluates a date mm/dd/yyyy or mm-dd-yyyy as
the number of days since 01-01-0001, assuming the Gregorian calen-
dar and leap years, and returns the number.

Num_Eval_Date(BEGIN) evaluates a date dd/mm/yyyy or
dd-mm-yyyy.

Num_Eval_Date(EXTRA) evaluates mm/dd/yy as mm/dd/19yy.

Num_Eval_Date(ADVANCE) advances the edit position past the
date.

Num_Ins_Date(n) inserts 'n' as a date mm-dd-yyyy into the edit
buffer and advance the edit position, where 'n' is the number of days
since 01-01-0001 assuming the Gregorian calendar and leap years.

Num_Ins_Date(n,BEGIN) inserts the date as dd-mm-yyyy.

Num_Ins_Date(n,NOCR) suppresses the "newline" following the
inserted date.

188 Chapter 4 Command Reference



Num_Ins_Date(n,VALUE,'/') inserts the date as mm/dd/yyyy. Any
desired separator character can be specified.

Return: Num_Eval_Date( ) returns the evaluated date as an integer.
Chars_Matched is set to the number of characters in the date.

Notes: Every 4th year is a leap year except when evenly divisible by 100;
however years evenly divisible by 400 are leap years. Therefore 1900
was not a leap year, but 2000 was.

Historical dates before 1582 may be off by 11 days due to the switch
in 1582 from the Julian to Gregorian calendars.

Subtract 693596 to determine the number of days since Jan. 01, 1900.

See Also: Commands: Date( ), Num_Eval( ), Num_Ins( )

Examples: The following macro searches the current file for every date, assum-
ing the mm/dd/yyyy format, and advances the date by seven days.

BOF()
while( ! At_EOF ) {

Search("|D|D/|D|D/|D|D|D|D",ERRBREAK)
#1 = Num_Eval_Date()
Del_Char(Chars_Matched)
Num_Ins_Date(#1+7)

}

NER Num_Eval_Reg( ) - See Atoi( )

NI Num_Ins(n)
Options: EXTRA, FILL, FORCE, LEFT, NOCR - See Num_Type( )

Usage: Num_Ins(#5) NI(#90,LEFT)

Description: Num_Ins(n) inserts numeric value 'n' into the text as a decimal ASCII
number followed by a "newline".

Num_Ins(n,OPTIONS) takes the same command options as
Num_Type( ) which control how the inserted ASCII number is
formatted and padded.

Notes: Num_Ins(n) is equivalent to:
Out_Ins Num_Type(n) Out_Ins(CLEAR).
The command #x = Num_Eval sets numeric register 'x' from the
numeric expression (number) at the edit position. This is in many
ways the opposite of the Num_Ins( ) command.

See Also: Commands: Itoa( ), Num_Type( ), Num_Eval( )

Examples: #10 = Get_Num("Enter number to insert: ")
Num_Ins(#10)

Prompt for a number and insert it into
the text.

Chapter 4 Command Reference 189



NID Num_Ins_Date( ) - See Num_Eval_Date( )

Num_Push(x,y)
Num_Pop(x,y)

Usage: Num_Push(10,19) Num_Push(50,50) Num_Pop(10,19)

Description: Num_Push(x,y) saves (pushes) the contents of numeric registers 'x'
through 'y' onto the register stack; the registers are not changed.
Registers are restored from the stack with the Num_Pop(x,y) com-
mand. Up to 254 registers can be saved on the first-in last-out stack.

Num_Pop and Num_Push, without arguments, return the number of
numeric registers that are currently pushed on the stack.

Num_Pop(x,y) restores (pops) the contents of numeric registers 'x'
through 'y' from the numeric register stack. Registers are saved on the
stack with the Num_Push( ) command. If the register stack is empty,
Num_Pop(x,y) has no effect and no error is given.

Notes: Unlike the Reg_Push( ) command, pushing the numeric registers on
the stack does not clear the registers.

The Num_Push(x,y) and Num_Pop(x,y) commands permit a com-
mand macro to use numeric registers for internal purposes and restore
the original contents when the macro is done.

See Also: Commands: Reg_Pop( ), Reg_Push( ), Num_Push( )
Topics: "Numeric Register Stack" in Chapter 3

Examples: Num_Push(15,15)
#15 = Get_Num("Enter Line Number: ")
Goto_Line(#15)
Num_Pop(15,15)

Prompt for the desired line number. Then
move the edit position to that line in the file.
Save the current contents of register 15.

NS Num_Str( ) - See Itoa( )

NT Num_Type(n)
Options: EXTRA, FILL, FORCE, HEX, LEFT, NOCR, NOMSG

Usage: Num_Type(#4) NT(#4,LEFT)

Description: Num_Type(n) displays (types) numeric value 'n' in decimal followed
by a "newline". It is right justified and padded with spaces.

Numbers in the range 0 - 65,535 are right justified in a field of 5
columns. Numbers 65,536 - 2,147,483,647 use a field of 10 columns.
Negative numbers use fields one column larger (6 or 11).

Num_Type(n,FILL) uses "0" for padding instead of spaces.

190 Chapter 4 Command Reference



Num_Type(n,EXTRA) uses extra padding for positive numbers to
have the same width (6 or 11) as negative numbers.

Num_Type(n,FORCE) uses a field width of 10 for all positive
numbers and a width of 11 for negative numbers.

Num_Type(n,FORCE+EXTRA) uses a field width of 11 for all
positive and negative numbers.

Num_Type(n,LEFT) displays the number left justified without any
padding.

Num_Type(n,NOCR) suppresses the following "newline".

Num_Type(n,HEX) displays the number in hexadecimal using the
format 0Xhh, 0Xhhhh, 0Xhh:hhhh or 0Xhhhh:hhhh, depending upon
the number of significant digits. It is always left justified.

Num_Type(n,HEX+NOMSG) displays the number in hexadecimal
in the format "hhhhhhhh" with as many 'hh' hex digits as needed, left
justified; the "0X" and ":" are suppressed.

See Also: Commands: Num_Display( ), Num_Ins( )

Examples: #2=10 #2=#2+12
Num_Type(#2)

Type out numeric register 2, displaying
the value 22.

Out_Print Num_Type(#9) Out_Print(CLEAR)
The value of numeric register 9 is printed
followed by a "newline".

O_Option
OS OS_Type
Usage: Internal Values

Description: O_Option returns the value of the number following the "-O" invo-
cation option. For example, if VEDIT was invoked with "vedit -o4",
O_Option returns 4.

OS_Type returns the operating system type. 1 = Windows, 2 = DOS,
4 = UNIX/XENIX, 5 = QNX, 6=Linux. This permits a macro to
determine which OS dependent commands are available.

See Also: Commands: Is_Win32_Version, Is_WinNT

OF Out_File("file")
Options: CLEAR

Usage: Out_File("savefile") OF(CLEAR)

Description: Out_File("file") re-routes any Command Mode console output to
the file 'file'. Out_File(CLEAR) stops the re-routing, closes the file
and resumes normal console output. The "COMMAND:" prompt also
stops re-routing.

Chapter 4 Command Reference 191



See Also: Commands: Block_Save_As( ), Ins_File( ), Out_Ins( )
Topics: "Re-routing Console Output" in Chapter 2

Examples: Out_File("savedir") Dir( ) Out_File(CLEAR)

Save a display of the currently directory in the
file "savedir".

OI Out_Ins( )
Options: CLEAR

Usage: Out_Ins( ) OI(CLEAR)

Description: Out_Ins( ) re-routes (inserts) any Command Mode console output
into the edit buffer at the current edit position.

Out_Ins(CLEAR) stops the re-routing and resumes normal console
output. The "COMMAND:" prompt also stops any re-routing.

Notes: The Out_Ins( ), Out_OS( ), Out_File( ), Out_Print( ) and
Out_Reg( ) commands can be nested.

See Also: Commands: Out_OS( ), Out_File( ), Out_Print( ), Out_Reg( )
Topics: "Re-routing Console Output" in Chapter 2

Examples: Out_Ins( ) Date(NOCR) Type_Space(2) Time(NOCR)
Out_Ins(CLEAR)

Insert the current date and time.
Out_Ins Dir("*.*",NOMSG) Out_Ins(CLEAR)

Insert the disk directory into the edit buffer,
one filename per line.

Out_OS( ) (DOS Only)
Options: CLEAR

Usage: Out_OS Out_OS(CLEAR)

Description: Out_OS( ) re-routes any Command Mode console output directly to
DOS, bypassing VEDIT's screen and window handling.

Out_OS(CLEAR) stops the re-routing and resumes normal console
output. The "COMMAND:" prompt also stops re-routing.

Notes: This command can be used to initialize a CRT terminal or send a
control sequence to the ANSI.SYS driver. The characters to be sent
would normally be stored in a text register.

This command is rarely needed and must be used with care to avoid
disturbing the screen display.

See Also: Commands: Reg_Type( ), Char_Dump( ), Out_Ins( )
Topics: "Re-routing Console Output" in Chapter 2

192 Chapter 4 Command Reference



Examples: Out_OS Reg_Type(9,0) Dump the contents of text register 9
directly to DOS.

OP Out_Print( )
Options: CLEAR

Usage: Out_Print( ) OP(CLEAR)

Description: Out_Print( ) re-routes the following Command Mode console output
to the printer. This command can be used in conjunction with the
commands Type( ), Directory( ), Type_File( ), Reg_Type( ),
Num_Type( ), etc., to print text.

Out_Print(CLEAR) stops the re-routing and resumes normal con-
sole output. The "COMMAND:" prompt also stops re-routing.

Notes: There is a subtle difference between Out_Print( ) Type( ) and
Print( ). The Print( ) command, do not expand control characters so
that special printer features can be accessed. However, Out_Print( )
Type( ) prints text exactly as it is displayed on the screen according
to the current display mode. For example, in display mode "1" where
control characters are expanded, instead of sending a <Ctrl-H> to the
printer, it would send the two characters "^H".

See Also: Commands: Out_Ins( ), Type( ), Reg_Type( ), Num_Type( )
Topics: "Re-routing Console Output" in Chapter 2

Examples: Out_Print( ) Directory( ) Print the directory on the printer.

OP( ) Reg_Type(6) Print the contents of register 6 on the
printer. (Similar to Reg_Print(6).)

OR Out_Reg(r)
Options: CLEAR

Usage: Out_Reg(8) OR(CLEAR)

Description: Out_Reg(r) re-routes (appends) the following Command Mode con-
sole output to text register 'r'. The re-routing continues until the
command Out_Reg(CLEAR) or the next "COMMAND:" prompt.

See Also: Commands: Out_Ins( )
Topics: "Re-routing Console Output" in Chapter 2

Examples: Out_Reg(11)
Reg_Type_Block(10,1,5)
Out_Reg(CLEAR)

Copy the first five characters of
register 10 into register 11.

Chapter 4 Command Reference 193



OM Overwrite_Mode(n)
Usage: Overwrite_Mode(2) Overwrite_Mode

Description: Overwrite_Mode(n) sets the overwrite-only mode in the current edit
buffer to 'n'. It is identical to Config(F_OVER_MODE, n,LOCAL).
The valid values are:

0 Overwrite-only mode is disabled. (However, it is always enabled
for disk sector editing.)

1 Record mode. Overwrite-only mode is enabled if the "File type"
is set to 8 or greater for fixed-length-record data/binary files.

2 Overwrite-only mode is enabled for all file types.

Overwrite_Mode, without parameters, only returns the value of the
overwrite-only mode setting for the current edit buffer. This is iden-
tical to Config(F_OVER_MODE).

Return: Returns the (changed) value of the overwrite-only mode for the
current edit buffer.

See Also: Topics: "Overwrite-Only Mode" in Chapter 4 of the VEDIT User's
Manual.

PK Previous_Key(n)
Usage: Internal Value

Description: Previous_Key(n) returns the 'n'th most recent keyboard char/func-
tion-code. Previous_Key(0) returns the most recent keystroke. Sim-
ple keys have value 00 - 255. Function-codes have value > 255. The
last 10 keystrokes are available.

Previous_Key(n,RAW) returns the 'n'th most recent raw keystroke.
Function keys return their hardware "Scan-code" multiplied by 256.
The last 128 raw keystrokes are available.

Notes: This command is useful for testing if the same key was pressed two
or more times in a row.

Appendix A lists the function-code values. These are the same values
as returned by the Get_Key( ) command.

See Also: Commands: Get_Key( )

PTS Previous_Tab_Stop
Usage: Internal Value

Description: Previous_Tab_Stop returns the column position of the previous tab
stop based on the current value of Cur_Col. It returns 0 when the edit
position is at the beginning of a line.

See Also: Commands: Config_Tab( ), Next_Tab_Stop( )

194 Chapter 4 Command Reference



PR Print(m)
PB Print_Block(p,q)
Options: COLUMN, COLSET, EVENT, LINESET, NOEVENT,

NORESTORE, RAW, RESET

Usage: Print(40) Print(-ALL) Print_Block(BB,BE)

Description: Print(m) prints 'm' lines using the same range and syntax as the
Type( ) command. If there are fewer than 'm' lines to print, as many
lines as possible are printed and no error is given. Margins and
printing parameters are determined by {CONFIG, Printer} menu or
equivalent Config(P_..) commands.

Control and other characters are printed according to the current Print
mode, set by {CONFIG, Printer, Print mode}. Typically, tabs are
expanded to spaces and other control characters are sent as-is to the
printer without expansion. The Print mode can also be set to print in
hexadecimal or print an EBCDIC file on an ASCII printer.

Print(m,RAW) prints in "Raw" mode without margins and prints all
control characters as-is, without conversion. It ignores all printing
configuration parameters.

If a print-job is not yet open, the "Printer Start String" is sent, if
enabled. Print(m,NOEVENT) suppresses the print-job start (init)
string, even if enabled.

Print(m,EVENT) sends the print-job start string, even if disabled.

Print(m,NORESTORE) moves the edit position just past the last
character printed. If 'm' is negative, there is no apparent change.

Print_Block(p,q) prints the block of text between file positions 'p'
and 'q'.

Print_Block( ) has the same options EVENT, NOEVENT, RAW and
NORESTORE as Print( ); it has the same options COLUMN,
COLSET and LINESET as the Type_Block( ) command.

Notes: Press [CANCEL] (<Ctrl-C>) or <Ctrl-Break> to stop the printing.

Since Print(m) does not move the edit position, it is often followed
by a Line( ) command to advance the edit position to the next block
of text to print.

See Also: Commands: Line( ), Type( ), Reg_Print( ), Out_Print( )
{PRINT} menu

Examples: Begin_Of_File
Print(ALL)

Moves the edit position to the beginning of the
file and prints the entire file.

Chapter 4 Command Reference 195



PE Print_Eject( )
PF Print_Finish( )
Options: EVENT, NOEVENT, SUPPRESS

Usage: Print_Eject(0) Print_Finish

Description: Print_Eject( ) advances the printer to the start of a new page. This is
often called a "Page Eject" or "Form Feed" and causes the following
printed text to start on a new page. Depending upon the setting of
{PRINT, Config, Enable Form Feed} (Config(P_E_FF)), it sends
either a single "Form-Feed" or multiple "Line-Feed" characters to the
printer.

Print_Eject(0) resets the internal line counter without sending any-
thing to the printer. This re-synchronizes VEDIT with the printer
following a manual paper advance. It may also be needed inside
macros which change the Config(P_..) parameters.

Print_Eject(1,NOEVENT) suppresses the print-job start (init)
string, even if enabled. Print_Eject(1,EVENT) sends the print-job
start string, even if disabled. These options are only applicable if the
print-job began with a Print_Eject( ), which is very rare.

Print_Finish( ) finishes the current print job. Assuming {PRINT,
Config, Page eject on finish} is enabled, it first performs a
Print_Eject. If {CONFIG, Printer, Enable printer setup strings}
is set to "2" or "3", sends the "Printer Finish string". It then closes the
print-job; when printing to a file, this also closes the file.

Print_Finish(SUPPRESS) suppresses the page eject, even if en-
abled. Print_Finish(NOEVENT) suppresses the print-job finish
(reset) string, even if enabled. Print_Finish(EVENT) sends the
print-job finish string, even if disabled.

Notes: On most systems the output to the printer is spooled and nothing will
actually print until the print-job is closed.

See Also: Commands: Config( ), Print( )
{FILE, Print} menu

Examples: Begin_Of_File( )
While (!At_EOF) {

Print(40) Line(40)
Page_Eject

}
Print_Finish( )

Prints the entire file, but with only 40
lines of text per page.

Print(-ALL)
Print(ALL)
Print_Finish( )

Prints the entire file using the current
printing margins. The edit position is not
changed. Equivalent to {FILE, Print}
and selecting "All - entire file".

196 Chapter 4 Command Reference



PCPL Printer_CPL
PLN Printer_Line
PLPP Printer_LPP
Usage: Internal Values

Description: Printer_CPL returns the printer's number of "Characters Per Line".
This value depends upon the font and size selected with {CONFIG,
Printer font}, the paper size in the printer and its portrait/landscape
orientation. (Windows only)

Printer_LPP returns the printer's number of "Lines Per Page".

(Windows) If Config(PW_PAPER_L) is set to "0=Auto", this value
depends upon the font and size selected with {CONFIG, Printer
font}, the paper size in the printer and its portrait/landscape orienta-
tion. If Config(PW_PAPER_L) is set to any other value,
Printer_LPP simply returns this value.

(DOS, QNX, UNIX, Linux) Printer_LPP simply returns the value
of Config(P_PAPER_L).
Printer_Line returns the line number on the printed page that the
next Print( ) command would print to, e.g. 1 - 66. It returns 0 (zero)
if nothing has been printed on the current page, e.g. that the top margin
has not yet been printed.

Notes: The expression Printer_LPP - Printer_Line can be used by a
printing macro to determine how many lines are left on the page, e.g.
to ensure that a 10 line table will be printed on one page.

Examples: if ((Printer_LPP - Printer_Line) < 10) {
Print_Eject() }

If less than 10 lines remain on the printed page,
start a new page.

Process_ID (Windows Only)
Usage: Internal Values

Description: Process_ID returns the process ID number assigned by Windows to
the current instance of VEDIT. It can be used to create a unique
temporary filename that won't conflict with other copies of VEDIT
that may be running (as other processes).

Notes: The predefined string variable "PID" is the process ID number
converted into a 5-digit string.

QALL - See Exit( )

QALLY - See Exit( )

Chapter 4 Command Reference 197



RINP Redirect_Input("file")
Options: CLEAR

Usage: Redirect_Input("wildfile.inp") Redirect_Input(CLEAR)

Description: Redirect_Input("file") uses 'file' as the source of the "keyboard"
input characters for the Get_Input( ), Get_Key( ) and Get_Num( )
commands and the "COMMAND:" prompt. The input redirection
automatically ends when the end of the file is reached.

Redirect_Input(CLEAR) ends the input redirection, restoring nor-
mal input from the keyboard.

Notes: Input redirection can be used with the wildfile.vdm macro to
fully automate the processing of many files.

It is currently not possible to redirect input to the Dialog_Input_1( )
command from a file.

See Also: Commands: Is_Redirect_Input
Topics: "Input Commands" in Chapter 3

Examples: The following command starts the Windows version of VEDIT and
uses the input redirection file wildfile.inp as the input to the
WILDFILE macro:

vpw -c'rinp("wildfile.inp") callf(100,"wildfile")'

RCOMP Reg_Compare(r,"text")
Options: CASE

Usage: Reg_Compare(2,"VEDIT")

Description: Reg_Compare(r,"text") compares the contents of text register 'r' to
'text'. This is a character-by-character comparison without Pattern
matching or Regular expressions. The comparison is not case sensi-
tive unless the command option Reg_Compare(r, "text",CASE) is
used.

Two text registers 'r1' and 'r2' can be compared by using the syntax
Reg_Compare(r1,@(r2)). However, 'r' cannot be an edit buffer.

Return: The results of the comparison are returned and saved in
Return_Value:

0
1
2

The comparison is successful, 'r' is "equal to" 'text'.
'r' is lexically "greater than" 'text'.
'r' is lexically "less than" 'text' or 'r' is empty.

Chars_Matched is set to the number of matching characters; is set
to 0 (zero) if the very first character does not match.

If 'r' is empty, Error_Flag is set. If 'text' is Null, e.g. 'r2' is also empty,
the return value is "0", else the return value is "2".

198 Chapter 4 Command Reference



See Also: Commands: Compare( ), Match( )

RC Reg_Copy(r,m)
RCB Reg_Copy_Block(r,p,q)
Options: APPEND, CLIPBOARD, COLSET, COLUMN, DELETE, FILL,

INSERT, LINESET, NORESTORE, RESET

Usage: Reg_Copy(1,40) RC(2,-20,APPEND)
Reg_Copy_Block(9,#10,#11,COLUMN)

Description: Reg_Copy(r,m) copies all text lines from the edit position up to and
including the 'm'th "newline" to text register 'r'. The previous contents
of the register are overwritten, unless the command options
"APPEND" or "INSERT" are used. The text in the edit buffer is
unchanged.

Reg_Copy_Block(r,p,q) copies the block of text starting with the
'p'th character in the file up to, but not including, the 'q'th character
to text register 'r'. The edit position is normally unchanged, however
the command option "NORESTORE" sets the edit position past the
end of the copied block.

Reg_Copy_Block(r,p,q,DELETE) moves the block to register 'r' by
deleting the original block after copying it. The option
"DELETE+FILL" copies the block and then replaces (fills) the
original block with spaces. The "fill" character is set with {CONFIG,
Tab/Fill, Block fill character}. It defaults to spaces.

Reg_Copy_Block(r,p,q,COLUMN) copies a columnar block to the
register. File positions 'p' and 'q' define the corners of the columnar
block. With Reg_Copy_Block(r,p,q, COLSET,c1,c2), 'c1' and 'c2'
specify the columns of the block and file positions 'p' and 'q' (regard-
less of their column position) specify the first and last lines of the
columnar block. During the copy, Tab characters are expanded to
spaces and short lines are padded with spaces — all lines in the
register are of equal length.

Reg_Copy_Block(r,l1,l2,LINESET) copies a line-range block to
the register. All characters on lines (or records) 'l1' through 'l2'
(inclusive) are copied to the register; this includes the "newline" at
the end of line 'l1'.

Reg_Copy_Block(r,p,q,CLIPBOARD) copies the block to register
'r' and then copies 'r' to the Windows clipboard. Special internal
register "120" is a good choice for 'r'; it is automatically emptied when
entering Visual Mode. The maximum block size is 64K. The 32-bit
Windows version has the preferred Clip_Copy_Block( ) command
which supports huge blocks.

Notes: If VEDIT cannot make sufficient memory space available for the text
copy, the text register is only emptied, nothing is copied to it and the
error "BLOCK IS TOO LARGE FOR TEXT REGISTER" is given.

Chapter 4 Command Reference 199



The error "CANNOT MODIFY EXECUTING MACRO" results if a
macro attempts to change a text register which contains an executing
command macro.

Use Reg_Empty( ) to empty text registers that are no longer needed.

See Also: Commands: Block_Copy( ), Clip_Copy_Block( ), Out_Reg( ),
Reg_Ins( ), Type( )
Topics: "Text Registers" in Chapter 3
"Columnar Blocks" in Chapter 4 of the VEDIT User's Manual

Examples: Reg_Copy(1,120) Del_Line(120)

Save 120 lines in text register 1 and then deletes them
from the edit buffer.

Reg_Copy_Block(6,#10,#11,APPEND+COLUMN)
Append the columnar block between the file positions
stored in numeric registers 10 and 11 to text register 6.

RE Reg_Empty(r)
Options: EXTRA

Usage: Reg_Empty(4) RE(100,EXTRA)

Description: Reg_Empty(r) empties text register 'r'. 'r' cannot be emptied if it is
currently executing as a command macro unless the command option
Reg_Empty(r,EXTRA) is used. Reg_Empty(r, EXTRA) must be
used with care, but is useful for saving the memory space of a
command macro which VEDIT thinks is still executing, but is no
longer really needed.

Notes: It is a good habit to empty unused text registers.

See Also: Commands: Reg_Copy( ), Chain( )
Topics: "Command Macros" in Chapter 3

Examples: RE(4) Empty text register 4.

RF Reg_Free
Usage: Internal Value

Description: Reg_Free returns the ID number of the next free (empty) text register
in the range 10 - 99.

Notes: Using Reg_Free is the ideal way for a macro, especially a "subrou-
tine" macro, to determine which text registers can temporarily be used
for its own purposes.

Examine wildfile.vdm to see how Reg_Free can be used.

200 Chapter 4 Command Reference



RI Reg_Ins(r)
Options: BEGIN, CLIPBOARD, COLUMN, FORCE, LINEBLOCK,

OVERWRITE, RAW

Usage: Reg_Ins(4) RI(0,COLUMN)

Description: Reg_Ins(r) inserts the contents of text register 'r' at the edit position.
If the register is empty, nothing is inserted. The contents of the register
are not affected. The edit position is advanced past the inserted text.

Reg_Ins(r,BEGIN) leaves the edit position at the beginning of the
inserted text.

Reg_Ins(r,OVERWRITE) overwrites the existing text at the edit
position. If the buffer is in overwrite-only mode, the
"OVERWRITE" option is automatically selected.

Reg_Ins(r,CLIPBOARD) copies the Windows clipboard to register
'r' and then inserts 'r' into the edit buffer. Reserved register "120" is
a good choice for 'r'; it is automatically emptied when entering Visual
Mode. The maximum block size is 64K. The 32-bit Windows version
has the preferred Clip_Ins( ) command which supports huge blocks.

Reg_Ins(r,FORCE) pads the end of the line with spaces to reach the
cursor column when inserting a columnar block with the cursor past
the end-of-line. It is a special option used internally by {BLOCK,
Insert register} and in BRIEF.KEY. It only works in keystroke
macros run from visual mode.

The register is normally inserted as the same type of block, i.e. stream,
columnar or line-range, as it was saved. However, the command
options "RAW", "COLUMN" and "LINEBLOCK" force the regis-
ter to be inserted as a stream, columnar or line-range block regardless
of how it was saved.

When inserting a columnar block, each line in the register is inserted
into subsequent lines in the text, each time beginning at the original
edit position's column. If the right edge of register 'r' contains jagged
lines, no justification of the block is performed. If {CONFIG,
Emulation, Expand <Tab> with spaces} (Config(E_EXP_TAB))
has Mask-2 reset (e.g. value "0"), any spaces in the inserted text and
surrounding areas are converted to Tab characters.

When inserting a line-range block, the entire block is inserted at the
beginning of the current line.

Notes: With the command form Reg_Ins(r+BUFFER), 'r' can be an edit
buffer, in which case the contents of that edit buffer (but not neces-
sarily the entire file) are inserted.

Reg_Ins( ) is similar to the {BLOCK, Insert register} function.

See Also: Commands: Clip_Ins( ), Reg_Copy( ), Reg_Size( )
Topics: "Text Registers" in Chapter 2, "Block Operations" in Chapter
3, "Columnar Blocks" in Chapter 4 of the VEDIT User's Manual

Chapter 4 Command Reference 201



Examples: Begin_Of_File( )
Reg_Ins(9)

Insert the contents of text register 9
at the beginning of the edit buffer.

Repeat(12) { Reg_Ins(2) } Insert twelve (12) copies of text reg-
ister 2 at the edit position.

Reg_Copy(3,132)
Del_Line(132)
Begin_Of_File
Line(10) Reg_Ins(3)

Move 132 lines of text, by saving it
in text register 3, deleting the original
lines and inserting the text after the
tenth line of the file.

RL Reg_Load(r,"file")
RLP Reg_Load_Part(r,"file",offset,length)
Options: APPEND, EXTRA, HOMEDIR, INSERT, MACRODIR, NOERR,

USERCFGDIR, USERMACRODIR

Usage: RL(4,"part2.txt") Reg_Load(100,"macro1.vdm",EXTRA)

Description: Reg_Load(r,"file") loads the entire 'file' into text register 'r'. The file
is not altered. The command option "APPEND" appends the file to
any existing contents in register 'r'. The command option "INSERT"
inserts the file at the beginning of the register.

Reg_Load(r,"file",HOMEDIR) searches the VEDIT Home
Directory for the file if it is not found in the current directory.

Reg_Load(r,"file",MACRODIR) searches the VEDIT Macro
Directory for the file if it is not found in the current directory.

Reg_Load(r,"file",USERCFGDIR) searches the User Config
Directory for the file if it is not found in the current directory.

Reg_Load(r,"file",USERMACRODIR) searches the User Macro
Directory for the file if it is not found in the current directory.

Reg_Load(r,"file",EXTRA) searches for the file first in the current
directory, then in the User Macro Directory, then in the VEDIT
Macro Directory, and last in the VEDIT Home Directory. "EXTRA"
is equivalent to "USERMACRODIR+MACRODIR+HOMEDIR".

Reg_Load(r,"file",offset,length) loads just a portion of 'file' into 'r'.
The portion begins with the 'offset' character in the file (counting starts
with 0) and consists of 'length' bytes.

Return: Always returns a value of 1. Sets Error_Flag if the file was not found.

Notes: Reg_Load_Part( ) is used by the edit-session-restore feature to
restore the text registers.

See Also: Commands: Reg_Save( ), Ins_File( ), Call_File( )

Examples: Reg_Load(4,"macro.vdm") Load the file macro.vdm into
text register 4.

202 Chapter 4 Command Reference



RLM Reg_Lock_Macro(r)
Options: CLEAR, EXTRA

Usage: Reg_Lock_Macro(10) RLM(0)

Description: Reg_Lock_Macro(r) sets up the macro in text register 'r' to be
executed in place of the normal "COMMAND:" prompt. It is primar-
ily used to display a main menu of operations, as in the WILDFILE
and COMPARE macros. 'r' may be any register except "0".

Reg_Lock_Macro(CLEAR) or Reg_Lock_Macro(0) disable any
"locked-in" macro, as does any invalid 'r'.
VEDIT automatically turns off auto-execution when any syntax or
logical error is encountered in a command macro;
Reg_Lock_Macro(r,EXTRA) keeps the locked-in execution en-
abled. Use this with great care; it can lead to infinite loops that require
re-booting of the computer.

Reg_Lock_Macro, without parameters, only returns the ID number
of the currently locked-in macro, or 0 (zero) if there is none.

Return: Returns the ID number of the currently locked-in macro, or 0 (zero)
if there is none.

Notes: Use this command with care! Since pressing [CANCEL] (<Ctrl-C>)
normally returns to the "COMMAND:" prompt, it re-executes the
register instead. Debug any macros thoroughly before and after
adding the Reg_Lock_Macro(r) command. Be sure to allow a way
for the user to exit VEDIT (it can be done with the {FILE} or
{ESCAPE} menus).

See Also: Commands: Call( ), Reg_Empty( ), Chain( )
Topics: "Locked-in Macros" in Chapter 3

Examples: Reg_Lock_Macro(101) Set up to execute register 101 in
place of the normal command
prompt.

Reg_Lock_Macro(CLEAR) Turn off the locked-in macro
execution.

RMF Reg_Mem_Free
RSIZE Reg_Size(r)
Usage: Internal Value

Description: Reg_Mem_Free returns the number of bytes free (available) for text
register usage.

Reg_Size(r) returns the number of bytes used by text register 'r'. It is
often used to test if a text register is empty.

Chapter 4 Command Reference 203



Examples: Get_Environment(9,"VEDPATH")
if (Reg_Size(9)==0) {

Message("\nError - VEDPATH is not defined!")
}

Read the value of environment variable "VEDPATH"
into register 9; display an error message if it is not
defined.

Reg_Pop( ) - See Reg_Push( )

RP Reg_Print(r)
Options: EVENT, NOEVENT, RAW

Usage: Reg_Print(3) Reg_Print(3,0,RAW)

Description: Reg_Print(r) prints the contents of text register 'r'. Margins and
printing parameters are determined by {CONFIG, Printer} menu or
equivalent Config(P_..) commands.

Control and other characters are printed according to the current Print
mode, set by {CONFIG, Printer, Print mode}. Typically, tabs are
expanded to spaces and other control characters are sent as-is to the
printer without expansion.

Reg_Print(r,n) prints the contents of text register 'r' with a print mode
of 'n', which can printed expanded control characters, print in hexa-
decimal or print EBCDIC characters. See Reg_Type( ) for the values
of 'n'. (Masks 1024, 128, 64 and 04 do not apply to Reg_Print( ).)
Reg_Print(r,0,RAW) prints in "Raw" mode without margins and
prints all control characters as-is, without conversion. It ignores all
printing configuration parameters.

Reg_Print(r,n,NOEVENT) suppresses the print-job start (init)
string, even if enabled. Usually used in conjunction with the "RAW"
option to select printer fonts and other features.

Reg_Print(r,n,EVENT) sends the print-job start (init) string, even if
disabled.

See Also: Commands: Print( ), Out_Print( ), Reg_Type( )
Topics: "Printing Text" in Chapter 2

Examples: Reg_Print(5) Print the contents of register 5.

Reg_Print(9,0) Print the contents of register 9. No characters
are expanded - all characters are sent as-is.

Reg_Print(9,256+16+8+2)
All control characters, except CR and LF are
expanded to "^x" format. Esc is expanded to
"<ESC>". Tabs are expanded with spaces.

204 Chapter 4 Command Reference



Reg_Prot(r,s,n)
Usage: Reg_Prot(9,9) Reg_Prot(10,20,2)

Description: Reg_Prot(r,s,n) sets the write-protection of text registers 'r' through
's' to 'n'. The protection levels are:

0 Write protection is off.

1 Visual Mode and keystroke macros cannot alter registers. How-
ever, registers can be altered from command macros. Technically,
registers are write-protected when Visual_Macro( ) has Mask-8
set, e.g. the macro originated from Visual Mode.

2 Registers cannot be altered, loaded or emptied.

Reg_Prot(r), without options, only returns the protection level of
register 'r'.

Return: Returns the protection level of text register 'r'.

Notes: Reg_Prot(r,s,n) permits macros to protect their registers from inad-
vertent alteration while the user is editing. Any macros which depend
upon the contents of any text register must use Reg_Prot( ) if they
are to be "bullet-proof".

Examples: Reg_Prot(10,20,1) Protect registers 10 thru 20 from altera-
tion from the Visual Mode.

Reg_Push(r,s)
Reg_Pop(r,s)

Options: SET

Usage: Reg_Push(1,9) Reg_Push(100,100)
Reg_Pop(1,9) Reg_Pop(100,100)

Description: Reg_Push(r,s) saves (pushes) the contents of text registers 'r' through
's' onto the register stack and then empties (clears) the register
contents. Registers are restored from the stack with the Reg_Pop(r,s)
command. Up to 128 registers can be saved on the first-in last-out
stack.

Reg_Push(r,s,SET) does not empty (clear) the registers that are
pushed on the stack.

Reg_Pop and Reg_Push, without arguments, return the number of
text registers that are currently pushed on the stack due to
Reg_Push( ), Key_Cfg_Push( ) and Win_Cfg_Push( ).
Reg_Pop(r,s) restores (pops) the contents of text registers 'r' through
's' from the register stack that were saved with the Reg_Push(r,s)
command. If the register stack is empty, Reg_Pop(r,s) has no effect
and no error is given.

Chapter 4 Command Reference 205



Notes: The Reg_Push( ) and Reg_Pop( ) commands permit a command
macro to use text registers for internal purposes and restore the
original contents when the macro is done.

With the "SET" option, you can also push registers 123 and 124,
which are the {USER} and {TOOLS} menus.

It is up to the user to push and pop the registers in the correct order.
The stack operates "first-in last-out". Therefore, multiple
Reg_Pop(r,s) commands should appear in the reverse order from the
original Reg_Push(r,s) commands. For example, Reg_Push(1,4),
Reg_Push(7,9) Reg_Pop(7,9) and Reg_Pop(1,4) correctly save and
restore the registers 1 through 4 and 7 through 9.

In detail, Reg_Push(1,4) pushes (saves) register 1 first, then 2, then
3 and 4 last. Reg_Pop(1,4) pops (restores) register 4 first, then 3, then
2 and 1 last.

See Also: Commands: Num_Push( ), Num_Pop( )
Topics: "Text Register Stack" in Chapter 3
The on-line help has an example using the {USER} and {TOOLS}
menus.

Examples: Reg_Push(1,1)
Reg_Load(1,"oldfile.txt")
Reg_Save(1,"newfile.txt")
Reg_Pop(1,1)

T-Reg 1 is used to copy the file
"oldfile.txt" to "newfile.txt";
however, the original contents
of register 1 are not changed.

RSAV Reg_Save(r,"file")
Options: OK

Usage: Reg_Save(4,"macro1.vdm") RSAV(2,"part2.txt",OK)

Description: Reg_Save(r,"file") saves the contents of text register 'r' in the file
'file'. The register contents are not affected. If an existing 'file' already
exists, the user is prompted for confirmation to overwrite it;
Reg_Save(r,"file",OK) suppresses the confirmation prompt.

Notes: This command is commonly used to save a section of text in its own
disk file, or to save a command macro for later use.

See Also: Commands: Reg_Load( )

Examples: Reg_Save(4,"macro.vdm") Save the contents of text register
4 in the file macro.vdm.

RS Reg_Set(r,"text")
Options: APPEND, INSERT

Usage: Reg_Set(3,"Begin_Of_File Print(ALL)")

Description: Reg_Set(r,"text") places 'text' into text register 'r'. Reg_Set(r,
"text",APPEND) appends the text to any existing contents in the

206 Chapter 4 Command Reference



register. Reg_Set(r, "text", INSERT) inserts the text at the begin-
ning of any existing contents. Reg_Set(s,@r) copies text register 'r'
to text register 's'.

Notes: 'text' may contain the <Enter> key, which inserts the "newline"
character(s).

If insufficient memory space exists, the error "NOT ENOUGH
MEMORY FOR OPERATION" is given and only part of the 'text'
will be inserted.

See Also: Topics: "Loading Macros into Text Registers" in Chapter 3

Examples: Reg_Set(3,"Begin_Of_File Print(ALL)")

The command sequence "Begin_Of_File Print(ALL)"
is placed into text register 3.

RSIZE Reg_Size( ) - See Reg_Mem_Free

RSTAT Reg_Status
Usage: Reg_Status

Description: Reg_Status displays the number of characters held in each text
register. Reg_Status is commonly used to see which registers are
being used and how many characters they hold.

See Also: Commands: Mem_Status, Reg_Size, Buf_Stat

Examples: Reg_Status Display the sizes of the text registers.

Chapter 4 Command Reference 207



RT Reg_Type(r,n)
RTB Reg_Type_Block(r,p,q)
Usage: Reg_Type(3) RT(3,2048) Reg_Type_Block(5,10,20)

Description: Reg_Type(r) displays the contents of text register 'r'. It is commonly
used to view the contents of a register. Control and graphics charac-
ters are expanded according to the current display mode.

The special command form Reg_Type(r,0) displays (dumps) the
contents of register 'r' without any expansion of control or graphics
characters.

Reg_Type(r,n) expands control, tab, graphics and other characters,
and lets you control exactly how they are expanded. The expansion
is controlled by adding together the desired "mask" values:

Mask 32768

Mask 16384
Mask 8192
Mask 4096
Mask 2048
Mask 1024
Mask 512
Mask 256
Mask 128

Mask 64
Mask 32
Mask 16

Mask 08

Mask 04
Mask 02
Mask 01

Display all characters in EBCDIC or via the current
translation table
Display after translating between ANSI/OEM.
Display all characters in bit-wise mode.
Display all characters in octal mode.
Display all characters in hexadecimal mode.
Display <CR>/<LF> as literal characters.
Display graphics characters in the format "nnn".
Display control characters in the format ^x.
Truncate long lines which extend past the right edge
of the window.
Clear window when a <Ctrl-L> is encountered.
Display <CR> and <LF> as "<CR>" and "<LF>".
Display <Ctrl-H> (Backspace) as ^H. (Depends upon
Mask 256.)
Display <Esc> as "<Esc>" instead of a normal control
character.
Pause when a <Ctrl-S> is encountered.
Expand Tabs with spaces.
Use tab stops at every 8.

Reg_Type_Block(r,p,q) displays the block of characters between
positions 'p' and 'q' in text register 'r'. This permits performing
substring operations with text registers, using text registers as fixed
length string arrays and much more. Reg_Type_Block(r,p,q) can be
used in conjunction with Out_Ins( ) to insert a substring of a text
register.

Notes: Press [CANCEL] (<Ctrl-C>) to stop the Reg_Type( ) command.

See Also: Commands: Out_Print( ), Out_File( ), Out_Reg( ), Reg_Print( )
Topics: "Screen Display Modes" in Chapter 4 of the User's Manual

Examples: Out_Print Reg_Type(5,0) Out_Print(CLEAR)

The contents of text register 5 are dumped to
the printer.

208 Chapter 4 Command Reference



Registry_Delete_Item(...)
Registry_Delete_Key(...)
Registry_Get_Item(...)
Registry_Get_Number(...)
Registry_Delete_Key(...)
Registry_Set_Item(...)

Usage: Registry_Get_Item(106,"HKEY_CLASSES_ROOT\http\shell\ope
n\command\")

Description: These very technical commands allow the VEDIT macro language to
access and change the Windows registry.

The commands are fully described in the Windows version on-line
help. For examples, refer to the regvedit.vdm macro.

Notes: Only users that understand the internal structure of the Windows
registry should use these commands.

USE THESE COMMANDS WITH EXTREME CAUTION!!!

Improper use of these commands or "experimenting" could cause
your computer to become unbootable and require a reinstallation of
Windows. Some or all data on your hard disk could become lost!

Remainder
Usage: Internal Value

Description: Remainder returns the absolute value of the remainder from the last
division. For example, following "20/7", Remainder returns the
value 6.

Repeat_Count
Repeat_Flag

Usage: Internal Values (Very technical and rarely used)

Description: Repeat_Count returns the pending [REPEAT] count, or 1 if there
is no repeat count.

Repeat_Flag returns 1 (TRUE) if [REPEAT] is pending. Otherwise,
it returns 0.

R Replace( ) - See Search( )

RB Replace_Block( ) - See Search( )

Chapter 4 Command Reference 209



RPOS Restore_Pos( )
SPOS Save_Pos( )
Options: RESET

Usage: Save_Pos Restore_Pos(RESET)

Description: Save_Pos( ) saves the current edit position on a special stack of "text
markers". You can save up to 5 positions on the stack. Restore_Pos( )
restores the edit position from the most recent position saved with
Save_Pos( ). If the stack is empty, the command has no effect. The
command option Restore_Pos(RESET) empties (resets) the edit
position stack.

RTAB Retab_Block(p,q) - See Detab_Block( )

Return(n)
Usage: if (At_EOF) { Return }

Description: Return(n) stops the currently executing macro. Execution returns to
the parent, or calling macro if there is one, otherwise it returns to the
"COMMAND:" prompt or any "locked-in" macro. Inside a keystroke
macro, it returns to Visual Mode. Return_Value is set to 'n' for
subsequent testing.

Return: This command does not return to the current macro. Return_Value
is set to 'n'.

See Also: Commands: Goto_Pos( ), Break, Continue, Goto label
Topics: "Flow Control - Break-out Commands" in Chapter 3
"Commenting Macros"

Examples: See the topic "Flow Control" in Chapter 3 for examples.

RV Return_Value
Usage: Internal Value

Description: Return_Value returns the value of the last Return(n) executed due
to a Call( ). Selected commands also save their normal return value
in this internal value.

REVV Reverse_Video(n)
Usage: Internal Value

Description: Reverse_Video(n) returns the reverse video of screen attribute 'n'.

SPOS Save_Pos( ) - See Restore_Pos( )

210 Chapter 4 Command Reference



SCOL Screen_Cols
SL Screen_Lines
Usage: Internal Values

Description: Screen_Cols returns the total number of columns currently displayed
on the "screen". For Windows, this is the number of text columns in
a full-sized window; it depends upon the size of the VEDIT applica-
tion window and the display font. For DOS, it is typically 80.

Screen_Line returns the total number of "screen" lines. For Win-
dows, this is the number of text lines in a full-sized window; it
depends upon the size of the VEDIT application window and the
display font. In the DOS version, this is the number of screen lines
displayed in the current hardware mode; it is typically 25.

Notes: Use Screen_Size( ) to change the number of screen lines and/or
columns.

If the DOS screen size is changed with hardware access commands,
Screen_Reset( ) is needed before VEDIT recognizes the new size.

SIBM Screen_IBM
SIBMM Screen_IBM_Mode
Usage: Internal Values

Description: Screen_IBM returns the IBM PC screen display type:
0 = Not IBM PC, 1 = Monochrome (Hercules)
2 = CGA, 4 = EGA, 5 = VGA

(DOS) It is often used to test whether Screen_Size( ) can put an
VGA/EGA into 50/43 lines mode.

Screen_IBM_Mode returns the IBM PC's hardware video mode.
Typically: 3 = color, 7 = monochrome. It can also have other values
for special VGA modes.

SI Screen_Init( ) - See Win_Delete( )

SL Screen_Lines( ) - See Screen_Cols( )

Screen_Mono( )
Usage: Screen_Mono( )

Description: Screen_Mono( ) forces VEDIT to use the monochrome set of screen
attributes. VEDIT always uses monochrome attributes with a mono-
chrome adapter. To fully take effect, Screen_Mono( ) should be
followed with Screen_Init( ).

Notes: Screen_Mono( ) is equivalent to setting {CONFIG, Colors, Enable
monochrome}.

Chapter 4 Command Reference 211



SR Screen_Reset( )
Usage: Screen_Reset( )

Description: Screen_Reset( ) resets VEDIT to the current screen size and mode.
On an IBM PC, it queries the screen hardware and BIOS to determine
the current screen size. It then rewrites the entire screen, resizing
windows as needed.

Screen_Reset( ) should be used after any DOS hardware access
commands that change the video mode or screen size.

SS Screen_Size(l,c)
Options: TOGGLE

Usage: Screen_Size(50) Screen_Size(30,80) SS(TOGGLE)

Description: (Windows) Screen_Size(l,c) changes the VEDIT program window
size so that a full-size editing window with scroll bars has 'l' lines and
'c' columns.

(DOS) Screen_Size(n) attempts to change the screen size to 'n' lines.
On an IBM PC, it will switch to a VGA mode with at least 'n' lines.
The command Screen_Size(TOGGLE) toggles a VGA between 25,
28 and 50 line modes. It is equivalent to {VIEW, VGA/EGA toggle}.

Return: Returns the (new) current number of screen lines.

Notes: The internal values Screen_IBM and Screen_IBM_Mode let a
macro determine the type and video mode of the IBM PC display
adapter on which it is running.

See Also: Commands: Screen_Cols, Screen_Lines, Screen_Type,
Screen_IBM, Screen_IBM_Mode

Examples: Screen_Size(50) (DOS) Switch to VGA 50 line mode.

Screen_Size(30,80) (Windows) Resize the VEDIT program
for a 30x80 full-size editing windows.

ST Screen_Type
Usage: Internal Value

Description: Screen_Type returns the screen display type:
0 = Non-IBM PC (CRT terminal) Monochrome
1 = Non-IBM PC (CRT terminal) Color
2 = IBM PC Monochrome
3 = IBM PC Color (CGA, EGA, VGA)

Screen_Type can be used by a macro to determine which screen
attributes (colors) are usable.

212 Chapter 4 Command Reference



S Search("ss")
SB Search_Block("ss",p,q)
R Replace("ss","rs")
RB Replace_Block("ss","rs",p,q)
Options: Listed below (Not to be confused with Search_Options)

Usage: Search("mispell") Search("smith",REVERSE)
Search_Block("|Sword|S",BB,BE,BEGIN+COLUMN)
Replace("mispell","spell")
RB("the","these",BB,BE,COLSET+WORD+REVERSE,1,20)

Description: Search("ss") searches, starting from the edit position, for the text 'ss'.
The edit position is placed at the first character of the matched text.
If 'ss'is not found, the error "CANNOT FIND string" is given (unless
suppressed) and the edit position remains unchanged.

Search("") searches for the 'ss' previously specified with the "SET"
option or with the [SEARCH] function.

Search_Block("ss",p,q) also searches starting from the edit position,
but the search is only successful if the matching text is entirely
between file positions 'p' and 'q'. To search the entire block, be sure
to first set the edit position at the beginning of the block, perhaps with
Goto_Pos('p').

Replace("ss","rs") searches for the next occurrence of 'ss' and
changes it to 'rs'. The edit position is placed after 'rs' if 'ss' is found,
or else is left at its previous position if not found.

Search/Replace Command Options:

COLUMN Search_Block( ) and Replace_Block( ) only
match text that is entirely within a columnar block.
'p' and 'q' specify the corners of the block.

COLSET, c1, c2 Search_Block( ) and Replace_Block( ) only
match text that is entirely within a columnar block.
'p' and 'q' specify the lines of the block, and 'c1' and
'c2' specify the columns of the block.

LINESET Search_Block( ) and Replace_Block( ) only
match text that is entirely within a line-range block.
'l1' and 'l2' specify the first and last lines.

LOCAL The Search/Replace is limited to the portion of the
file currently in memory.

CASE The Search/Replace is case sensitive; otherwise it
is not case sensitive.

WORD The Search/Replace is restricted to distinct words.

COUNT, n Search( ) searches for the 'n'th occurrence of 'ss'.
Replace( ) replaces the next 'n'th occurrences of
'ss'.

Chapter 4 Command Reference 213



SIMPLE Search/Replace for literal (simple) strings without
using pattern matching or regular expressions.

REGEXP Search/Replace using regular expressions, using
"minimal" matching.

REGEXP+MAX Search/Replace using regular expressions, using
maximized matching.

EBCDIC The search/replace strings are internally translated
from ASCII to EBCDIC. Permits searching for text
in an EBCDIC file.

HEX The search/replace strings consist of hex values
"00" thru "ff" separated by spaces. Hex words,
double-words and quad-words are also supported.

REVERSE Search/Replace is in reverse direction, from the
edit position toward the beginning of the file.

ADVANCE Search( ) only: advances the edit position past the
matched text.

SET Sets the search string for {SEARCH, Next} or
Search("").

BEGIN Starts the Search/Replace from the beginning of
the file. Combined with "LOCAL", starts from the
beginning of the portion of the file currently in
memory.

ALL Search( ) searches for the last occurrence of 'ss'.
Replace( ) replaces all occurrences of 'ss'.

NORESTORE Does not restore the edit position following an
unsuccessful search, but leaves it at the end/begin-
ning of the file. This can save time in large files.

CONFIRM Search( ) sets temporary block markers to the
matched text so that it highlights in Visual Mode,
same as [SEARCH]. Replace( ) prompts for con-
firmation before replacing text, same as
[REPLACE]

NOERR Suppresses the error message if the search is
unsuccessful. Execution continues with the next
command.

ERRBREAK Suppresses the error message if the search is
unsuccessful, but performs a Break out of any
command loop.

Return: Returns the number of occurrences found (or replaced), (0 if none).
Chars_Matched is set to the number of characters matched by 'ss'.
Error_Flag and Error_Match are set if the search is not successful.

The returned value is also saved in Return_Value.

Notes: 'ss' and 'rs' may be up to 260 characters long.

214 Chapter 4 Command Reference



See Also: Commands: Compare( ), Match( ), Match_Paren( ), SR_Set( ),
Chars_Matched, Error_Flag, Error_Match, Return_Value
Topics: "Search and Replace" in Chapter 2
"Pattern Matching and Regular Expressions" in Chapter 4 of the
VEDIT User's Manual

Examples: Repeat (ALL) {
Search("first",COUNT,3)
Ins_Text("third",OVERWRITE)

}
Change every third occurrence of the word "first" to
"third".

Goto_Pos(BB)
Replace_Block("fix up","improve",BB,BE,ALL)

Find all occurrences of the string "fix up" within the block
of text defined by the block-begin and block-end markers,
and replace them with the string "improve".

Search("|<First",REVERSE+NOERR+LOCAL)
Searches backwards for "First" occurring at the beginning
of a line, and limits the search to the text currently in
memory. No error message is displayed if not found.

Search("[A-Z][a-z]*",REGEXP)
Searches for the next capitalized word. It uses regular
expressions.

Search_Options
Usage: Search_Options Search_Options(CASE)

Description: Search_Options returns the search options selected in the last
Search/Replace dialog-box. This includes the search mode values
SIMPLE, REGEXP, MAX, HEX, EBCDIC, and the option values
CASE, WORD, BEGIN, LOCAL, EXTRA. The value "EXTRA"
corresponds to the "[ ] Block" option.

Search_Options(n) sets the saved search options to 'n'. This deter-
mines the search mode (e.g. SIMPLE or REGEXP) and options (e.g.
WORD or BLOCK) for the next {SEARCH, Next} or {SEARCH,
Previous} function.

See also: On-line help for {SEARCH, Search}.

Search_Status
Usage: Internal Value

Description: Search_Status returns the [SEARCH]/[REPLACE] status:

0
1
2

Search/replace is cancelled
[SEARCH] is set up
[REPLACE] is set up

Chapter 4 Command Reference 215



Search_Status permits a macro to predict what operation
{SEARCH, Next} will perform.

Set_Altered_Flag
Usage: Set_Altered_Flag(1) Set_Altered_Flag(0)

Description: Set_Altered_Flag(1) sets an internal flag so that the buffer appears
to have been altered, even if it has not. The value of this internal flag
is returned by Is_Altered.

Set_Altered_Flag(0) clears an internal flag so that the buffer appears
not to have been altered, even if it has.

Notes: This command has only very limited and specialized use. Note that
clearing this flag may cause an altered file not to be saved.

SM Set_Marker(m,n)
Usage: Set_Marker(4,123) Set_Marker(0,Cur_Pos)

Description: Set_Marker(m,n) sets text marker 'm' to file position 'n'.
Set_Marker(m,CLEAR) clears text marker 'm'. There are ten text
markers numbered "0" through "9".

Notes: Set_Marker( ) is equivalent to {GOTO, Set text marker}.
The text markers can be accessed with the command Marker(m).
Setting a text marker to "CLEAR", "-1" or any negative number clears
the marker.

See Also: Commands: Block_Begin( ), Block_End( ), Marker( )
Topics: "Setting Block and Text Markers" in Chapter 3

Examples: Set_Marker(4,123) Set text marker 4 past the 123rd
character in the file.

Set_Marker(0,Cur_Pos) Set text marker 0 at the current
character.

SVL Set_Visual_Line(n)
Usage: Set_Visual_Line(20)

Description: Set_Visual_Line(n) rewrites the Visual Mode window with the
current line displayed on window line 'n'.

Set_Visual_Line(0) centers the current line in the Visual Mode
window.

Notes: Invalid values for 'n' center the line in the window.

Set_Visual_Line( ) is used by keystroke macros that scroll the
current cursor line to a different part of the screen.

See Also: Commands: Win_Scroll_Margin( )

216 Chapter 4 Command Reference



Sleep(n)
Usage: Sleep(25)

Description: Sleep(n) delays for 'n'/10 seconds (i.e 'n' is in units of 1/10 second).
The maximum value for 'n' is 255 (25.5 seconds). VEDIT will appear
completely dead during this delay period, but will respond to
[CANCEL] (<Ctrl-C>).

Notes: The delay has an accuracy of about 5% on an IBM PC under
Windows/DOS.

Examples: Sleep(25) Delay for 2.5 seconds.

Repeat(60) { Sleep(10) } Delay for 60 seconds.

Sort(p,q)
Usage: Sort(0,File_Size) Sort(BB,BE,KEYCOLS,CB,CE)

Description: NOTE: We suggest using the new Sort_Merge( ) command instead.
Sort( ) is internally implemented as a special case of the
Sort_Merge( ) command.

Sort(p,q) sorts the entire lines (records) specified by file positions 'p'
and 'q'. The sort is in ascending order using the entire line as the "key".
Position 'p' can be anywhere on the first line to be included in the sort.
However, if 'q' is at the beginning of a line, that line is not included.

Sort(p,q,KEYCOLS,c1,c2) sorts the entire lines (records) specified
by file positions 'p' and 'q'. The sort is in ascending order using
columns 'c1' through 'c2' (inclusive) as the "key". Position 'p' can be
anywhere on the first line. 'q' can be anywhere on the last line. The
option "KEYCOLS" must be specified.

Lines that are shorter than 'c2' columns are sorted as if they had
trailing "nulls"; they are considered "less than" lines of which they
are a subset.

Lines that are shorter than 'c1' columns are sorted to the beginning of
the block in the order they are encountered.

See Also: Topics: "Sorting Lines" in Chapter 4 of the VEDIT User's manual

Examples: Sort(0,File_Size) Sort all lines in the current file, using the
entire line as the "key".

Sort_Load("file")
Options: NOERR

Usage: Sort_Load("collebc.tbl")

Description: Sort_Load("file") loads an alternate collate table used by the
Sort_Merge( ) command. If no table is explicitly loaded,
Sort_Merge( ) automatically loads the default file colldef.tbl.

Chapter 4 Command Reference 217



Sort_Load("file",NOERR) suppresses the error message if the file
is not found.

Notes: An alternate collate table can be loaded each time VEDIT is started
by adding this command to the ustartup.vdm file.

See Also: Commands: Sort_Merge( )
Topics: "Sorting Lines in a File / Block" in Chapter 4 of the User's
Manual

SMX Sort_Merge(p,q)
Usage: Sort_Merge("10:16,25:35",0,File_Size)

Description: Sort_Merge("keyfield-list",p,q) sorts the block of lines (records)
specified by file positions 'p' and 'q'. The sort is, by default, in
ascending order and is case insensitive. It uses the last loaded collate
table; if none has been loaded, it uses colldef.tbl.

'keyfield-list' specifies the columns to be used as the primary, and up
to nine secondary, sort key fields. Any VEDIT numeric expressions
can be used to specify the beginning and ending column numbers.
Any desired delimiters, such as commas, colons and semicolons, can
be used between the column numbers. Examples are:

"1:10"
"0,15; 1,5; 30,45"
"Column_Begin, Column_End"
"Cur_Col-5, Cur_Col+5"

NOTE: Do not use "-" to indicate a range of columns; it is used as a
"minus" and not as a "dash". However, with the SUPPRESS
option, "-" can be used to indicate a range of columns.

Position 'p' can be anywhere on the first line to be included in the sort.
However, if 'q' is at the beginning of a line, that line is not included.

Sort_Merge(...,REVERSE) sorts in descending order.

Sort_Merge(...,CASE) distinguishes between upper and lower case.
I.e. all upper case letters will occur before the lower case letters.

Sort_Merge(...,NOCOLLATE) sorts based on absolute (hex) value
of each character without using a collate table. Therefore, it distin-
guishes between upper and lower case, and between tab characters
and spaces.

Sort_Merge(...,RESET) clears the Block_Begin and Block_End
markers (if they are set).

Sort_Merge(...,NORESTORE) does not restore the edit position
after the sort; it will remain at the end of the sorted file or block.

Sort_Merge(...,SUPPRESS) does not perform any expression
evaluation of the column numbers specified in 'keyfield-list'. This also
allows "-" to be used as a column range indicator.

218 Chapter 4 Command Reference



Notes: As described under "Technical Description of Sorting Algorithm" in
Chapter 4 of the User's Manual, this command uses 22 "extra" buffers
(104-125) and creates numerous temporary files in the VEDIT Temp
Directory during its operation, especially when sorting huge files.

See also: Commands: Sort_Load( ) Topics: "Sorting Lines in a File / Block" in
Chapter 4 of the User's Manual

Examples: Sort_Merge("1,100",0,File_Size)

Sort the entire file in ascending order, equating upper and
lower case letters. The first 100 columns of each line are
used as the primary "sort key".

Sort_Merge("10,15;1,5;30,45",0,File_Size)
Sort the entire file in ascending order. The field in columns
10 thru 15 is used as primary "sort key"; the field in
columns 1 thru 5 is the secondary sort key, and the field
in column 30 thru 45 is the third sort key.

Sort_Merge(@(15),#20,#21)
Text register 15 contains the keyfield-list of column num-
bers. Numeric register 20 contains the position of the first
line to be sorted; numeric register 21 contains the position
of the last line to be sorted.

Sound(n,k) - See Alert( )

SRD SR_Display( )
SRS SR_Set("ss","rs")
Options: EXTRA, RESET, SET

Usage: SR_Display( ) SR_Set("tipo","typo",SET)

Description: SR_Display( ) displays the current search and replace strings on
separate lines following "SS=" and "RS=".

SR_Display(EXTRA) displays them on one line separated by a
comma and without the headers.

SR_Set("ss","rs") sets the search and replace strings to 'ss' and 'rs'
without performing a replacement operation. It also sets {SEARCH,
Next} into search mode.

SR_Set("ss","rs",SET) sets {SEARCH, Next} into replace mode.

SR_Set("","",RESET) resets (clears) the current search and replace
strings and cancels the {SEARCH, Next} function.

Notes: The primary purpose for these commands is to implement VEDIT's
edit-session-restore feature.

See Also: Commands: Search( ), Replace( ), Search_Status

Chapter 4 Command Reference 219



Statline_Message( ) - See Message( )

Strip_High(m)
Usage: Strip_High(12) Strip_High(ALL) Strip_High(#10,#11)

Description: Strip_High(m) strips the high (8th) bit from all characters in the
specified line range. (Line range is the same as for the Type( )
command.) Strip_High(m) is predominately used to convert Word-
star and similar word processing files into a format easier to use with
VEDIT.

Strip_High(p,q) strips the block of characters between file positions
'p' and 'q'.

Strip_High(p,q,NORESTORE) sets the edit position past the end
of the stripped block.

The command options "COLUMN", "COLSET" and "LINESET"
specify a columnar or line-range block for stripping.

Notes: Be careful not to use this command on IBM PC "graphics" characters
which also have their high bit set. The effects of this command cannot
be undone with "Undo".

See Also: Topics: "WordStar Files" in Chapter 3

Examples: Begin_Of_File( )
Strip_High(ALL)

Strip the high bit from all characters
in the file.

SXL Syntax_Load("file")
Usage: Syntax_Load("clipper.syn")

Description: Syntax_Load("file") loads the syntax highlighting definition file
'file'. These files typically have a ".syn" filename extension. Multiple
.SYN files can be loaded into VEDIT at one time.

Notes: This command is generally not needed because VEDIT automatically
loads .SYN syntax highlighting files as needed.

Color syntax highlighting is usually set up by the File-open configu-
ration feature.

The command Config(PG_E_SYNTAX,1) enables syntax high-
lighting. It is equivalent to enabling {CONFIG, Programming,
Enable color syntax highlighting}. The string variable
SYN_NAME determines which .SYN file the current file/buffer will
use; each buffer has its own SYN_NAME variable. It can be set with
e.g. Config(SYN_NAME,"clipper.syn").
VEDIT must be able to access the supplied macro loadsyn.vdm
which is automatically executed to process the .SYN file.

220 Chapter 4 Command Reference



See Also: Commands: Config_String(SYN_NAME), Template_Load( )
Topics: "Color Syntax Highlighting" and "File-open Configuration"
in Chapter 5 of the VEDIT User's Manual

Sys System("command") / System
Options: LOCAL, NOMSG, OK

Usage: System( ) System("dir") System("vspell |@(98)")

Description: System( ) enters (shells to) the operating system without leaving
VEDIT. Any desired OS commands and programs can be executed.
Give the OS command "exit" to return to VEDIT.

System("command") executes the following OS (UNIX) command
and returns to VEDIT. System("command") can run a DOS com-
mand such as "dir" (UNIX: "ls") or another program such as a
compiler, V-PRINT or V-SPELL.

'command' may contain "|@(r)" to use the contents of text register 'r'
as all or part of the OS command.

Upon returning to VEDIT, the prompt "Press any key to continue" is
displayed. This lets you see the DOS screen before the windows are
rewritten. System("command",NOMSG) suppresses this prompt.

System("command",LOCAL) suppresses the screen rewrite upon
returning to VEDIT. This is useful when executing several
System("command") commands consecutively.

System("command",OK) suppress all screen prompts and rewrites;
it also suppresses scrolling the screen before executing the command.
This is useful for OS commands that run completely invisibly.

Return: Returns the "return code" (DOS: "error-level") of the last OS program
executed.

Notes: Windows/DOS only: The DOS prompt will change to that specified
with Config_String(OS_PROMPT). By default it is "pathname>>"
as a reminder that you are shelled out.

DOS only: If you run another program from within VEDIT it may
not have enough memory to run properly due to the memory used by
VEDIT. You can solve this problem by either using the and supplied
VSWAP program or by invoking VEDIT with the "-S" option. Both
are described in the VEDIT User Manual. If V-SWAP is installed in
memory and {CONFIG, File Handling, Use V-SWAP when enter-
ing DOS} is set, VEDIT will be swapped out of memory.

System( ) is similar to {MISC, DOS shell}.
System("command") is similar to {MISC, Run program}.

See Also: Commands: OS_Type, Is_VSWAP
Topics: {MISC, DOS shell} in the VEDIT User's Manual

Chapter 4 Command Reference 221



Examples: System("vprint chapter1")

Run the program V-PRINT to format and print
the file CHAPTER1.VPR.

System("dir >dirfile",OK)
Reroute the DOS "dir" command into the file
"dirfile". Since there is no screen output, the
"OK" option runs the command "invisibly".

TO Tab_Out( )
Usage: Tab_Out(40)

Description: Tab_Out(n) types spaces to column 'n'. If the cursor (or "write"
position) is already at or past column 'n', it types two (2) spaces.

Notes: Win_Hor( ) can also be used to set the "write" position to any desired
column. However, Tab_Out( ) prevents overwriting existing text on
the screen if the cursor is already past the desired column.

Tab_Out( ) can be re-routed to the printer using Out_Print( );
Win_Hor( ) cannot.

TPL Template_Load("file")
Usage: Template_Load("c.vtm")

Description: Template_Load("file") loads the template editing macro file 'file'.
These files typically have a ".vtm" filename extension. Multiple
.VTM files can be loaded into VEDIT at one time.

Notes: This command is generally not needed because VEDIT automatically
loads .VTM template editing files as needed.

Template editing is usually set up by the File-open configuration
feature.

The command Config(PG_E_TEMPLA,1) enables template edit-
ing. It is equivalent to enabling {CONFIG, Programming, Enable
template editing}. The string variable VTM_NAME determines
which .VTM file the current file/buffer will use; each buffer has its
own VTM_NAME variable. It can be set with e.g.
Config(VTM_NAME, "c.vtm").
VEDIT must be able to access the supplied macro regpreg.vdm
which is automatically executed to process the .VTM file.

See Also: Commands: Config_String(VTM_NAME), Syntax_Load( )
Topics: "Template editing" and "File-open Configuration" in Chapter
5 of the VEDIT User's Manual

Time( ) - See Date( )

222 Chapter 4 Command Reference



TT Time_Tick
Usage: Internal Value

Description: Time_Tick returns the time in milliseconds since VEDIT was started.
It typically has a 1/18 second resolution.

TRB Translate_Block(p,q)
TRL Translate_Load("file")
Options: COLUMN, COLSET, LINESET, NORESTORE, REVERSE

Usage: Translate_Block(BB,BE) TRB(0,File_Size,REVERSE)

Description: Translate_Block(p,q) translates the block of text between file posi-
tions 'p' and 'q' by using the first of two translation tables. By default,
it translates from ASCII to EBCDIC, but other translation tables can
be loaded with Translate_Load( ).
Translate_Block(p,q,REVERSE) translates the block of text by
using the second of two translation tables. By default, it translates
from EBCDIC to ASCII.

During the translation, each byte in the block is converted to another
byte according to the translation table. The size of the file does not
change.

Translate_Block(p,q,NORESTORE) sets the edit position past the
end of the translated block.

The command options "COLUMN", "COLSET" and "LINESET"
specify a columnar or line-range block for translating.

Translate_Load("file") loads the character translation tables from
'file ' into VEDIT. The file consists of two 256-byte tables followed
by the table name.

Notes: The EBCDIC translation table ebcdic.tbl is built into VEDIT
and does not need to be loaded.

Translate_Block(BB,BE) is equivalent to {BLOCK, Edit/trans-
late, Translate to EBCDIC}.
Translate_Block(BB,BE,REVERSE) is equivalent to {BLOCK,
Edit/translate, Translate from EBCDIC}.
Translate_Load( ) is equivalent to {BLOCK, Edit/translate, Load
translate table}.

See Also: Commands: Detab_Block( ), Translate_Char( )
Topics: "Block Operations" in Chapter 3, "Translating a Block or
File" in Chapter 4 of the VEDIT User's Manual

Examples: Translate_Block(0,File_Size,REVERSE)

Translate the entire file using the 2nd transla-
tion table, e.g. from EBCDIC to ASCII.

Chapter 4 Command Reference 223



TRC Translate_Char(n)
Options: ANSI, REVERSE

Usage: Translate_Char(Cur_Char) TRC('A',REVERSE)

Description: Translate_Char(n) returns the value of character 'n' after translating
it using the first translation table, e.g. from ASCII to EBCDIC.

Translate_Char(n,REVERSE) returns the value of character 'n'
after translating it using the second translation table, e.g. from
EBCDIC to ASCII.

Translate_Char(n,ANSI) returns the value of character 'n' after
translating it from the OEM (IBM-PC or DOS) character set to the
best equivalent ANSI character.

Translate_Char(n,ANSI+REVERSE) returns the value of charac-
ter 'n' after translating it from the ANSI character set to the best
equivalent OEM character.

Return: Returns the value of the translated character.

Notes: See the notes for the Translate_Block( ) command.

See Also: Commands: Translate_Block( )

Examples: Ins_Char(Translate_Char(Cur_Char),OVERWRITE)

Translate the character at the edit position
from ASCII to EBCDIC.

TRL Translate_Load( ) - See Translate_Block( )

T Type(m)
TB Type_Block(p,q)
Options: COLUMN, COLSET, LINESET, NORESTORE

Usage: Type(14) Type_Block(#1,#2) TB(BB,BE,COLUMN)

Description: Type(n) displays all text lines from the edit position up to and
including the 'm'th "newline". Type(-n) displays the previous 'n' lines
and all text on the current line up to the edit position. Type(0) displays
the text (if any) preceding the edit position on the current line.

Fewer than 'm' lines are displayed (without error) if either end of the
file/edit buffer is reached.

Type_Block(p,q) displays the block of text starting with the 'p'th
character in the file up to, but not including the 'q'th character.
Counting starts with 0.

Type_Block(p,q,NORESTORE) sets the edit position past the end
of the displayed block.

224 Chapter 4 Command Reference



The command options "COLUMN", "COLSET" and "LINESET"
specify a columnar or line-range block for display.

Notes: The commands Type(0) T( ) displays the current line regardless of
where the edit position is on it. The Type( ) command is useful in
iteration loops for displaying selected lines.

The Type( ) command displays characters according to the current
display mode. The display mode can be changed with {CONFIG,
Characters/Cursors, Screen display mode} or the equivalent
Config(S_DSP_MODE).

See Also: Commands: Line( ), Print( ), Reg_Type( ), Out_Print( )
Topics: "How Control and Graphics Characters are Displayed" in
Chapter 4 of the VEDIT User's Manual

Examples: Begin_Of_File( )
Repeat(ALL) {

Search("money",ADVANCE+ERRBREAK)
Message("Line #:") Cur_Line Type(0)Type( )

}
Display every line with the word "money" in it follow-
ing the line number on which it appears.

TC Type_Char( ) - See Char_Dump( )

TF Type_File("file")
Options: NOMSG

Usage: Type_File("file.txt") TF("a:file.txt",200,400,NOMSG)

Description: Type_File("file") displays a range of lines from another file. If no
line range is specified, the entire file is displayed. Line numbers are
displayed before each line unless suppressed with the "NOMSG"
option. The displayed line numbers may subsequently be used with
the Ins_File( ) command to extract a portion of the file.

Notes: Press [CANCEL] (<Ctrl-\>) or <Ctrl-C> to stop the file display.

See Also: Commands: Ins_File( )

Examples: Type_File("library.asm") Display the entire file "library.asm"
with line numbers.

Type_File("library.asm",1,MAXNUM,NOMSG)
Display the entire file "library.asm"
without line numbers.

Out_Ins Type_File("vedit.key") Out_Ins(CLEAR)
Insert the file VEDIT.KEY, with line
numbers, into the edit buffer at the
current edit position.

Chapter 4 Command Reference 225



TN Type_Newline(n)
TS Type_Space(n)
Usage: Type_Space(2) Type_Newline( )

Description: Type_Space(n) types 'n' blanks (spaces) to the console.

Type_Newline(n) types 'n' "newlines" to the console.

Notes: These commands are primarily used in command macros which are
creating a "menu" or "form" on the screen. Type_Newline( ) is often
used to force the next prompt to start several lines down; however,
"\n" can also be used to start a prompt on a new line.

The Win_Vert( ) and Win_Hor( ) commands can also be used to
position the cursor anywhere in the window.

See Also: Commands: Ins_Newline( ), Tab_Out( ), Win_Vert( ), Win_Hor( )
Topics: "Screen Display Commands" in Chapter 3

Examples: Type_Newline(5) Get_Input(9,"Enter filename: ")

Skip down five lines before displaying the prompt.

UD Undo_Delete( )
UE Undo_Edit( )
UL Undo_Line( )
Usage: Undo_Delete( ) UE( )

Description: Undo_Delete( ) inserts the top item (block of text) from the deletion
stack into the edit buffer. The "first-in, last-out" stack has five levels.
Any deletion of three or more characters is added (pushed) onto the
deletion stack.

Undo_Line( ) undoes the edit changes made to the current line. At
the "COMMAND:" prompt, all changes since the last
"COMMAND:" prompt are undone.

Undo_Edit(n) undoes the last 'n' edit changes. Issued again, it backs
up further.

Notes: Undo_Delete( ) and Undo_Edit(1) and Undo_Line( ) are equivalent
to the {EDIT, UNDO, Delete} and {EDIT, UNDO, Edit}, and
{EDIT, UNDO, Line} functions. All changes from one
"COMMAND:" prompt to the next are considered one edit operation
even though it may involve hundreds of commands (and require
hundreds of undo levels). Command macro operations can only be
undone if Config(CM_E_UNDO) is set to "1" or "2".

See Also: Topics: "Undo in Command Mode" in Chapter 2

Examples: Del_Line(10)
End_Of_File
Undo_Delete

Delete 10 lines of text, move to the end of the
file and re-insert the 10 lines of text.

226 Chapter 4 Command Reference



UR Undo_Reset
Usage: Undo_Reset( )

Description: Undo_Reset( ) resets the Undo facility and clears both the main Undo
stack and the deletion stack. No edit operations performed before the
Undo_Reset( ) can be undone.

Notes: Undo_Reset( ) and the equivalent {UNDO, Reset} function have
several applications. With constrained memory, it may make more
memory available to the text registers and edit buffers. It also prevents
someone from "undoing" too far back.

For example, you could reset the Undo to establish a starting point.
Then try out some edit changes (in either Visual or Command
Modes). If desired, you can then return to the starting point with the
command Undo_Edit(1000).

See Also: Topics: "Undo in Command Mode" in Chapter 3.

U Update( )
Options: SUPPRESS

Usage: Update( ) Update(SUPPRESS)

Description: Update( ) displays (updates) the current edit buffer in a window. If
the current edit buffer does not have an attached (associated) window,
it creates a new overlapping window, similar to entering Visual
Mode. If the attached window is not fully visible, i.e. other windows
are overlapping it, it is made fully visible by bringing it to the top.

Update(SUPPRESS) does not make the attached window fully
visible, i.e. it does not change the order of the windows on the screen.
It is possible that the updated window is completely overlapped and
not visible.

Update( ) is primarily used inside macros that need to update a Visual
Mode window. Visual Mode window(s) normally update automat-
ically while waiting for keyboard characters.

See Also: "Windows" in Chapter 4 of the VEDIT User's Manual.

Chapter 4 Command Reference 227



Ver Version( )
VN Version_Num
Usage: Ver Version

Description: Version displays the VEDIT version number in the format: "VEDIT
Ver. 6.02 03/20/02".

Version_Num returns the current version number as an integer, e.g.
"602". This is primarily useful in macros which need to test for a
specific version of VEDIT.

Return: Version_Num returns the version of VEDIT currently in use.

Notes: {HELP, Status display} also displays the version number.

V Visual( )
Usage: Visual Visual(10)

Description: Visual( ) enters Visual Mode. Visual Mode is exited with either the
[VISUAL EXIT] or [VISUAL ESCAPE] functions.

Visual(n) enters Visual Mode, but exits automatically after 'n' opera-
tions (keystrokes) are performed. It has limited use, but is used in our
"vi" editor emulation.

The error "KEYBOARD LAYOUT CORRUPTED" is given if the
keyboard layout table is invalid. This is most likely due to loading
the wrong file with the Key_Load( ) command. If this happens, load
a valid table or give the command Exit to save all files and exit
VEDIT.

See Also: Topics: "Return (exit) to Visual Mode" in Chapter 2

VM Visual_Macro(n)
Usage: Visual_Macro Visual_Macro(SET) Visual_Macro(4)

Description: Visual Macro returns the current value of the "Visual Mode macro"
flag. This (technical) flag determines how VEDIT reenters Visual
Mode after a macro executes. It consists of several "Mask" (bit) values
that are added together.

08 Macro originated from Visual Mode. Auto-return to Visual
Mode in place of the "COMMAND:" prompt (or a locked-in
macro).

04 Display "Press any key to continue..." upon entering Visual
Mode if the window contains Command Mode output.

01 Enter Visual Mode on startup.

Masks "08" and "04" are set when a command macro is executed from
Visual Mode, e.g. {MISC, Load/Execute macro} or a keystroke
macro containing [VISUAL EXIT].

228 Chapter 4 Command Reference



Visual Macro(SET)sets masks "08" and "04" to force an auto-return
to Visual Mode with a possible "Press any key to continue..." prompt.

Visual Macro(CLEAR) disables the Visual Mode macro flag. It can
be used to prevent an auto-return to Visual Mode due to an error or
other break out. It should be used with (non-trivial) macros that use
Reg_Lock_Macro() to trap errors and other break outs. Some of the
supplied macros, such as compare.vdm and wildfile.vdm use
Visual Macro(CLEAR).
Visual Macro(n) sets the Visual Mode macro flag to value 'n'. Trying
the commands Visual_Macro(8) and Visual_Macro(12) from the
"COMMAND:" prompt will help you understand this command.

See Also: Commands: Break_Out( ), Reg_Lock_Macro( ), Reg_Prot()

WA Win_Attach(w)
WDET Win_Detach(w)
Options: LINKED

Usage: Win_Attach(5) Win_Detach(9)

Description: Win_Attach(w) explicitly attaches window 'w' to the current edit
buffer. More than one window can be attached to an edit buffer; this
is needed to display different regions of a file in separate windows.
The first window attached is the "primary" window and additional
attached windows are "secondary" windows.

Win_Detach(w) detaches window 'w' from any edit buffer. When a
window is attached, it is also detached from any other edit buffer. An
edit buffer uses its "primary" window for editing in Visual Mode.

If no window has been explicitly attached to an edit buffer before it
is displayed in Visual Mode, the edit buffer will automatically attach
itself to a window by the same number as the buffer. This is described
under "Windows and Edit Buffers" in Chapter 2.

Win_Attach(w,LINKED) attaches the window and "locks" its cur-
sor position to the current window so that both windows scroll
simultaneously. This is used by {VIEW, Hex-mode split}.

Notes: Win_Switch(w,ATTACH) switches to a "secondary" window and
makes it the new "primary" window. A window can be attached to at
most one edit buffer at a time. Win_Status(w) lets you determine to
which edit buffer (if any) a window is attached.

See Also: Commands: Buf_Switch( ),Win_Switch( ), Win_Status( )
Topics: "Window Commands" in Chapter 2

Examples: Buf_Switch(2)
Win_Split(1,40,RIGHT)
Win_Attach(1)

Switch to edit buffer 2; create win-
dow "1" on the right and attach it to
buffer 2.

Chapter 4 Command Reference 229



WB Win_Border
WCOL Win_Cols
WL Win_Lines
Usage: Internal Values

Description: Win_Border returns the type of borders in the current window:
0 = no borders; 1 = minimal borders; 2 = full borders without scroll
bars; 3 = full borders with scroll bars. This is primarily only useful in
the DOS version.

Win_Cols returns the number of text columns in the current window.

Win_Lines returns the number of text lines in the current window.

Notes: The setting of {CONFIG, Display options, Window borders} and
any options on the Win_Split( ) command determine the type of
borders a window will have.

WCASC Win_Cascade( )
WTILE Win_Tile()
Usage: Win_Cascade( ) Win_Tile( )

Description: Win_Cascade( ) moves and resizes all windows so that they overlap
each other in a cascading (offset) fashion with the top-left corner of
each window border visible. The most recently used windows will be
on top.

Win_Tile( ) moves and resizes all windows so that all windows fit
on the screen without overlapping (the resulting windows may be
very small). The windows are tiled (left to right, top to bottom) in the
order in which they were created.

Notes: These commands do not affect "reserved" windows; they use the
entire screen except for screen lines used by reserved windows.

Win_Cascade( ) is equivalent to {WINDOW, Cascade}.
Win_Tile( ) is equivalent to {WINDOW, Tile}.

See Also: Topics: "Window Commands" in Chapter 2

Win_Cfg_Pop( )
Win_Cfg_Push( )

Usage: Win_Cfg_Push( ) Win_Cfg_Pop( )

Description: Win_Cfg_Push( ) saves the current window arrangement by "push-
ing" it onto the same text register stack as used by Reg_Push( ).
Key_Cfg_Pop( ) restores the previous window arrangement by "pop-
ping" it from the text register stack.

230 Chapter 4 Command Reference



Notes: These commands allow a macro to save the current window arrange-
ment, delete, create and split windows for the macro, and then restore
the window arrangement when the macro is done.

These commands must be used with care, or you may crash VEDIT.
In particular, these commands must be balanced with any
Reg_Push( ) and Reg_Pop( ) commands.

In order to provide some protection again accidentally crashing
VEDIT, Win_Cfg_Pop( ) checks that the first two bytes about to be
popped are "C0 01" (hex); if not it gives a "NESTING (STACK)
ERROR".

See also: Commands: Key_Cfg_Push( ), Reg_Push( )

WCLR Win_Clear( )
WEOL Win_EOL( )
WEOS Win_EOS( )
Usage: Win_Clear( ) Win_EOL( ) Win_EOS( )

Description: These commands erase part or all of the current window. (They do
not delete text in the buffer. They are not editing functions.) These
commands are primarily used in command macros which are creating
a "menu" or "form" on the screen.

Win_Clear( ) erases (clears) the entire window and homes the cursor.
Win_EOL( ) erases from the cursor position to the end of the window
line. Win_EOS( ) erases from the cursor position to the end of the
window (screen).

Notes: These commands perform the common CRT emulation functions of
"Clear screen", "Erase to end of line" and "Erase to end of screen".

Win_Clr( ) is often used following Win_Color( ) to select a new
window color and then clear the window using the new color.

See Also: Commands: Win_Color( ), Win_Hor( ), Win_Vert( ),
Topics: "Window Commands" in Chapter 2

Examples: Win_Vert(5) Win_Hor(15)
Message("Name:")
Win_EOL

Position the cursor to row 5, column
15 in the window, display the text
"Name:" and clear the rest of the line.

WC Win_Color(n1,n2)
WCE Win_Color_Erase
Options: EXTRA

Usage: Win_Color(6) Win_Color(6,127)

Description: Win_Color(n) changes the current window's text (and erase) color
to 'n'. Any writing to the window will be made in the new color.

Chapter 4 Command Reference 231



Win_Color(n1,n2) changes the current window's text color to 'n1'
and the "erase" color to 'n2'. Text written to the window will be
displayed in the color 'n1', while any window erasing and scrolling
will be in the color 'n2'. This gives an unusual effect, but can be useful
for clearly see any trailing spaces on a line.

Win_Color(n1,n2,EXTRA) sets the configured text/erase attributes
to 'n1' and 'n2', so that any subsequently created windows will have
those attributes. Normally, 'n1' and 'n2' will have the same value.

Win_Color, without parameters, only returns the value of the current
window's text color without changing colors.

Win_Color_Erase, without parameters, only returns the value of the
current window's "erase" color without changing colors.

Return: Returns the (new) value of the current window's text color.

Notes: The attribute values are hardware dependent. On an IBM PC all
allowable screen attribute values are supported; both foreground and
background colors can be set. The on-line help for {CONFIG,
Colors} and Appendix F of the VEDIT User Manual list most color
values.

On a (non-IBM PC) CRT terminal, only "0" for normal video and "1"
for reverse video are supported.

The default attribute values are set during configuration. The
Screen_Init( ) command restores the attributes to their configured
values.

Before changing the attributes inside a macro, you can save the
current values by reading the internal values Win_Color and
Win_Color_Erase commands.

See Also: Commands: Color_Highlight, Color_Prompt
Topics: "Window Commands" in Chapter 2

Examples: Win_Color(23) Change to white characters on blue back-
ground on a color IBM PC.

WCRE Win_Create(w,l,c,nl,nc)
Options: ATTACH, PIXEL

Usage: Win_Create(9,5,20,10,40) Win_Create(2,0,0,0,0,PIXEL)

Description: Win_Create(w,l,c,nl,nc) creates the overlapping window 'w' and
switches to it. The window's top-left corner origin is at line 'l' and
column 'c'. Its size is 'nl' text lines and 'nc' columns (not including
borders and scroll bars). Overlapping windows always have full
borders.

Win_Create(...,ATTACH) creates the window and attaches it to the
current edit buffer.

232 Chapter 4 Command Reference



Win_Create(...,PIXEL) specifies the new window's origin and size
in exact pixels. (Windows only)

Win_Create(w,0,0,0,0,PIXEL) creates a full-sized overlapping
window.

Notes: The total size of the window will be two more than 'nl' and 'nc' because
of the full borders.

See Also: Commands: Win_Delete( ), Screen_Init( ), Win_Split( ),
Win_Switch( ), {WINDOW} menu
Topics: "Window Commands" in Chapter 2

Examples: Win_Create(9,5,20,10,40) Create window "9" with its top-left
border corner at origin line 5, column
20, and a size of 10 text lines and 40
columns.

WDEL Win_Delete(w)
SI Screen_Init( )
Options: ALL, ATTACH

Usage: Win_Delete(4) Screen_Init(ATTACH)

Description: Win_Delete( ) deletes the current window and Win_Delete(w) de-
letes window 'w'. If 'r' was created as a split window, its parent
window(s) will expand in size. Only the main window "1" cannot be
deleted. The new active window is the "parent" of the deleted win-
dow. This command does not affect the edit buffers or change the
status of any files.

Screen_Init( ) deletes all windows and then auto-creates the main
window #1 as a full-sized window. The window color attributes are
reset to their configuration values.

Screen_Init(ATTACH) initializes the screen, deleting all windows.
It then auto-creates an overlapping full-sized window for each edit
open buffer, if {CONFIG, Auto-create windows for buffers} is
enabled.

Screen_Init(ALL) initializes the screen and deletes all windows.
Window #1 is not auto-created; VEDIT will temporarily have no
windows open. A window will be auto-created for the next displayed
output. If it is Command Mode output, the Command Mode window
"$" is created; if it is Visual Mode, a window with the same ID
(number) as the edit buffer is created.

Notes: Win_Delete(w) is equivalent to {WINDOW, Delete}.
Screen_Init(ATTACH) is equivalent to {WINDOW, Reset}.
You may need a Win_Switch( ) command to switch to the desired
window following a window deletion.

Chapter 4 Command Reference 233



Macros should not assume that Window #1 always exists, or even
that any window exists.

See Also: Commands: Win_Status(w)
{WINDOW} menu
Topics: "Window Commands" in Chapter 3

Examples: Win_Delete(4)
Win_Switch(1)

Delete window "4" and switch to window
"1".

WDET Win_Detach( ) - See Win_Attach( )

WDM Win_Display_Mode(n)
Usage: Internal Values

Description: Win_Display_Mode(n) changes the text display mode in the current
window to 'n'. Valid values are:

0
1
2
3
4
8
16
32

Display graphics chars; display CTRL except CR/LF literally.
Display graphics chars; display CTRL chars as "^x".
Display graphics chars as "<nnn> "; display CTRL chars literally.
Display graphics chars as "<nnn> "; display CTRL chars as "^x".
Display graphics chars; display CTRL & CR/LF literally.
Display all character in Hexadecimal.
Display all character in Octal.
Display all characters in EBCDIC.

Win_Display_Mode, without parameters, just returns the current
display mode without changing it.

Return: All forms of the Win_Display_Mode( ) command return the (new)
display mode in the current window.

Notes: To change the configured value of the text display mode which will
be used for new windows, use {CONFIG, Characters/Cursors,
Screen display mode} or Config(S_DSP_MODE).

See Also: Topics: "Screen Display and Keyboard Characters" in Chapter 4 of
the VEDIT User's Manual.

WEOL Win_EOL( ) - See Win_Clear( )

WF Win_Free
WX Win_Next
WPRV Win_Previous
Usage: Internal Values

Description: Win_Free returns the ID number of the next unused (free) window.
This ID number can subsequently be used in a Win_Split( ) or
Win_Create( ) command to create new windows.

234 Chapter 4 Command Reference



Win_Next returns the ID number of the next window attached to any
edit buffer. If there is only one window, it returns the ID number of
the current window.

Win_Next(BUFFER) returns the window ID number of the next
(higher numbered) window attached to the current buffer; if there is
no such window, it returns the ID number of the lowest numbered
window attached to the next buffer. If there is only one buffer, it is
the same as Win_Next. It is used internally by {WINDOW, Next
window}.
Win_Previous returns the ID number of the previous window at-
tached to any edit buffer. If there is only one window, it returns the
ID number of the current window.

Win_Previous(BUFFER) returns the window ID number of the
previous (lower numbered) window attached to the current buffer; if
there is no such window, return the ID number of the highest num-
bered window attached to the previous buffer. If there is only one
buffer, it is the same as Win_Previous. It is used internally by
{WINDOW, Previous window}.

See Also: Commands: Buf_Window_Next, Buf_Window_Previous

WINH Win_Height (Windows only)
WINW Win_Width
WINX Win_X_Org
WINY Win_Y_Org
Usage: Internal Values

Description: Win_Height and Win_Width return the size of the current editing
window in pixels.

Win_X_Org and Win_Y_Org return the horizontal and vertical
origin of the upper-left corner of the current editing window. The
origin is in pixels relative to the upper-left corner (0,0) of the editing
area within VEDIT, just below the optional toolbar and ruler.

See Also: Commands: App_Height, App_Width, Desktop_Height,
Desktop_Width, Win_Move( )

Examples: Win_Move(Win_Num,WINX+10,WINY,WINW,WINH)

Move the current window to the right by 10
pixels.

Chapter 4 Command Reference 235



WH Win_Hor(n)
WV Win_Vert(n)
Usage: Win_Vert(5) Win_Hor(15) Win_Hor(1) Win_Vert(1)

Description: These commands position the cursor within the current window for
subsequent text that is displayed in the window by the macro com-
mands.

Win_Hor(n) positions the cursor horizontally to column 'n'. The
leftmost column is "1".

Win_Vert(n) positions the cursor vertically to row (line) 'n'.

Win_Hor and Win_Vert, without parameters, only return the current
cursor position without moving it.

Return: All forms of the Win_Hor( ) and Win_Vert( ) commands return the
current (or new) cursor position.

Notes: These commands have nothing to do with the cursor positioning in
Visual Mode; they perform "CRT emulation" functions for command
macros, e.g. to create a "menu" or "form" on the screen.

See Also: Commands: Win_Clear( ), Win_EOL( ), Win_EOS( )
Topics: "Window Commands" in Chapter 3

Examples: Win_Vert(5) Positions the cursor to row 5, leaving
it in its current column.

Win_Vert(1) Win_Hor(1) Positions the cursor to "home" - the
upper left corner of the window.

Win_Level(w)
Win_Overlap

Usage: Internal Values (Very technical and rarely used)

Description: Win_Level(w) returns the display (overlapping) level for window 'w'.

0
n

entire window is visible
up to 'n' windows are overlapping window 'w'.

The current window is always at level 0.

Win_Overlap returns the overlapping status of the windows on the
screen. It can be used to determine if any windows are overlapping
each other. Values are:

-1
0
1
2
3
4
5

No text windows exist
One full sized text window
Two or more text windows; active window is full (zoom) size
Split (child) windows cover full screen
One text window; not full sized
All overlapping-style windows fully visible
Text windows are overlapping

236 Chapter 4 Command Reference



Win_Move(w,x,y,cx,cy)
Usage: Win_Move(Win_Num,0,0,Win_Width,Win_Height)

Description: Win_Move(w,x,y,cx,cy) moves and/or resizes window 'w' so that it
has pixel origin 'x','y' and size 'cx' (width) and 'cy' (height). An origin
of "0,0" is the upper-left corner of the editing area within VEDIT, just
below the optional toolbar and ruler.

Win_Move(APP,x,y,cx,cy) moves and/or resizes the entire VEDIT
program (application) window. An origin of "0,0" is the upper-left
corner of the Windows desktop.

See Also: Commands: App_Height, App_Width, Desktop_Height,
Desktop_Width, Win_Height, Win_Width

Examples: Win_Move(Win_Num,0,0,WINW,WINH)

Move the current window to the upper-left-
most corner.

Win_Move(WN,WINX,WINY,WINW+FONTW,WINH+FONTH
Make the current window one text column
wider and one text line taller.

Win_Move(APP,(DTW-APPW)/2,(DTH-APPH)/2,APPW,APPH)

Center VEDIT on the desktop. Often used
after Screen_Size( ).

WX Win_Next - See Win_Free

WN Win_Num
WT Win_Total
Usage: Internal Values

Description: Win_Num returns the ID number of the current window.

Win_Total returns the total number of existing windows. It is not
affected when a window is zoomed.

Examples: #101 = Win_Num
Win_Switch('H')
...
Win_Switch(#101)

The current window's ID number is saved in
#101. After switching to another window and
perform other commands, the macro switches
back to the original window.

Chapter 4 Command Reference 237



Win_Page_Size
Usage: Internal Value

Description: Win_Page_Size returns the number of lines scrolled by each
[PAGE DOWN] and [PAGE UP] key. It is the number of lines in
the screen minus the amount of overlap.

The amount of overlap can be changed with
Config(S_PG_OVERLAP). The configured value is with respect to
a 25 line window, therefore a window with more lines will automat-
ically have more overlap.

WR Win_Reserved(w,n,location)
WSPL Win_Split(w,n,location)
Options: ATTACH, BOTTOM, TOP, LEFT, RIGHT, NOBORDER,

MINBORDER, FULLBORDER

Usage: Win_Split(2,40,RIGHT) Win_Reserved($,5,BOTTOM)

Description: Win_Reserved(w,n,location) creates a new "reserved" window of 'n'
lines at the "TOP" or "BOTTOM" of the screen. All other windows
are resized to account for these reserved screen lines. Reserved
windows cannot be overlapped and are therefore always visible on
the screen.

Win_Split(w,n,location) creates a new window by splitting the cur-
rent window into two windows. It creates window 'w' of size 'n'
lines/columns in the 'location' specified (BOTTOM, TOP, LEFT,
RIGHT).

'w' is a number between 2 and 127. Values 2 - 32 create normal
"numbered" editing windows. Values 33 - 127 create special "named"
windows, which out of convention should not be used as Visual Mode
editing windows; however they can be used in command macros for
prompts, menus, help lines, etc. Named windows display their
equivalent ASCII character ID name on their border.

The window with name "$" is the special Command Mode window.

The special window size of "0" splits the window into two equal sized
windows.

The command option "+ATTACH" creates a new window and
attaches it to the current edit buffer. This is equivalent to following
the command with Win_Attach(w).
The command option "+NOBORDER" creates a new window with-
out borders (when possible). The option "+MINBORDER" creates
a new window with minimal borders. The option
"+FULLBORDER" creates a new window with full borders.

Notes: Win_Split( ) reduces the size of the current window as needed;
however, an error is given if it attempts to reduce the current window

238 Chapter 4 Command Reference



smaller than one text line and 10 columns. This command does not
switch to the new window; this is done with the Win_Switch( )
command.

The screen attributes for the new window can be changed with the
Win_Color( ) command. This allows windows to be displayed in
different colors.

For named windows, the window ID 'w' can be entered as a normal
numeric ASCII constant, e.g. 'A' (quote A quote). As a shortcut, the
single-quotes can be left off. Therefore, the following are equivalent:
Win_Split('$',5,BOTTOM) and Win_Split($,5,BOTTOM).

See Also: Commands: Win_Create( ), Win_Color( ), Win_Delete( ),
Screen_Init( ), Win_Switch( ), Win_Cols, Win_Lines,
Win_Reserved_Bottom, Win_Reserved_Bottom_ID,Win_Total
{WINDOW} menu
Topics: "Window Commands" in Chapter 2

Examples: Win_Split(2,40,RIGHT) Create window "2" with 40 columns
in the right part of the current
window.

Win_Reserved($,5,BOTTOM)
Create the special Command Mode window as a
reserved window with 5 lines at the bottom of the
screen. All other windows are resized as needed.

WRB Win_Reserved_Bottom (Windows only)
WRBID Win_Reserved_Bottom_ID
WRT Win_Reserved_Top
WRTID Win_Reserved_Top_ID
Usage: Internal Values

Description: Win_Reserved_Bottom and Win_Reserved_Top return the
number lines in the "reserved" windows at the bottom/top of the
VEDIT screen area; return 0 if none.

There can be at most one reserved window at the top and one at the
bottom. Reserved windows cannot be overlapped by other windows,
and are often used to display a prompt, help line or the
"COMMAND:" prompt.

Win_Reserved_Bottom_ID and Win_Reserved_Top_ID return
the window ID number of the reserved window at the bottom/top of
the screen; return 0 if none.

Notes: The keyedit.vdm macro uses Win_Reserved_Bottom and
Win_Reserved_Bottom_ID to check if there is a reserved window,
temporarily delete it, and restore it when the macro is done.

See Also: Commands: Win_Reserved( )
Topics: "Window Commands" in Chapter2

Chapter 4 Command Reference 239



WSM Win_Scroll_Margin(n)
Usage: Win_Scroll_Margin(80) WSM(0) Win_Scroll_Margin

Description: Win_Scroll_Margin(n) sets the horizontal scroll amount for Visual
Mode to 'n'. This is the column corresponding to the left edge of the
window. Visual Mode will only use this value if:

n < cursor column < n+window width.

Win_Scroll_Margin, without parameters, only returns the current
scroll value without changing it.

Return: All forms of the Win_Scroll_Margin( ) command return the (new)
value of the horizontal scroll margin in the current window.

Notes: [SCROLL LEFT] and [SCROLL RIGHT] change the scrolling.

See Also: Commands: Set_Visual_Line( )
Topics: "Scrolling the Screen" in Chapter 4 of the VEDIT User's
Manual

Examples: Win_Scroll_Margin(20) Scroll the screen by 20 columns. This
is similar to [SCROLL RIGHT].

WSPL Win_Split( ) - See Win_Reserved( )

WSTAT Win_Status(w)
Usage: Internal Values

Description: Win_Status(w) returns the status of window 'w':

-1
0
'n'

window does not exist
window exists, but not attached to any buffer
window is attached to edit buffer 'n'.

See Also: Commands: Buf_Status

WS Win_Switch(w)
Options: ATTACH, STATLINE

Usage: Win_Switch(3) WS($) Win_Switch(1,ATTACH)

Description: Win_Switch(w) switches to the window 'w'. If window 'w' does not
exist, the command is ignored — no error is given. Win_Switch(w)
only switches to a window; it does not also switch edit buffers.
Command mode output will be displayed in the new window.

Win_Switch(w,ATTACH) switches to window 'w' and, if it is at-
tached to an edit buffer, switches to the edit buffer and makes the new
window the buffer's "primary" editing window. (Any previous "pri-
mary" window becomes a "secondary" one.) It also moves the edit
position to the cursor position in the new window.

240 Chapter 4 Command Reference



Win_Switch(STATLINE) switches to use the status line as a one
line window. This permits displaying messages on the status line and
is more flexible than using the Get_Input( ), Get_Num( ) and
Message( ) commands with the "STATLINE" option. You should
explicitly switch back to a normal window when done. The status line
will automatically refresh at the next "COMMAND:" prompt or when
entering Visual Mode.

Notes: When Win_Switch(w) switches to a window which was last used for
Visual Mode, the text is scrolled up one line and the cursor positioned
at the bottom of the window; otherwise the cursor is positioned to its
previous position in the window.

Whenever you exit Visual Mode to Command Mode, VEDIT will
automatically switch to the "$" window if it exists. Otherwise it will
use the previous Command Mode window, or if there is none, the
current window.

Win_Num returns the ID number of the current window.

Win_Switch(w,ATTACH) is equivalent to {WINDOW, Switch}.

See Also: Commands: Win_Attach( ), Win_Num, Win_Status
Topics: "Window Commands" in Chapter 3

Examples: Win_Switch(1) Switch to window 1.

Win_Switch(10,ATTACH) Switch to window 10 and, if it is
attached to an edit buffer, switch to
the edit buffer and make it the
buffer's "primary" editing window.

WTILE Win_Tile( ) - See Win_Cascade( )

WTTL Win_Title(r,"text")
Usage: Win_Title(Win_Num,"List of files") Win_Title(Win_Num)

Description: Win_Title(r,"text") sets the title for window 'w' to 'text'. The title is
displayed on the window's top border. This overrides the default title,
such as the filename, that VEDIT displays for each window.

'text' is limited to 80 characters. Titles longer than the width of the
window will be truncated; however, if the title contains a "\", only the
text to the right of the "\" may be displayed in narrow windows.

Win_Title(r) restore the default title for window 'w'.

WT Win_Total - See Win_Num

WV Win_Vert( ) - See Win_Hor( )

Chapter 4 Command Reference 241



WINW Win_Width - See Win_Height
WINX Win_X_Org - See Win_Height
WINY Win_Y_Org - See Win_Height

WZ Win_Zoom( )
Options: CLEAR, TOGGLE

Usage: Win_Zoom( )

Description: Win_Zoom( ) "zooms" (maximizes) the editing windows so that it
fills the entire screen (except for the status line). It is often easier to
edit in the larger window. Win_Zoom(CLEAR) de-zooms (restores)
the window.

Win_Zoom(TOGGLE) toggles between zoom/de-zoom; this is
equivalent to {VIEW, Zoom}.

Notes: Use the internal value Is_Zoomed to test if a window is zoomed.

See Also: Commands: Screen_Init( ), Win_Switch( ), Is_Zoomed
{VIEW} menu

Examples: Win_Zoom( ) Zoom the current window to fill the screen.

Write_Line("file",m)
Usage: Write_Line("file1",10)

Description: Write_Line("file",m) copies 'm' lines of text to 'file'. The range of
lines copied is the same as for the Del_Line( ) or Type( ) commands.
The text in the edit buffer is unchanged.

If 'file' already exists, a confirmation prompt to overwrite the file is
given; Write_Line(...,OK) skips the confirmation prompt.

Use the closely related Block_Save_As( ) command to write a stream
or columnar block to a file.

See Also: Commands: Block_Save_As( ), Ins_File( ), Type( )
Topics: "Block Operations" in Chapter 3

Examples: BOF() Write_Block("part1",100)

Copy (write) the first 100 lines in the current file to the
file "part1".

XALL - See Exit( )

XBUF1 - See Extra_Buffer_1

242 Chapter 4 Command Reference



Appendices

A - Edit Function Codes
Each edit function has a corresponding two letter code. These codes are used
by the Do_Visual( ) and Message( ) commands. The DOS version
vphelp.hlp help file also uses them. The Get_Key( ) and Prev_Key( )
commands convert the two letter code to an equivalent numeric value. For
example, the numeric value for “\BS\” is ‘B’+’S’*256 = 21314.

These codes are also listed in the on-line help topic “Edit Function Codes”
(DOS help topic “VMCODES”).

Table of Edit Function Codes
Function name Letter Code Function name Letter Code

[BACKSPACE] \BS\ [NEXT WORD] \NW\
[CANCEL] \CA\ [PAGE UP] \PU\
[CURSOR UP] \CU\ [PAGE DOWN] \PD\
[CURSOR DOWN] \CD\ [PREV PARAGRAPH] \PP\
[CURSOR RIGHT] \CR\ [PREV WORD] \PW\
[CURSOR LEFT] \CL\ [REPEAT] \RE\
[DELETE] \DC\ [REPEAT LAST] \RL\
[DEL PREV WORD] \DP\ [RETURN] \RT\
[DEL NEXT WORD] \DN\ [SCREEN BEGIN] \SB\
[ENTER CTRL] \EC\ [SCREEN END] \SE\
[ERASE BOL] \EB\ [SCROLL UP] \SU\
[ERASE EOL] \EE\ [SCROLL DOWN] \SD\
[ERASE LINE] \EL\ [SCROLL RIGHT] \SR\
[ESCAPE] \ES\ [SCROLL LEFT] \SL\
[HELP] \HE\ [TAB CHARACTER] \TC\
[INSERT TOGGLE] \IT\ [T-REG COPY] \RC\
[LINE BEGIN] \LB\ [T-REG MOVE] \RM\
[LINE END] \LE\ [T-REG INSERT] \RI\
[MENU] \ME\ [VISUAL ESCAPE] \VS\
[NEXT LINE] \NL\ [VISUAL EXIT] \VE\
[NEXT PARAGRAPH] \NP\ All other keys \B4\
[NEXT TAB STOP] \NT\

A - Edit Function Codes Appendices 243



B - Command Syntax

Basics

VEDIT’s command syntax loosely follows the syntax of the “C” programming
language. The format of commands is:

Command( arguments )

Command names can be entered in any combination of upper and lower case
letters. To improve readability, we usually capitalize the first letter of each
command word, e.g. Type_Space( ).
The “_” character is optional and is only intended to improve readability.

Most commands have a short abbreviation. It is often, but not always, the first
letter of each command word.

Therefore, the following commands are all identical:

Type_Space( ) typespace( ) TS( ) ts( )

Commands that take no arguments can usually have the “( )” left off. Our
convention is to include the “( )” for commands that perform an operation and
leave the “( )” off for commands that only return a value.

Commands that take a single numeric argument, e.g. Type_Space( ), will use
the default argument of “1” if no argument is specified.

Therefore, the following commands are all identical:

Type_Space(1) Type_Space( ) Type_Space TS

Commands may be entered one per line or many per line.

Arguments

Commands take numeric and/or string arguments. Arguments are enclosed in
(...) following the command name. When there are two or more arguments,
they are separated from each other with commas.

Each numeric argument can be a numeric expression consisting of numeric
constants (e.g. 12345), numeric variables (e.g. #10), reserved words (e.g. ALL)
or the return value from another command (e.g. File_Size).

Numeric arguments have the range of +/- 2,147,483,647. When a large number
is needed, for example to specify an “infinite” repeat count, the reserved word
“ALL” can be used; its value is greater than one billion.

Each string argument can either be a string constant (e.g. “hello”) a string
variable stored in a text register (e.g. @20), or one of the predefined string
values, (e.g. CUR_DIR).

244 Appendices B - Command Syntax



Command Options

Command options are usually specified with reserved words such as NOERR
and STATLINE. When two or more command options are needed, they can
be added together as in NOERR+STATLINE or “ORed” together as in
NOERR | STATLINE. Use of “|” is preferable, but harder to read than “+”.

The command option COUNT is followed by an additional numeric argument.

Search(“text”,COUNT,3)

The command options COLSET and KEYCOLS are followed by two addi-
tional numeric arguments.

Search_Block(“text”,Block_Begin,Block_End,COLSET,10,40)

When COUNT and COLSET are both used, the argument for COUNT comes
first.

ARGUMENTS

‘n’ A positive number or expression in the range 0 - 2,147,483,647.
‘m’ A number or expression which may be negative.
‘c’ A conditional expression. Value of “0” is FALSE, value of “1” (or any

other non-zero value) is TRUE.
‘r’ A text register number, usually in range 0 - 99. Special purpose registers

have number 100-127. Some commands allow an edit buffer to be
specified by ‘r‘+BUFFER.

‘b’ An edit buffer number, usually in the range 1 - 99. “Extra” edit buffers
have number 100 - 125.

‘w’ A window number/name. Window numbers are in the range 1 - 36.
Values above 36 are considered special single character window names,
e.g. “$” is the Command Mode window, “STATLINE” is the status line.

“text” A text string in which all characters are treated literally.
“mtext” A message text string. Similar to “text”, but “\n” specifies a “newline”

and “\t” a tab character. Use the TAB8 option to assume tabs stops at
every 8 columns.

“ss” and “rs” A search/match or replacement string. Various Pattern matching or
Regular expression characters have a special meaning.

“file” A filename with optional drive and pathname. The syntax “|@(r)”
permits the contents of text register ‘r’ to be used as any portion of the
filename.

“fspec” Similar to “file” except that multiple files may be specified with “?” and
“*”.

‘p,q’ Two positive numbers that specify file positions for a “stream” block of
text. The character at position ‘q’ is not included.

‘p,q,COLUMN’ Specify a columnar block. File positions ‘p’ and ‘q’ specify the corners
of the columnar block. The character at position ‘q’ is included.

‘COLSET,c1,c2’ Specify a columnar block. File positions ‘p’ and ‘q’ specify the first and
last lines of the block; they can be anywhere on the line. ‘c1’ and ‘c2’
specify the first and last columns of the block.

‘l1,l2,LINESET’ Specify a line-range block. ‘l1’ and ‘l2’ specify the first and last lines of
the block. All chars on lines ‘l1’ through ‘l2’ (inclusive) are included.

B - Command Syntax Appendices 245



SPECIAL CHARACTERS

// Comment - all following characters to End-Of-Line are a comment.
Label:
:Label:

Label for “Goto” command is followed by “:”. Preceding label with “:”
permits faster execution.

; Separates items inside a “for (...)” statement. Otherwise ignored, but
allowed for compatibility with C language syntax.

? Breakpoint — Enter tracing mode.
?(expr) Conditional breakpoint — Enter tracing mode only if the express ‘expr’

is TRUE.
?? Perform back-trace; only valid at “COMMAND:” prompt.

FLOW CONTROL

A condition ‘c’ is TRUE if it has a numeric value of 1 or greater. It is FALSE
if it has a value of 0 (zero) or less.

if (c) {
commands

}

If ‘c’ is TRUE, execute the ‘commands’. If ‘c’ is false,
skip over the “{...}” and continue with any following
commands.

if (c) {
commands-1

}
else {

commands-2
}

If ‘c’ is TRUE, execute the ‘commands-1‘, then skip
over the “else{...}” and continue with any following
commands. If ‘c’ is false, execute the ‘commands-2’.

while (c) {
commands

}

If ‘c’ is initially TRUE, execute the ‘commands’. Then
re-test ‘c’ and repeatedly execute ‘commands’ as long
as ‘c’ is TRUE.
If ‘c’ is initially FALSE, skip over the “{...}” and
continue with any following commands, i.e. ‘com-
mands’ is executed zero times.

do {
commands

} while(c)

Execute the ‘commands’. Test ‘c’ and repeatedly exe-
cute ‘commands’ as long as ‘c’ is TRUE. Note: ‘com-
mands is executed at least once.

for ( cm1; c ; cm2 ) {
commands

}

Execute the command(s) ‘cm1‘, then test the condition
‘c’. If TRUE, execute the ‘commands‘; then execute
the command(s) ‘cm2’ and re-test the condition ‘c’.
When ‘c’ is FALSE, skip over the “{...}” and continue
with any following commands. Note: ‘commands’
may be executed zero times.

repeat(n) {
commands

}

Repeatedly execute ‘commands’ for a total of ‘n’
times. If ‘n’ is zero (or negative), ‘commands’ are not
executed at all.

246 Appendices B - Command Syntax



C - Numeric Expressions

NUMERIC COMPONENTS

Number A simple decimal number in the range +/- 2,147,483,647.
0Xhhhhhh Hexadecimal numbers are preceded with “0x” or “0h”.
‘c’ ASCII value of the character ‘c‘, e.g. ‘S’ has value 83.
^c ASCII value of the control character, e.g. ^C has value 3.
#xxx Numeric register xxx. ‘xxx’ is a simple number in the range 0 - 127.
#@xxx Indirect specification of a numeric register. E.g. if numeric register 10

contains 95, then “#@10” specifies numeric register 95.
Reserved-Word Reserved words are typically used to specify command options.
Command Each command returns a numeric value. Therefore, commands may be

used as arguments within other commands.

NUMERIC OPERATORS

+ Addition
- Subtraction (also performs unary minus function)
* Multiplication
/ Division
% Remainder of division
& Bitwise AND
| Bitwise OR
^ Exclusive OR (XOR)
<< Left Shift
>> Right Shift
~ Bitwise complement (also called 1’s complement)

RELATIONAL OPERATORS

< Less than
<= Less than or equal to
== Equal to
!= <> Not equal to
>= Greater than or equal to
> Greater than

LOGICAL OPERATORS

&& AND - TRUE only if both operands are TRUE
| | OR - TRUE if either operand is TRUE
! NOT - Flips the truth value of the following operand

C - Numeric Expressions Appendices 247



PRECEDENCE OF NUMERIC OPERATORS

Table of Operator Precedence

Highest: ! ~ ++ — + - Unary
* / % Multiplication, Division, Remainder
+ - Addition, Subtraction
<< >> Shift
< > == etc. Relationals
& Bitwise AND
| ^ Bitwise OR, Exclusive OR (XOR)
&& Logical AND
| | Logical OR

Lowest: = Assignment

NUMERIC REGISTERS

#xxx = m Set numeric register ‘xxx’ to value ‘m’.
#xxx++ Increment register ‘xxx’.
#xxx— Decrement register ‘xxx’.
#xxx += m Add ‘m’ to register ‘xxx’.
#xxx -= m Subtract ‘m’ from register ‘xxx’.
#xxx *= m Multiply register ‘xxx’ by ‘m’.
#xxx /= m Divide register ‘xxx’ by ‘m’.

PREDEFINED VALUES (Reserved Words)

TRUE = 1
FALSE = 0
CLEAR = -1
MAXNUM = 2147483647

NOTE: “ALL” can be used to indicate a huge count (instead of MAXNUM);
its value is greater than 1 billion.

248 Appendices C - Numeric Expressions



D - String Arguments

STRING CONSTANT

A string constant is enclosed in “delimiters” that cannot occur in the string.
The allowable delimiters are:

` ' " % & * , . : ; / ~ ^ =

Some commands take a string argument of ‘mtext which is a message to be
displayed. Here “\n” specifies a newline (CR+LF) and “\t” specifies a tab
character.

Examples:

Ins_Text(/My name is “TOM”/)

Message(“This is line one\nThis is line two\n”)

STRING VARIABLES

The text registers are used as string variables. Over 100 text registers are
available, but to prevent conflicts with cut and paste operations and with
loading macros, only 10 through 90 should be used as string variables.
@(r) Use text register ‘r’ as the string argument.
|@(r) Use text register ‘r’ as a portion of the string within a string constant.

Only supported for search and replace strings, filenames and in selected
other commands.

With the “|@(r)” syntax, ‘r’ can be a numeric expression that evaluates to a
text register number. This allows the text register to be specified indirectly.

NOTE: The text register can include any characters, even the string
delimiter.

Examples:

Reg_Set(10,/My name is “TOM”/)
Ins_Text(@10) Equivalent to example above

#1=10
Reg_Set(#1,/My name is “TOM”/)
Ins_Text(@#1) Equivalent to example above; it

demonstrates how a text register can
be specified indirectly with a nu-
meric variable.

Reg_Ins(10,/.txt/)
File_Open(“myfile|@(10)”) Open file “myfile.txt”

File_Open(@10)
File_Open(“|@(10)”) These two commands are identical.

D - String Arguments Appendices 249



PREDEFINED STRING VALUES

Several predefined string values allow easy access to commonly used string
variables: (as always, the “_” is optional)
VEDIT_EXE Full pathname to the executable VEDIT.EXE.
CUR_DIR Full pathname of the current directory.
PATHNAME Full pathname of the current output (write) file.

(e.g. “c:\work\january\invoice.txt”)
PATH_ONLY Just the path (directory) of the current file.

(e.g. “c:\work\january”)
FILENAME Just the filename of the output file. (e.g. “invoice.txt”)
FILE_ONLY Just the filename without the extension. (e.g. “invoice”)
FILE_EXT Just the filename extension with the “.” (period). (e.g. “.txt”)
EXT_ONLY Just the filename extension without the “.” (period). (e.g. “txt”)
INPUT_FILE Full pathname of the current input (read) file.
CMD_LINE The complete command line with which VEDIT was invoked.
PID The process ID number as a string (3-5 digits).

Each of the Config_String( ) parameters can also be accessed:
HOME VEDIT Home Directory. (e.g. “c:\vedit”)
MACRO VEDIT Macro Directory. (e.g. “c:\vedit\macros”)
BACKUP VEDIT Backup Directory.
VEDIT_TEMP VEDIT Temporary Directory. (e.g. “c:\vedit\backup”).
FILE_CFG File-open configuration directory. (e.g. “c:\vedit\file-cfg”)
USER_CFG User’s Configuration Directory. Usually the same as

“HOME”, unless VEDIT was installed on a network server.
USER_MACRO User Macro Directory. (e.g. “c:\vedit\user-mac”)
VEDIT_INI Pathname to the vedit.ini.vdm file
PR_DEF Default printer (non-Windows versions).
PR_W_CURRENT Current Windows version printer.
OS_PROMPT Shell prompt.
WORD_SEP Word separating characters.
PARA_SEP Paragraph separating characters.
MATCH_PAREN Groups of parentheses matching characters.
TOOL_MENU Name of the {TOOL} menu.
USER_MENU Name of the {USER} menu.

The string name is simply used as the string argument. The string arguments
‘ss‘, ‘rs‘, ‘file’ and ‘fspec’ can use a string value as a portion of the string. The
syntax is “|(string-value)”.

Examples:

Reg_Set(10,HOME) Text register 10 is set to the pathname to the
VEDIT Home Directory

File_Open("|(HOME)\startup.vdm")
Open the startup.vdm file in the VEDIT
Home Directory

250 Appendices D - String Arguments



E - Command Summary
Alert( ) Sound a beep on the IBM PC speaker.

APPH App_Height
APPW App_Width

(Windows) Return the height and width of the VEDIT
program window in pixels.

APPX App_X_Org
APPY App_Y_Org

(Windows) Return the horizontal (x) and vertical (y)
origin of the VEDIT program window in pixels.

At_BOB Return 1 (TRUE) if the edit position is at the beginning
of the portion of the file currently in memory.

At_BOF Return TRUE if the edit position is at the beginning of
the file.

At_BOL Return TRUE if the edit position is at the beginning of
a line.

At_EOB Return TRUE if the edit position is at the end of the
portion of the file currently in memory.

At_EOF Return TRUE if edit position is at the end of the file.

At_EOL Return TRUE if the edit position is at the end of a line.

Atoi(r) Return value of numeric expression in T-Reg ‘r’.
Atoi( ) is another name for Num_Eval_Reg( ).

BOF Begin_Of_File( ) Move to the beginning of the file.

Begin_Of_File(LOCAL) Move to the beginning of the portion of the file cur-
rently in memory.

BOL Begin_of_Line( ) Move to the beginning of the current line.

BB Block_Begin Return the value of the block-begin marker.
(-1 if not set).

Block_Begin(n) Set the block-begin marker to file position ‘n’.

Block_Begin(CLEAR) Clear the block-begin and block-end markers. Same
as Block_Begin(-1).

BB(CLEAR+EXTRA) Only clear the block-begin and block-end markers if
Config(E_BM_MODE) is set to “0”.

BCP Block_Copy(m) Copy the next/previous ‘m’ lines to the current edit
position. (Duplicates ‘m’ lines.)

Block_Copy(p,q) Copy the block of text between file positions ‘p’ and
‘q’ to the edit position. Advance the edit position.

Block_Copy(p,q,BEGIN) Leave the edit position at the beginning of the block.

Block_Copy(p,q,DELETE) Delete the block of text from the original position after
it is copied. Same as Block_Move(p,q).

Block_Copy(p,q,DELETE+FILL) Copy (move) the block of text to the current
edit position and then replace (fill) the original
block with spaces.

Block_Copy(p,q,EXTRA) Copy the block; the block and column markers are
either reset, maintained or moved to the new block,
depending upon the setting of {CONFIG, Emulation,
Block marker emulation mode}.

E - Command Summary Appendices 251



Block_Copy(p,q,OVERWRITE) Overwrite the characters at the edit position
with the block of text being copied.

Block_Copy(p,q,COLUMN) Copy a columnar block of text. File positions
‘p’ and ‘q’ define the “corners” of the colum-
nar block.

Block_Copy(p,q,COLSET,c1,c2) Copy a columnar block of text. File positions
‘p’ and ‘q’ define the lines, ‘c1’ and ‘c2’
define the columns of the block.

Block_Copy(l1,l2,LINESET) Copy a line-range block of text. ‘l1’ and ‘l2’
specify the first and last lines of the block.

BE Block_End Return value of the block-end marker (-1 if not set).

Block_End(n) Set the block-end marker to file position ‘n’. If the
block-begin marker has not yet been set, sets the
block-begin marker instead.

Block_End(CLEAR) Clear the block-end marker. Same as Block_End(-1).

BFL Block_Fill(ch,p,q) Fill (overwrite) the block of text between file positions
‘p’ and ‘q’ with character ‘ch’.

BFL(ch,p,q,NORESTORE) Leave the edit position just past the end of the block.

BFL(ch,p,q,RESET) The Block_Begin, Block_End markers are cleared.

BFL(ch,p,q,COLUMN) Fill a columnar block.

BFL(ch,p,q,COLSET,c1,c2) Fill a columnar block.

BFL(ch,l1,l2,LINESET) Fill a line-range block.

BFL(ch,p,q,INSERT) Insert an empty block of size ‘q’ - ‘p’ bytes at file
position ‘p’ using fill character ‘ch’.

BFL(ch,p,q,COLUMN+INSERT) Insert an empty columnar block.

BM Block_Mode Return the type of block mode set for Visual Mode.
0=“stream”, COLUMN=“column”,
LINEBLOCK= “line” mode.

Block_Mode(CLEAR) Sets “stream” mode for blocks in Visual Mode.

Block_Mode(COLUMN) Set “column” mode for blocks in Visual Mode.

Block_Mode(LINEBLOCK) Set “line” mode for blocks in Visual Mode.

BMV Block_Move(p,q) Move the block of text between file positions ‘p’ and
‘q’ to the edit position. Same as Block_Copy(p,q,
DELETE).

BSA Block_Save_As("file",p,q) Write (save) the block of text between file positions
‘p’ and ‘q’ to the file ‘file’.

BSA("file",p,q,COLUMN) Write (save) a columnar block of text.

BSA("file",p,q,COLSET,c1,c2) Write (save) a columnar block of text.

BSA("file",l1,l2,LINESET) Write (save) a line-range block of text.

BOL_Pos Return the file position at the beginning of the current
line.

Break Breaks out of any while, do-while, for or repeat loop
and continues with any commands following the “}”.

252 Appendices E - Command Summary



Break_Out( ) Stops all macro execution and returns to the
"COMMAND:" prompt or the “locked-in” macro.

Break_Out(EXTRA) Stops all macro execution and returns to Visual Mode.

Break_Out(EXTRA+CONFIRM) Returns to Visual Mode, possibly with a
“Press any key to continue” prompt.

Break_Out(DELETE) Stops all macro execution and deletes (empties) the
currently executing text register.

Browse_Mode Return the value of “Browse mode” for the current file.

Browse_Mode(SET) Enable browse mode for the current file, same as
{FILE, Browse Mode}.

Browse_Mode(CLEAR) Disable browse mode when possible.

BC Buf_Close( ) Close the current edit buffer, saving the file, if any. If
a modified buffer has no assigned filename, prompts
for one. Switches to one of the remaining buffers.

Buf_Close(ALL) Close all buffers, except for the main buffer. Save and
close all files possible.

Buf_Close(CONFIRM) Prompt whether a modified buffer is to be saved. If the
user selects [No], it performs a Buf_Quit( ) instead.

Buf_Close(DELETE) Delete all windows attached to the buffer being closed.

Buf_Close(EVENT) Execute the File-Close event macros, even if disabled.

Buf_Close(MAINBUF) Switch to the main buffer “1” after closing the current
buffer.

Buf_Close(NOEVENT) Suppress executing the File-Close event macros, even
if enabled.

Buf_Close(NOMSG) Suppress “Saving...” and “Editing buffer...” messages.

BY Buf_Empty( ) Empty the current edit buffer without closing it. Quit
(abandon) any text or file in the buffer. Requests
confirmation if the buffer has been altered. Same as
File_Quit( ).

Buf_Empty(OK) Skip the confirmation prompt.

Buf_Empty(NOEVENT) Suppress executing the File-close event macros, even
if enabled.

Buf_Empty(EVENT) Execute the File-close event macros, even if disabled.

BF Buf_Free Return the ID number of the next free (unused) edit
buffer. (-1 if none available.)

Buf_Free(EXTRA) Return the ID number of the next free “extra” buffer
in the range 100-125. (-1 if none available.)

BX Buf_Next Return the ID number of the next (open) edit buffer.
(1 if only main buffer #1 is open.)

BN Buf_Num Return the ID number of the current buffer.

BNA Buf_Num_Altered Return the number of altered edit buffers (files) cur-
rently open.

BNW Buf_Num_Window Return the number of windows attached to the current
edit buffer.

E - Command Summary Appendices 253



Buf_Org_Filetype
Buf_Org_Window

Return the file-type and window number (or custom
values) saved for the current buffer. Used by
hexsplit.vdm.

Buf_Org_Filetype(n)
Buf_Org_Window(n)

Save the file-type and window number (or custom
values) in the current buffer.

BPV Buf_Previous Return the ID number of the previous (open) edit
buffer. (1 if only main buffer #1 is open.)

BQ Buf_Quit( ) Close the current edit buffer. Quit (abandon) any text
or file in the buffer after requesting confirmation.
Switches to one of the remaining buffers.

Buf_Quit(OK) Skip the confirmation prompt.

Buf_Quit(DELETE) Delete all windows attached to the buffer being closed.

Buf_Quit(MAINBUF) Switch to the main buffer “1” after closing the current
buffer.

Buf_Quit(ALL) Close all buffers, except for the main buffer. Quit
(abandon) all files.

BSTAT Buf_Status Return the status of the current edit buffer:

Buf_Status(r) Return the status of edit buffer ‘r‘:
-1 - ‘r’ is not open.
0 - ‘r’ is open, but not attached to any window.
w - ‘r’ is open and attached to window ‘w’.

BS Buf_Switch(r) Switch to edit buffer ‘r‘, opening it if necessary.

Buf_Switch(r,ATTACH) Auto-create and attach a full-screen overlapping win-
dow to the buffer if necessary.

Buf_Switch(r,EVENT) Execute the Buffer-switch event macro.

Buf_Switch(r,EXTRA) When opening an “extra” buffer, allocate more mem-
ory if available.

Buf_Switch(r,LOCAL) Do not perform file buffering on the current edit buffer
before switching to ‘r’.

Buf_Switch(r,NOMSG) Suppress the “Editing buffer...” message. (Usually
suppressed automatically.)

Buf_Switch(r,SUPPRESS) Do not grab more memory when opening edit buffer
‘r’. (Default for extra buffers.)

BT Buf_Total Return the number of edit buffers currently open.

BW Buf_Window Return the ID number of the primary attached window.
(0 if none.)

BWN Buf_Win_Next Return the ID number of the next (higher numbered)
window attached to the current buffer.

BWP Buf_Win_Previous Return the ID number of the previous (lower num-
bered) window attached to the current buffer.

Cab_Extract("file.cab") (Win32 only) Extract all compressed files in the speci-
fied .CAB file into the current directory.

Call(r) Execute T-Reg ‘r’ as a command macro. When fin-
ished, continue processing the following commands.

Call(r+BUFFER) Execute edit-buffer ‘r’ as a command macro.

254 Appendices E - Command Summary



Call(r,"label") Begin execution at the label ‘label’ instead of at the
beginning of the register/buffer.

Call("label") Call the subroutine ‘label’ in the current text register.

CALLF Call_File(r,file) Load the command macro in ‘file’ into T-Reg ‘r’ and
execute it. When done, continue processing the fol-
lowing commands. Performs an extended search for
‘file’. Equivalent to Reg_Load(r, "file",EXTRA)
Call(r).

CLB Case_Lower_Block(p,q) Convert all letters to lower case in the block of text
between file positions ‘p’ and ‘q’. The edit position is
not changed.

CLB(p,q,NORESTORE) The edit position is set just past the end of the block.

CLB(p,q,RESET) The Block_Begin and Block_End markers are cleared.

CLB(p,q,COLUMN) Convert a columnar block of text.

CLB(p,q,COLSET,c1,c2) Convert a columnar block of text.

CLB(l1,l2,LINESET) Convert a line-range block of text.

CSB Case_Switch_Block(p,q) Switch the case of all letters in the block of text.

CUB Case_Upper_Block(p,q) Convert all letters to upper case in the block of text.

Chain(r) Chain to the command macro in T-Reg ‘r’ without
“returning” to the current macro.

CHAINF Chain_File(r,"file") Load the command macro in ‘file’ into T-Reg ‘r’ and
chain to it; ‘r’ can be the currently executing register.
Looks for ‘file’ in the VEDIT Home Directory.

C Char(m) Move the edit position by ‘m’ characters.

CD Char_Dump(n) Dump the character with ASCII value ‘n’ to the con-
sole followed by a “newline”.

Char_Dump(NOCR) Suppress the “newline” following the character. See
also Type_Char().

CMAT Chars_Matched Return the number of matching chars in the last
Compare( ), Match( ), Reg_Compare( ), Replace( )
or Search( ) command.

Chdir( ) Display the current drive/directory, same as
Name_Dir( ). See Name_Dir( ) for options.

Chdir("d:path") Change the current directory to drive ‘d’ and/or direc-
tory ‘path’.

CCB Clip_Copy_Block(p,q) (Win32 only) Copy the block of text between file
positions ‘p’ and ‘q’ to the Windows clipboard. See
Reg_Copy_Block( ) for options.

Clip_Ins( ) (Win32 only) Insert the Windows clipboard at the edit
position. See Reg_Ins( ) for options.

Color_Highlight Return an appropriate color for highlighting selection
letters and key names; this value is set by
Config(C_HIGHLIGHT).

Color_Prompt Return an appropriate color for highlighting simple
prompt lines, set by Config(C_PROMPT).

E - Command Summary Appendices 255



CB Column_Begin Return the value of the block-begin marker’s column.
(0 if not set).

Column_Begin(n) Set the block-begin marker’s column to ‘n’.

CE Column_End Return the value of the block-end marker’s column.
(0 if not set).

Column_End(n) Set the block-end marker’s column to ‘n’.

CM Column_Mode Return the value of the Visual Mode “column-mode”
setting.

Column_Mode(SET) Set “column-mode” for blocks in Visual Mode.

Column_Mode(CLEAR) Clear “column-mode” for blocks in Visual Mode.

Compare(r)

Compare(r+BUFFER)

Compare byte-by-byte the text at the edit position with
T-Reg or edit buffer ‘r’. The comparison is not case
sensitive. Advances the edit position(s) over as many
characters as matched. Returns {0,1,2} corresponding
to {=,>,<}.

Compare(r,CASE) The comparison is case sensitive.

CF Config( ) Display the current value of all configuration parame-
ters. Similar to Config_Display( ).

Config(x) Display current values of those configuration parame-
ters beginning with ‘x_’.

Config(name) Return the value of configuration parameter ‘name’.

Config(name,n) Change configuration parameter ‘name’ to value ‘n’.
For edit-buffer dependent parameters, changes the
current buffer’s and “global” values. Returns the old
parameter value.

Config(name,n,ALL) Change the parameter in all buffers and the “global”
value.

Config(name,n,LOCAL) Only change the edit-buffer dependent parameter for
the current buffer.

CFD Config_Display() Display all configuration parameters including strings
and tab stops.

Config_Display(EXTRA) Display complete “Config(...)” commands with de-
scriptive text for all parameters.

Config_Display(EXTRA+SHORT) Display complete “Config(...)” commands,
but without the descriptive text.

Config_Display(GLOBAL) Display the current value of all configuration
parameters. For edit-buffer dependent values,
display the “global” value.

Config_Display(LOCAL) Only display the edit-buffer dependent values.

Config_Display(SUPPRESS) Suppress some configuration parameters
(mostly hardware related) that should not be
saved into the vedit.cfg file.

CFL Config_Load("file") Load new configuration parameters from the file ‘file’.
If not found in the current directory, it will look in the
User Config Directory.

CFL("file",NOERR) Suppress error message if the file is not found.

256 Appendices E - Command Summary



CFSAV Config_Save("file") Save entire configuration to the file ‘file’.

Config_Save("file",OK) Skip confirmation prompt when ‘file’ already exists.

CFS Config_String( ) Display the current value of all configuration strings.

Config_String(name,"text") Change configuration string ‘name’ to “text”.

CFT Config_Tab( ) Display tab stops in current edit buffer.

Config_Tab(n) Set uniform tab stops of every ‘n’ column. Sets the
current edit buffer’s and “global” values.

Config_Tab(n1,n2,...) Set tab stops at the selected columns.

Config_Tab(n;ALL) Change the tab stops for all edit buffers and the
“global” values. Note the “;” (semicolon).

Config_Tab(n;LOCAL) Only change the tab stops for the current edit buffer.
Note the “;” (semicolon).

CFV Config_Vedit("file.exe") (DOS) Save the entire configuration into the
VEDIT.EXE file named ‘file’.

CFV("file",KEYBOARD) Also saves the keyboard layout into VEDIT.

Continue Skip the current iteration of any While, Do-while, For
or Repeat loop, causing the loop to be re-tested.

CC Cur_Char Return the value of the character at the edit position.
At the End-Of-File, return 26 (<Ctrl-Z>).

Cur_Char(m) Return the value of the ‘m’th next/previous character.

CN Cur_Col Return the horizontal column number for the character
at the edit position.

CL Cur_Line Return the line number in the file for the edit position.

CP Cur_Pos Return the edit position (offset) in the file. The
Beginning-Of-File is position 0 (zero).

CRN Cursor_Col Return the column number of the cursor position in
Visual Mode. Same as the “COL:” display.

Date( ) Display the current system date as mm-dd-yyyy.

Date(BEGIN) Display the date as dd-mm-yyyy.

Date(VALUE,’/’) Display the date as mm/dd/yyyy.

Date(NOCR) Omit the following CR+LF newline.

Date(NOMSG) Omit the heading “Date:”.

DB Del_Block(p,q) Delete the block of text between file positions ‘p’ and
‘q’.

Del_Block(p,q,COLUMN) Delete a columnar block of text.

Del_Block(p,q,COLSET,c1,c2) Delete a columnar block of text.

Del_Block(l1,l2,LINESET) Delete a line-range block of text.

DC Del_Char(m) Delete ‘m’ characters from the text.

DL Del_Line(m) Delete ‘m’ lines of text, starting at the edit position.

E - Command Summary Appendices 257



Del_Line(0) Delete characters from the beginning of the line up to
the edit position.

DTH Desktop_Height
DTW Desktop_Width

(Windows) Return the height and width of the desktop
(screen)in pixels, e.g. 600x800 or 768x1024.

DTAB Detab_Block(p,q) Convert tabs to spaces in the block of text between file
positions ‘p’ and ‘q’.

DTAB(p,q,NORESTORE) The edit position is set just past the end of the con-
verted block.

DTAB(p,q,COLUMN) Detab a columnar block.

DTAB(p,q,COLSET,c1,c2) Detab a columnar block.

DTAB(l1,l2,LINESET) Detab a line-range block.

DI1 Dialog_Input_1(r,"...") (Windows) Create a dialog box with a title, text,
buttons, and optional check boxes, radio buttons and
input strings. See the on-line help for the latest details.

DIR Directory("fspec") Display the disk directory. Optional drive, path, and
wildcard characters “?” and “*” may be specified.

Dir("fspec -s") Include filenames in any subdirectories

Dir("fspec",COUNT,n) Display the filenames in ‘n’ columns instead of 4.

Dir("fspec",NOERR) Suppress error message if ‘fspec’ does not match any
files; set Error_Flag to “2”. Also suppress error mes-
sage if the pathname contains a non-existent directory;
set Error_Flag to “3”.

Dir("fspec",NOMSG) Omit the “Directory:” and pathname header line and
display the filenames in 1 column.

Dir("fspec",SHORT) Display long filenames in the short 8.3 format.

Dir("fspec",SUPPRESS) Omit subdirectory names and system/hidden files.

DKF Disk_Free("drive") Return the amount of free disk space on drive ‘drive’
in Megabytes.

DKI Disk_Info("drive") (DOS) Display detailed disk information about drive
‘drive’.

DKO Disk_Open("drive") (DOS) Open disk drive ‘drive’ for sector editing.

DKOD Disk_Open_DOS("drive") (DOS) Open DOS disk (partition) drive ‘drive’ for
sector editing.

DKS Disk_Size("drive") Return the total size of drive ‘drive’ in Megabytes.

DOV Do_Visual("\vm\\vm\xx") Execute the Visual Mode functions ‘vm-codes’ and
remain in Command Mode. Appendix A lists the
‘vm-codes’ which are enclosed by “\ \”. Normal dis-
playable characters ‘xx’ are not enclosed by “\ \”.

EOF End_Of_File( ) Move past the last character in the file.

End_Of_File(LOCAL) Move past the end of the portion of the file currently
in memory.

EOL End_Of_Line( ) Move to the end of the current line.

EOL_Pos Return the file position at the end of the current line,
just before the newline character(s).

258 Appendices E - Command Summary



EF Error_Flag Return the value of error flag which is reset/set by each
command.

EM Error_Match Return the value of search/match error flag which is
reset/set only by Compare( ), Match( ), Search( ),
Replace( ) and Reg_Compare( )

Error_OS Return the value of the write error flag which is
reset/set by the last disk write operation.

Escape_Mode Return the current value of the alternate [ESCAPE]
function. (0 if none).

Escape_Mode(vm-code) Set the [ESCAPE] function to perform the specified
Visual Mode function instead of popping up the
{ESCAPE} menu. Codes are listed in Appendix A.

Exit Exit VEDIT after prompting whether each modified
file is to be saved or abandoned. If a file to be saved
has no assigned filename, prompts for one.

Exit(n) (DOS/QNX) Return ‘n’ to the OS as VEDIT’s “return
code” instead of the default value of zero.

XBUF1 Extra_Buffer_1
XBUF2 Extra_Buffer_2
XBUF3 Extra_Buffer_3
XBUF4 Extra_Buffer_4

Returns the ID # of the first four “Extra” edit buffers.
This is 100-103 for the Windows version and 33-36
for the DOS version.

FA File_Attrib("file") Return the attributes (read-only, hidden, etc.) of ‘file’.
Return -1 if ‘file’ does not exist.

File_Attrib("file",n) Set the attributes of ‘file’ to ‘n’. Returns the old
attributes.

File_Attrib("file",n,RESET) Reset (clear) the specified attribute bit(s) ‘n’.

File_Attrib("file",n,SET) Set the specified attribute bit(s) ‘n’.

FCHK File_Check("file") Check if ‘file’ is currently being edited in any buffer.
If it is, returns the buffer number 1 - 99; if not, returns
-1.

FC File_Close( ) Save and close the current file. If the current buffer
contains text but has no assigned filename, prompts
for one. Remains in the current edit buffer.

File_Close(CONFIRM) Prompts for confirmation to save or abandon the file
if it has been altered.

File_Close(EVENT) Execute the File-close event macros, even if disabled.

File_Close(NOEVENT) Suppresses executing the File-close event macros,
even if enabled.

File_Close(NOMSG) Suppresses the “Saving:...” message.

File_Close(OK) Suppress the “Save changes to disk...” prompt during
disk sector editing. (DOS only)

FCP File_Copy("sfile","dfile") Copy the file ‘sfile’ to ‘dfile’.

File_Copy(...,OK) Skip confirmation to overwrite an existing ‘dfile’.

File_Copy(...,NOERR) Suppress error message if ‘sfile’ does not exist.

FDEL File_Delete("fspec") Delete the file(s) specified by ‘fspec’ from disk. Op-
tional drive, path, and wildcard characters “?” and “*”.

E - Command Summary Appendices 259



File_Delete("fspec",OK) Delete the specified file, skipping the directory display
and confirmation prompt.

FDEL("fspec",OK+EXTRA) The options OK+EXTRA are needed to de-
lete, without confirmation, multiple files
specified with “*”.

FDEL("fspec",NOERR) Suppress error message if the file(s) is not found.

FEXIST File_Exist("fspec") Test for existence of the file(s) ‘fspec’. Returns the
number of matching filenames (0 if none).

File_Exist("fspec",NOERR) Suppress the error message if the pathname
contains a non-existent directory; sets
Error_Flag = 3.

File_Exist("fspec",SUPPRESS) Omit directory names and system/hidden
files.

FMD File_Mkdir("dir") Make (create) the new directory ‘dir’.

FMV File_Move("oldfile","newfile") Move the file ‘oldfile’ to ‘newfile’. Identical
to File_Rename( ).

FO File_Open("file") Open (or create) the file ‘file’ for editing. It is opened
in the first available buffer. If the file is already open
in another buffer, it switches to that buffer.

FO('"file1" -a "file2"') Open ‘file1’ for editing, but save it as ‘file2’. Note how
single and double quotes must be used to support long
filenames with embedded spaces.

FO('"file" -l n') Open ‘file’ and set the initial edit position on line ‘n’.

FO('"file1","file2", ...') Open multiple files. The first file is opened in the
normal manner; the additional files are opened in
additional edit buffers. Each file may include the “-a”,
“-l” and “-t” options.

FO("file?.*") The wildcards “?” and “*” may be used to specify the
files being opened. All matching files will be opened.

FO("file",ATTACH) Create a new overlapping window for each opened
file. The windows are only created if {CONFIG,
Display options, Auto-create window style} is en-
abled (default).

FO("file",BROWSE) Open the file in “browse-only mode”; it cannot be
altered.

FO("file",CHGDIR) Change the current (default) directory to the directory
containing ‘file’.

FO("file",EVENT) Execute the File-open event macro, even if disabled.

FO("file",FORCE) Allow a file to be opened in an “extra” buffer. Note
that files opened in “extra” buffers are not automat-
ically saved.

FO("file",MRU) (Windows only) Add the specified file(s) to the Most-
Recently-Used list in the {FILE} menu and File-se-
lector when the file is closed.

FO("file",NOEVENT) Suppress executing the File-open event macro, even if
enabled.

FO("file",NOMSG) Suppress the “New File” message if the file is created.

260 Appendices E - Command Summary



FO("file",OVERWRITE) Suppress creating a backup file, even if backup files
are enabled.

FOPENR File_Open_Read("file") Open the file ‘file’ for input (reading).

FOPENW File_Open_Write("file") Open the file ‘file’ for output (writing).

FQ File_Quit( ) Quit (abandon) any text or file in the buffer; remain in
the same buffer. Requests confirmation if the buffer
has been altered. Same as Buf_Empty( ).

File_Quit(OK) Skip the confirmation prompt.

FR File_Read(n) Append ‘n’ lines from the input file to the edit buffer.

File_Read(0) Append lines until edit buffer is nearly full.

File_Read(n,REVERSE) Read back ‘n’ lines from the output file.

File_Read(0,REVERSE) Read back lines until edit buffer is nearly full.

FREN File_Rename("oldfile","newfile") Rename or move the file ‘oldfile’ to ‘newfile’.
Identical to File_Move( ).

File_Rename(...,OK) Skip confirmation to overwrite existing ‘newfile’.

File_Rename(...,NOERR) Suppress error message if ‘oldfile’ does not exist.

FRD File_Rmdir("dir") Remove (delete) the directory ‘dir‘; it must be an
empty directory with no files.

FS File_Save If modified, save the file in the current edit-buffer to
disk and keep it open for further editing.

File_Save(ALL) Save all modified files to disk.

File_Save(NOMSG) Save file(s), but suppress “Saving...” message.

File_Save(BEGIN) Save file(s), but leave the edit position at the beginning
of the file. Useful when editing huge files.

FSA File_Save_As("file") Save the current file under the new name ‘file’ and
allow further editing under this new filename.

File_Save_As("file",OK) Suppress the confirmation prompt if ‘file’ already
exists.

FSIZE File_Size Return the size of the current file in bytes.

FTRUNC File_Truncate( ) Truncate and close the current output file WITHOUT
writing additional text. Rarely used — primarily after
a File_Write( ) command. CAUTION. INCORRECT
USE WILL RESULT IN DELETED FILES!

File_Truncate(OK) Skip the confirmation prompt.

FW File_Write(n) Write ‘n’ lines to disk from the beginning of the buffer.

File_Write(0) Write out the edit buffer up to the current line.

File_Write(n,REVERSE) Write last ‘n’ lines in the edit buffer to the “.rR$” file.

File_Write(0,REVERSE) Write the current line and the rest of the edit buffer to
the “.rR$” file.

Font_Charset Return the character set for the current display font.
0=ANSI, 255=OEM. The DOS version always returns
255.

E - Command Summary Appendices 261



FONTH Font_Height
FONTW Font_Width

(Windows) Return the height and width of the current
display font in pixels. This includes any additional
“LineSpacing” set in the vedit.ini file.

FP Format_Para(n) Format the current paragraph and advance the edit
position to the next paragraph. The current left margin
is used unless ‘n’ is specified as the temporary left
margin. Justify with an even right edge if {CONFIG,
Word processing, Justify paragraphs} is set.

GE Get_Environment(r,"name") Set T-Reg ‘r’ to the (string) value of environ-
ment variable ‘name’.

GF Get_Filename(r,"fspec") Selects a filename using a dialog box. ‘fspec’ is the
initial “filter”. When selected, the complete pathname
is placed into T-Reg ‘r’.

GI Get_Input(r,"mtext") Prompt for user input with ‘mtext’. Get the entire
keyboard input line including the terminating “newl-
ine” and save it in T-Reg ‘r’.

GI(r,"mtext",NOCR) Get keyboard input line without the “newline” charac-
ter(s).

GI(r,"mtext",TAB8) Any tabs in ‘mtext’ use tab stops at every 8 columns.

GI(r,"mtext",STATLINE) Prompt with ‘mtext’ on the status line.

GI(r,"mtext",APPEND) Append input line to any contents of T-Reg ‘r’.

GI(r,"mtext",INSERT) Insert the input line at the beginning of T-Reg ‘r’.

GI(r,"mtext",COUNT,n) Limit the length of the input line to ‘n’ characters.

GI(r,"mtext","default") Set a default input line of ‘default’.

GK Get_Key("mtext") Prompt for user input with ‘mtext’. Return the value
of the next key pressed. Normal characters return
value 32 - 255. Function/control keys return their
decoded function code.

Get_Key("mtext",RAW) Control characters are not decoded and return 0 - 31.
Function keys are not decoded and return their “scan
code” * 256.

GK("mtext",NOCANCEL) Allow [CANCEL] (<Ctrl-C>) as valid function key.
Otherwise pressing [CANCEL] stops any macro.

GK("mtext",TAB8) Any tabs in ‘mtext’ use tab stops at every 8 columns.

GK("mtext",STATLINE) Prompt with ‘mtext’ on the status line.

GN Get_Num("mtext") Prompt for user input with ‘mtext’. Return the value
of the numeric expression that is entered. (0 if invalid).

GN("mtext",SUPPRESS) Return the value of the simple decimal number.

GN("mtext",TAB8) Any tabs in ‘mtext’ use tab stops at every 8 columns.

GN("mtext",STATLINE) Prompt with ‘mtext’ on the status line.

GN("mtext","default") Use ‘default’ as the default input string.

Goto label Jumps to the label “label:” or “:label:”.

GC Goto_Col(n) Move the edit position as close as possible to column
‘n’ on the current line.

262 Appendices E - Command Summary



Goto_Col(n,EXTRA) Also force the Visual Mode cursor to column ‘n’.
Should immediately be followed by Visual( ).

GL Goto_Line(n) Go to the beginning of line ‘n’ in the current file.

GM Goto_Marker(m) Goto previously set text marker ‘m’.

GP Goto_Pos(n) Go to file position ‘n’ in the current file. Goto_Pos(0)
goes to the beginning-of-file.

H Help Start up on-line help for Command Mode.

Help("text") Immediately search help file for the topic ‘text’.

IC Ins_Char(n) Insert the character with decimal value ‘n’ into the edit
buffer and advance the edit position.

Ins_Char(n,OVERWRITE) Overwrite the existing character and advance.

Ins_Char(n,COUNT,n2) Repeat the insertion ‘n2’ times.

INSF Ins_File("file") Insert ‘file’ into the edit buffer and advance the edit
position.

Ins_File("file",BEGIN) Leave the edit position at the beginning of the inserted
file.

Ins_File("file",n1,n2) Insert the line range ‘n1’ - ‘n2’ of ‘file’ into the edit
buffer.

Ins_File("file",1,ALL,COLUMN) Insert the file as a columnar block.

II Ins_Indent(n) Insert the optimum number of tabs and spaces to reach
column ‘n’.

IM Insert_Mode Return the value of the Visual Mode “Insert” mode
setting.

Insert_Mode(SET) Set “Insert” mode in Visual Mode. Same as
Insert_Mode(1).

Insert_Mode(CLEAR) Clear “Insert” mode; set “overstrike” mode. Same as
Insert_Mode(0).

IN Ins_Newline(n) Insert ‘n’ newlines, according to the current file type,
into the edit buffer and advance the edit position.

IT Ins_Text("text") Insert ‘text’ into the edit buffer.

IT("text",OVERWRITE) Overwrite existing characters with ‘text’.

Ins_Text("text",COUNT,n) Insert ‘n’ copies of ‘text’.

IA Is_Altered Return TRUE if the current edit buffer has been altered
since the last file save.

IAF Is_Altered_File Return TRUE if the current file (buffer) has been
altered since it was opened. Saving the file does not
change this flag.

IAE Is_Auto_Execution Return TRUE if a “-x” invocation macro is currently
running.

IDKO Is_Disk_Open Return TRUE if the current edit buffer is being used
for disk sector editing.

Is_Expired Return TRUE if the support period for the VEDIT
product is expired, of if VEDIT is running as a trial
version and the trial period is expired.

E - Command Summary Appendices 263



Is_File_Selector (Win32) Return TRUE if the File selector windows is
currently displayed.

ILF Is_Long_Filename Return TRUE if long filenames are being used with
Windows. Long filename support can be turned off
with the “-d” invocation option.

Is_Mono Return TRUE if VEDIT is using its monochrome
screen attributes (colors).

INF Is_New_File Return TRUE if the current file was created, i.e. it
didn’t exist when it was opened.

IOR Is_Open_Read Return TRUE if the current buffer has an open input
file

IOW Is_Open_Write Return TRUE if current buffer has an open output file.

IO Is_Option(x) Return TRUE if invocation option ‘x’ was specified.

Is_OS2 Return TRUE if VEDIT is currently running under the
OS/2 operating system.

Is_Quiet Return “1” if VEDIT was invoked with the “-q” invo-
cation option. Return “2” if the Windows version is
currently minimized.

ISRI Is_Redirect_Input Return TRUE if “keyboard” input to the macro lan-
guage is currently being redirected from a file.

Is_Saveas Return TRUE if the output file is different from the
input file.

ISV Is_Startup_Vdm Return TRUE if the startup.vdm macro was
loaded and executed at startup.

Is_Support Return the product support expiration date; the year is
returned in the lower four hex digits, the month in the
next two hex digits.

Is_VEDIT_PLUS Return TRUE for VEDIT (PLUS), FALSE for VEDIT
Lite.

Is_VSWAP (DOS) Return TRUE if V-SWAP is installed and
enabled.

Is_Windows Return Microsoft Windows version #. Win95 = 395 or
400, Win98 = 410; Win2000 = 500; WinXP = 501.

Is_Win32_Version Return TRUE if the 32-bit Windows version of
VEDIT is running.

Is_WinNT Return TRUE if the 32-bit Windows version of
VEDIT is running under Windows NT/2000/XP.

Itoa(n,r) Place the ASCII conversion of numeric expression ‘n’
into T-Reg ‘r’. Same as Num_Str( ).

KA Key_Add("key-seq","edit-seq") Add the key assignment to the end of the
keyboard layout table.

Key_Add(...,NOCONFIRM) Skip confirmation to overwrite any existing
assignment to ‘key-seq’.

Key_Add(...,INSERT) Insert the key assignment at the beginning of the
keyboard layout table.

Key_Cfg_Pop() Restore the previous keyboard layout by “popping” it
from the text register stack.

264 Appendices E - Command Summary



Key_Cfg_Push() Save the current keyboard layout by “pushing” it on
the text register stack.

KD Key_Delete("key-seq") Delete the keyboard assignment to ‘key-seq’.

Key_Delete("key-seq",NOERR) Suppress error if ‘key-seq’ not assigned.

Key_Delete("edit-seq",REVERSE) Delete the keyboard layout entry which as-
signs any key to the specified “edit sequence”.

Key_Jam(n) (DOS only) Jam the keyboard character or scan-code
‘n’ into the hardware keyboard buffer.

Key_List() List (display) the entire keyboard layout.

KL Key_Load("file") Load a new keyboard layout from the file ‘file’. If the
file is not found in the current directory, the VEDIT
home directory will be searched.

Key_Load("file",NOERR) Suppress error message if the file is not found.

Key_Pop(n) Pop (remove) the first ‘n’ key assignments from the
beginning of the keyboard layout table. USE WITH
CAUTION! See Key_Add(...,INSERT).

Key_Purge( ) Purge any pending keystrokes, keystroke macro,
[REPEAT] or [REPEAT LAST] function.

KRM Key_Record_Mode Return the value of the [REPEAT LAST] record
mode.

Key_Record_Mode(n) Set the [REPEAT LAST] record mode to ‘n‘:
0 - Keystroke recording completely off.
1 - Normal keystroke recording for Visual Mode.
2 - All keystrokes are recorded until KRM(0).

KS Key_Save("file") Save current keyboard layout, including any keystroke
macros, to the file ‘file’.

Key_Save("file",BINARY) Save the keyboard layout in a “binary” format.

Key_Save("file",OK) Skip confirmation prompt when ‘file’ already exists.

KSTAT Key_Status Return TRUE if a key (keystroke macro) is pending.

KT Key_Total Return the total number of keyboard characters typed
since starting VEDIT. (Windows version does not
count dialog boxes.)

LSP Last_Search_Pos Return the edit (file) position before the last search.

L Line(m) Move the edit position by ‘m’ lines.

Line(0) Move to the beginning of the current line.

Line(m,NOERR) Suppress error message if B-O-F or E-O-F reached.

Line(m,ERRBREAK) Perform Break if B-O-F or E-O-F reached.

MN Macro_Num Return the ID number of the T-Reg/Buffer currently
executing as a command macro.

ML Margin_Left Return the value of the left margin.

Margin_Left(n) Set the left margin (indent column) for the current edit
buffer to ‘n’.

MR Margin_Right Return the value of the right margin.

E - Command Summary Appendices 265



Margin_Right(n) Set the right margin (word wrap column) for the
current edit buffer to ‘n’.

Marker(m) Return the file position of text marker ‘m’.
(-1 if not set).

MW Mark_Word( ) Mark the word at the edit position as a highlighted
block, setting Block_Begin and Block_End.

Match("ss") Compare the text at the edit position with ‘ss’ and
return the results of the comparison: {0,1,2} for {=, >,
<}. ‘ss’ may contain pattern matching codes.

Match("ss",CASE) Perform a case sensitive match, otherwise the match
is case insensitive.

Match("ss",WORD) The matched text must be a distinct “word”, i.e. sur-
rounded by separators (non-alphanumeric).

Match("ss",REGEXP) Match using regular expressions with “minimized”
matching.

Match("ss",REGEXP+MAX) Match using regular expressions with “maxi-
mized” matching.

Match("ss",ADVANCE) Advance the edit position past the matched characters
if successful.

Match("ss",ALL) Match as many consecutive occurrences of ‘ss’ as
possible. Successful if at least one occurrence
matched.

Match("ss",COUNT,n) Must match ‘n’ times to be successful.

MI Match_Item Return the item number that matched in a
search/match using the “|{...}” pattern matching code.

MP Match_Paren( ) If the edit position is at one of the parentheses pairs “{
} [ ] < > ( )”, find its matching pair; otherwise,
search forwards for the next parentheses character.

Max(n,m) Return the greater of the two numeric values ‘n’ and
‘m’. See Min( ).

MF Mem_Free Return number of bytes free in the current edit buffer.

Mem_Free(n) Free ‘n’ bytes of memory space in current edit buffer,
if possible, by buffering the file back to disk. (Rarely
used.)

Mem_Free(1) Squeeze the edit buffer to approximately 8K in size.

MSTAT Mem_Status( ) Display number of free bytes in current edit-buffer;
number of bytes used in the edit buffer; total number
of bytes in all text registers.

M Message("mtext") Type (display) ‘mtext’. Multiple lines may be typed by
using “\n” or by entering ‘mtext’ as multiple lines.

Message("mtext",TAB8) Any tabs in ‘mtext’ use tab stops at every 8 columns.

Message("mtext",STATLINE) Display the one-line message on the status
line. See also Statline_Message( ).

Message("...\<vm>...",EXTRA) The key assigned to edit-function ‘vm’ is dis-
played highlighted. Appendix A lists the ‘vm
codes’.

266 Appendices E - Command Summary



Min(n,m) Return the lesser of the two numeric values ‘n’ and
‘m’. See Max( ).

Mouse_Active Return non-zero (TRUE) if the mouse is active.

ND Name_Dir( ) Display current drive/directory.

Name_Dir(NOMSG) Omit the “Directory:” header.

Name_Dir(NOCR) Omit the following CR+LF newline.

NF Name_File( ) Display names of the input and output files.

Name_File(EXTRA) Display filenames with complete drive and path.

NR Name_Read( ) Display the name of the input (read) file.

Name_Read(EXTRA) Display filename with its drive and path.

Name_Read(NOMSG) Omit the “Input file:” header.

Name_Read(NOCR) Omit the following CR+LF newline.

NW Name_Write( ) Display the name of the output (write) file. See
Name_Read( ) for options.

NC Newline_Chars Return the number of chars in a “newline” according
to the current file type. (Windows/DOS=2;
Unix/Mac=1; Record/binary=0).

NTS Next_Tab_Stop Return the column position of the next tab stop based
on the current value of Cur_Col.

N_Option Return the value of the number following the “-N”
invocation option.

N_Option(n) Force the value returned by N_Option to ‘n.

NAB Num_All_Bufs Return the maximum number of all edit buffers in
VEDIT including “extra” buffers. It is 125 for the
Windows version and 36 for the DOS version.

NEB Num_Edit_Bufs Return the maximum number of normal edit buffers
in VEDIT.(Windows = 99; DOS = 32)

NDS Num_Display(x,y) Display values of non-zero numeric registers ‘x’ - ‘y’.

Num_Display(x,y,ALL) Display values even if zero.

Num_Display(x,y,NOMSG) Display values even if zero and omit the
"#xx =” header.

Num_Display(x,y,COUNT,n) Display values in ‘n’ columns.

NE Num_Eval( ) Evaluate the numeric expression in the text at the edit
position and return its value.

Num_Eval(ADVANCE) Advance the edit position past the numeric expression.

Num_Eval(SUPPRESS) Only a simple number is evaluated.

NED Num_Eval_Date() (Windows) Evaluates a date mm/dd/yyyy or dd-mm-
yyyy as the number of days since 01-01-0001 assum-
ing the Julian calendar and leap years.

NER Num_Eval_Reg(r) Evaluate the numeric expression in T-Reg ‘r’ and
return its value. Atoi( ) is another name for
Num_Eval_Reg( ).

E - Command Summary Appendices 267



NI Num_Ins(n) Insert the ASCII value of numeric expression ‘n’ into
the edit buffer and advance the edit position.

Note: Num_Ins( ) has the same options as Num_Type( ).

NID Num_Ins_Date(n) (Windows) Inserts ‘n’ as a date, e.g. mm-dd-yyyy,
where ‘n’ is the number of days since 01-01-0001
assuming the Julian calendar and leap years.

Num_Ins_Date(n,BEGIN) Insert the date as dd-mm-yyyy.

Num_Ins_Date(n,NOCR) Suppress the newline (CR+LF) after the date.

Num_Ins_Date(n,VALUE,’/’) Insert the date as mm/dd/yyyy.

Num_Pop(x,y) Pop (restore) numeric registers ‘x’ through ‘y’ from
the register stack.

Num_Push Return the number of numeric registers which have
been pushed on the stack with Num_Push( ).

Num_Push(x,y) Push (save) numeric registers ‘x’ through ‘y’ onto the
numeric register stack; the registers are not changed.
Maximum of 254 registers. (DOS: max of 128)

NS Num_Str(n,r) Place the ASCII value of numeric expression ‘n’ into
T-Reg ‘r’. Itoa() is another name for Num_Str( ).

Num_Str(n,r,APPEND) Append the ASCII value to the existing contents of
T-Reg ‘r’.

Num_Str(n,r,INSERT) Insert the ASCII value at the beginning of T-Reg ‘r’.

NT Num_Type(n) Type (display) the value of numeric expression ‘n‘,
right justified followed by a “newline”.

Num_Type(n,LEFT) Display the number left justified.

Num_Type(n,NOCR) Suppress the “newline” following the number.

Num_Type(n,FILL) Use “0” for any padding, instead of spaces.

Num_Type(n,EXTRA) Use extra padding for positive numbers to have the
same width (6 or 11 columns) as negative numbers.

Num_Type(n,FORCE) Use a field width of 10 columns for all positive num-
bers; negative numbers use a width of 11 columns.

Num_Type(n,FORCE+EXTRA) Use a field width of 11 columns for all positive
and negative numbers.

Num_Type(n,HEX) Display the number in hex, left justifed, in the format
“0Xhhhh:hhhh” with as many hex digits as needed.

Num_Type(n,HEX+NOMSG) Display the number in hexin the format
“hhhhhhhh” with as many ‘hh’ hex digits as
needed; the “0X” and “:” are suppressed.

O_Option Return the value of the number following the “-o”
invocation option.

OS OS_Type Return the operating system type: (1=Windows,
2=DOS, 4=UNIX/XENIX, 5=QNX, 6=Linux)

OF Out_File("file") Re-route console output to the file ‘file’.

Out_File(CLEAR) Disable Out_File( ), close the re-routed file, allowing
output to go back to the console.

268 Appendices E - Command Summary



OI Out_Ins( ) Re-route following console output into the edit buffer
and advance the edit position.

Out_Ins(CLEAR) Disable Out_Ins( ), allowing output to go back to the
console. Same as Out_Ins(0).

Out_OS( ) (DOS) Re-route console output directly to DOS. This
bypasses the normal screen/window handler and al-
lows(e.g. ANSI escape sequences) to be sent to DOS.

Out_OS(CLEAR) Disable Out_OS( )

OP Out_Print( ) Re-route console output to the printer.

Out_Print(CLEAR) Disable Out_Print( ).

OR Out_Reg(r) Re-route console output to T-Reg ‘r’.

Out_Reg(CLEAR) Disable Out_Reg( ).

OM Overwrite_Mode Return the value of “Overwrite mode” for the current
edit buffer.

Overwrite_Mode(n) Set the overwrite mode for the current buffer to ‘n’.
Valid values are 0, 1 and 2.

PK Previous_Key(n) Return the ‘n‘th previous keystroke. Normal charac-
ters return 32 - 255. Function/control keys return
function-codes with value > 255.

Previous_Key(n,RAW) Return the ‘n‘th previous raw keystroke. Normal char-
acters return 32 - 255. Control keys return 0 - 31.
Function keys return their hardware scan-code * 256.

PTS Previous_Tab_Stop Return the column of the previous tab stop; 0 if none.

PR Print(m) Print the next/previous ‘m’ lines of text. Control char-
acters are printed according to the current Print mode.

Print(m,RAW) Print in “Raw” mode without margins and print all
control characters as-is, without conversion.

Print(m,NOEVENT) Suppress the print-job start string, even if enabled.

Print(m,EVENT) Send the print-job start string, even if disabled.

PB Print_Block(p,q) Print the block of text between file positions ‘p’ and
‘q’.
See Print( ) and Type_Block( ) for other options.

PE Print_Eject( ) Page eject - advance printer to next page, typically
with a Form-Feed character.

Print_Eject(0) Reset only the internal line counter used for printing.

PF Print_Finish( ) Finish printing; typically send a page eject to the
printer. Optionally send the “Printer Finish string”.
Then close the print-job.

Print_Finish(SUPPRESS) Suppress the page eject, even if enabled.

Print_Finish(NOEVENT) Suppress the print-job finish (reset) string, even if
enabled.

Print_Finish(EVENT) Send the print-job finish string, even if disabled.

PCPL Printer_CPL (Windows only) Return the printer’s “Characters per
line”, depending upon the printer font and size.

E - Command Summary Appendices 269



PLN Printer_Line Return the line number on the printed page that the
next Print( ) command will print to, e.g. 1 - 66.

PLPP Printer_LPP Return the printer’s “Lines per page”.

Process_ID Return the “Process ID” number assigned by the OS
to the current instance of VEDIT.

Qall Quit (abandon) all files and exit VEDIT. Requests
confirmation.

Qally Skip the confirmation prompt. Use with extreme care.
Same as Qall(OK). (BAD HABIT TO GET INTO!!)

Qall(n) Return ‘n’ to the OS as VEDIT’s “return code” instead
of the default value of zero.

RINP Redirect_Input("file") Use ‘file’ as “keyboard” input redirection for the
Get_Input( ), Get_Key( ), Get_Num( ), etc. com-
mands.

Redirect_Input(CLEAR) Disable input redirection, allowing input to come from
the keyboard.

RCOMP Reg_Compare(r,"text") Compare byte-by-byte the contents of T-Reg ‘r’ with
‘text’. The comparison is not case sensitive. Returns
{0,1,2} corresponding to {=,>, <}.

Reg_Compare(r,"text",CASE) The comparison is case sensitive.

RC Reg_Copy(r,m) Copy next/previous ‘m’ lines from the edit buffer into
T-Reg ‘r’. The edit position is unchanged.

Reg_Copy(r,m,APPEND) Append to any existing contents in T-Reg ‘r’.

Reg_Copy(r,m,INSERT) Insert at the beginning of T-Reg ‘r’.

Reg_Copy(r,m,NORESTORE) The edit position is set just past the end of the
copied text.

RCB Reg_Copy_Block(r,p,q) Copy the block of text between file positions ‘p’ and
‘q’ into T-Reg ‘r’.

RCB(r,p,q,DELETE) Copy (move) the block of text into T-Reg ‘r’ and
delete it from the edit buffer.

RCB(r,p,q,DELETE+FILL) Copy (move) the block of text into T-Reg ‘r’ and then
replace (fill) the source block with spaces.

RCB(r,p,q,RESET) Clear the Block_Begin and Block_End markers.

RCB(r,p,q,CLIPBOARD) Copy the block of text into T-Reg ‘r’ and then copy
‘r’ to the Windows clipboard.

RCB(r,p,q,COLUMN) Copy a columnar block of text. File positions ‘p’ and
‘q’ define the “corners” of the columnar block.

RCB(r,p,q,COLSET,c1,c2) Copy a columnar block of text. File positions ‘p’ and
‘q’ define the lines, ‘c1’ and ‘c2’ define the columns
of the block.

RCB(r,l1,l2,LINESET) Copy a line-range block of text. ‘l1’ and ‘l2’ specify
the first and last line numbers of the block.

RE Reg_Empty(r) Empty T-Reg ‘r’.

Reg_Empty(r,EXTRA) Empty T-Reg ‘r‘, even if it is currently executing as a
macro.

270 Appendices E - Command Summary



RF Reg_Free Return the ID number of the next free (empty) T-Reg
in the range 10 - 99.

RI Reg_Ins(r) Insert the contents of T-Reg ‘r’ into the edit buffer and
advance the edit position. If the register was saved as
a columnar block, it is inserted as a columnar block.

Reg_Ins(r,BEGIN) Leave the edit position at the beginning of the inserted
block.

Reg_Ins(r,OVERWRITE) Overwrite the existing text at the edit position.

Reg_Ins(r,RAW) Insert T-Reg ‘r’ as a stream block, regardless of how
it was saved.

Reg_Ins(r,COLUMN) Insert T-Reg ‘r’ as a columnar block, regardless of
how it was saved.

Reg_Ins(r,LINEBLOCK) Insert T-Reg ‘r’ at the beginning of the current line as
a line block, regardless of how it was saved.

Reg_Ins(r,CLIPBOARD) Copy the Windows clipboard to T-Reg ‘r‘, and then
insert (paste) ‘r’ into the edit buffer. Add
“+COLUMN” or “+LINEBLOCK” to insert the
clipboard as a columnar or line block.

RL Reg_Load(r,"file") Load ‘file’ into T-Reg ‘r’.

Reg_Load(r,"file",APPEND) Append ‘file’ to any existing contents of T-
Reg ‘r’.

Reg_Load(r,"file",INSERT) Insert ‘file’ at the beginning of T-Reg ‘r’.

Reg_Load(r,"file",EXTRA) If ‘file’ not found in the current directory, also
look in the User Macro Directory then in the
VEDIT Macro Directory, and last in the
VEDIT Home Directory.

Reg_Load(r,"file",NOERR) Suppress error message if file not found.

RLP Reg_Load_Part(...,offset,length) Load a partial ‘file’ — beginning at ‘offset’
load ‘length’ bytes into T-Reg ‘r’.

RLM Reg_Lock_Macro Return the ID number of the currently “locked-in”
macro. (0 if none).

Reg_Lock_Macro(r) Set up to execute T-Reg ‘r’ as the “locked-in” macro
in place of the “COMMAND:” prompt. ‘r’ cannot be
“0”.

Reg_Lock_Macro(CLEAR) Disable any “locked-in” macro. Same as
Reg_Lock_Macro(0).

Reg_Lock_Macro(r,EXTRA) Keep the locked-in execution enabled even if
syntax or logical errors occur during com-
mand execution. USE WITH CARE!

RMF Reg_Mem_Free Return the number of bytes free (available) for text
register usage.

Reg_Pop(r,s) Pop (restore) T-Regs ‘r’ through ‘s’ from the register
stack. (Be sure to push and pop in the correct order.)

RP Reg_Print(r) Print contents of T-Reg ‘r’. Control characters are
printed according to the current Print mode.

Reg_Print(r,n) Print using temporary print mode of ‘n’. Expand con-
trol characters, print in hexadecimal, EBCDIC, etc.

E - Command Summary Appendices 271



Reg_Print(r,n,RAW) Print in “Raw” mode without margins and print all
control characters as-is, without conversion.

Reg_Print(r,n,NOEVENT) Suppress the print-job start (init) string, even if en-
abled.

Reg_Print(r,n,EVENT) Send the print-job start (init) string, even if disabled.

Reg_Prot(r,s,n) Set write-protection of T-Regs ‘r’ through ‘s’ to ‘n‘:
0 - write protection off
1 - Visual Mode cannot alter the registers; however,
command macros can alter the registers.
2 - Registers cannot be altered, loaded or emptied

Reg_Push Reg_Pop and Reg_Push without arguments return the
number of text registers which have been pushed on
the stack with Reg_Push( ), Key_Cfg_Push( ) and
Win_Cfg_Push( ).

Reg_Push(r,s) Push (save) T-Regs ‘r’ through ‘s’ onto the text regis-
ter stack and empty the registers. Max of 128 registers.

Reg_Push(r,s,SET) The specified registers are not emptied.

RSAV Reg_Save(r,"file") Save contents of T-Reg ‘r’ in the file ‘file’.

Reg_Save(r,"file",OK) Skip confirmation prompt when ‘file’ already exists.

RS Reg_Set(r,"text") Set (place) ‘text’ into T-Reg ‘r’.

Reg_Set(r,"text",APPEND) Append ‘text’ to any existing contents of T-Reg ‘r’.

Reg_Set(r,"text",INSERT) Insert ‘text’ at the beginning of T-Reg ‘r’.

RSIZE Reg_Size(r) Return the number of bytes (used) in T-Reg ‘r’.

RSTAT Reg_Status( ) Display the total number of bytes in all text registers
followed by the size of each register.

RT Reg_Type(r) Type (display) contents of T-Reg ‘r’. Control and
graphics characters are expanded according to the
current display mode.

Reg_Type(r,n) Type contents of T-Reg ‘r’ using ‘n’ as a mask to
selected the desired display mode (control expansion
of control and graphics characters).

RTB Reg_Type_Block(r,p,q) Type the block of characters between positions ‘p’ and
‘q’ in T-Reg ‘r’.

Reg_Type_Block(r,p,q,n) Type the block of characters using ‘n’ as a mask to set
the display mode.

RDI Registry_Delete_Item("key\iname") (Windows only) Delete item
‘iname’ from the registry key ‘key’.

RDK Registry_Delete_Key("key") Delete the entire registry key ‘key’
and all items in it.

RGI Registry_Get_Item(r,"key\iname") Get the registry item ‘key\iname’ as
a string value and place it in text
register ‘r’.

RGN Registry_Get_Number(x,"key\iname") Get the registry item ‘key\iname’ as
a numeric value and place it in nu-
meric register ‘x’.

272 Appendices E - Command Summary



RSI Registry_Set_Item("key\iname = text") Set the registry item ‘key\iname’ to
the string value ‘text’. Create the
entire key and item if necessary.

RSN Registry_Set_Number("key\iname = n") Set the registry item ‘key\iname’ to
the numeric value ‘n’. See on-line
help for options.

Remainder Return the remainder from the last division.

Repeat_Count Return pending [REPEAT] count, or 1 if there is none.

Repeat_Flag Return TRUE if [REPEAT] is pending.

R Replace("ss","rs") Search for the next occurrence of ‘ss‘, and if found,
replace it with ‘rs’.

Replace("ss","rs",ALL) Search for all occurrences of ‘ss’ and replace with ‘rs’.

Replace("ss","",CONFIRM) Prompt for the replacement options, same as
[REPLACE].

RB Replace_Block("ss","rs",p,q) Restrict the search within the block defined by
file-positions ‘p’ and ‘q’.

Note: See Search( ) for other command options.

RPOS Restore_Pos( ) Restore the edit position from the most recent position
saved with Save_Pos( ). If the stack is empty, the
command has no effect.

Restore_Pos(RESET) Empty (reset) the edit position stack.

RTAB Retab_Block(p,q) Convert spaces to the optimum number of tabs and
spaces in the block of text between file positions ‘p’
and ‘q’. All options for Detab_Block() apply too.

Return(n) Stop the currently executing macro and set
Return_Value to ‘n’ for subsequent testing.

RV Return_Value Return the value of the last Return( ) executed due to
a Call( ). Also the return value from selected com-
mands.

REVV Reverse_Video(n) Return the reverse video of screen attribute ‘n’.

Save_Env( ) Special command for edit-session-restore feature. See
on-line help for details.

SPOS Save_Pos( ) Save the current edit position on a special stack of “text
markers”. Maximum of five positions.

SCOL Screen_Cols DOS/QNX: Return the current number of screen col-
umns. Windows: Return number of columns in a full-
size window.

SIBM Screen_IBM Return the IBM display type.
(0=None, 1=Mono, 2=CGA, 4=EGA, 5=VGA).

SIBMM Screen_IBM_Mode Return the IBM hardware video display mode.

SI Screen_Init( ) Initialize screen. Delete all windows and then auto-
create the main window #1 as a full-sized window.
Reset to configured screen colors.

Screen_Init(ALL) Initialize the screen and delete all windows. Window
#1 is not auto-created. A window will be auto-created
for the next displayed output.

E - Command Summary Appendices 273



Screen_Init(ATTACH) Initialize screen. Then create an overlapping full
screen window for each open edit buffer if {CONFIG,
Auto-create windows for buffers} is enabled.

SL Screen_Lines DOS/QNX: Return the number of screen lines. Win-
dows: Return number of lines in a full-size window.

Screen_Mono( ) Force monochrome screen attributes.

SR Screen_Reset( ) Reset VEDIT to the current screen size and mode;
rewrite the entire screen.

SS Screen_Size(n) Change screen size to ‘n’ lines, if possible.

Screen_Size(TOGGLE) (DOS) Toggle between 25 line, VGA 28 line and
VGA/EGA 50/43 line modes.

Screen_Size(l,c) (Windows) Change the size of the VEDIT program
window so that a full-size edit window has ‘l’ lines and
‘c’ columns, if possible.

ST Screen_Type Return the screen display type.
2 = IBM PC Monochrome
3 = IBM PC Color (CGA, EGA, VGA)

S Search("ss") Search forwards for the next occurrence of ‘ss’ and set
the edit position at the beginning of it.

Search("ss",ADVANCE) Set the edit position past the end of the matched text.
Does not apply to Replace( ).

Search("ss",REVERSE) Search backwards for the nearest previous occurrence
of ‘ss’.

Search("ss",CASE) Perform a case sensitive search, otherwise the search
is case insensitive.

Search("ss",WORD) The matched text must be a distinct “word”, i.e. sur-
rounded by separators (non-alphanumeric).

Search("ss",SIMPLE) Perform a simple search without using pattern match-
ing or regular expressions.

Search("ss",REGEXP) Search using Regular Expressions with minimized
matching.

Search("ss",REGEXP+MAX) Search using Regular Expressions with maxi-
mized matching.

Search("ss",EBCDIC) Perform search in EBCDIC file by internally translat-
ing ‘ss’ from ASCII to EBCDIC.

Search("ss",HEX) The search string consists of hex values “00” thru “ff”
separated by spaces. Hex words, double-words and
quad-words are also supported.

Search("ss",BEGIN) Start the search from the beginning of the file.

Search("ss",LOCAL) Restrict the search to the text currently in memory.
Useful for performing a “near” search in a huge file.

Search("ss",SET) Set ‘ss’ to be the current search string for use by
[SEARCH AGAIN] or Search("").

Search("ss",NORESTORE)Don’t restore the edit position in case of an unsuccess-
ful search; leave it at the end (or beginning) of the file.
This saves time in huge files.

274 Appendices E - Command Summary



Search("ss",CONFIRM) Set temporary block markers to the matched text simi-
lar to [SEARCH].

Search("ss",NOERR) Suppress the error message in case of an unsuccessful
search.

Search("ss",ERRBREAK) Performs a Break out of any command loop in case of
an unsuccessful search.

Search("ss",COUNT,n) Search for the ‘n‘th occurrence of ‘ss’.

Search( )
Search("")

Search forwards for the next occurrence of the search
string set by [SEARCH] or the “SET” option.

SB Search_Block("ss",p,q) Matching text must be entirely within the block de-
fined by file positions ‘p’ and ‘q’.

SB("ss",p,q,COLUMN) Matching text must be entirely within a columnar
block.

SB("ss",p,q,COLSET,c1,c2) Matching text must be entirely within a co-
lumnar block.

SB("ss",l1,l2,LINESET) Matching text must be entirely within a line-range
block.

Search_Options Return the search options selected in the last
Search/Replace dialog-box.

Search_Options(n) Sets the saved search options to ‘n’. This determines
the search mode (e.g. SIMPLE or REGEXP) and
options (e.g. WORD or BLOCK) for the next
{SEARCH, Next} function.

Search_Status( ) Return status of [SEARCH] / [REPLACE].
(0=Cancelled, 1=[SEARCH], 2=[REPLACE])

Set_Altered_Flag(n) Set/clear (override) the internal flag Is_Altered which
keeps track of whether the current buffer has been
altered. Can be used to force a file to appear unaltered,
even if it was altered.

SM Set_Marker(m,n) Set text marker ‘m’ to file position ‘n’.

Set_Marker(m,CLEAR) Clear text marker ‘m’. Same as Set_Marker(m,-1).

SVL Set_Visual_Line(n) Rewrite current (visual mode) window with the cur-
rent line displayed on window line ‘n’.

Set_Visual_Line(0) Center the current line in the visual mode window.

Sleep(n) Delay for ‘n’ / 10 seconds. (Max = 25.5 seconds.)

Sort(p,q) (Obsolete - Use Sort_Merge) Sort the entire lines
(records) specified by file positions ‘p’ and ‘q’. The
sort is in ascending order using the entire line as the
“key”.

Sort_Load(file) Load an alternate collate table for the Sort_Merge( )
command.

SMX Sort_Merge("...") Sort all lines in a file (or block) according to a primary
key field and up to nine secondary fields. Options
include ascending/descending, case sensitive, no col-
late. Replaces the old Sort( ) command.

E - Command Summary Appendices 275



Sound(n,k) Create a sound (tone) of frequency ‘n’ hertz and
duration ‘k’ milliseconds.

Sound(n,k,EXTRA) Add 30 milliseconds of silence after the sound.

SRD SR_Display( ) Display the current search and replace strings.

SRS SR_Set("ss","rs") Set the search and replace strings.

STATM Statline_Message("itext") Display ‘itext’ on the status line; it will remain until
the next keystroke. ‘itext’ can contain “|@(r)” to use
the contents of text register ‘r’.

Strip_High(m) Strip the 8th bit from all characters in the next/previous
‘m’ lines of text.

Strip_High(p,q) Strip the block of characters between file positions ‘p’
and ‘q’.

Strip_High(p,q,COLUMN) Strip a columnar block.

Strip_High(p,q,COLSET,c1,c2) Strip a columnar block.

Strip_High(l1,l2,LINESET) Strip a line-range block.

SXL Syntax_Load(file) Load the color syntax highlighting definition file ‘file’.

SYS System( ) Temporarily shell out to a DOS/NT box. Return to
VEDIT with the DOS/NT command “exit”.

System("program") Execute the specified command or program. Returns
to VEDIT after the command/program is done. Win-
dows: run the specified windows program in normal
mode; wait for it to finish.

System(‘"program"‘) Note how single and double quotes must be used to
support long filenames with embedded spaces.

System("prog",SIMPLE) Windows: run the specified windows program in mini-
mized mode.

System("prog",MAX) Windows: run the specified windows program in
maximized mode.

System("prog",NOWAIT) Windows: do not wait for the shelled program to finish
(terminate).

Note: The “DOS” option is ignored by the DOS version of
VEDIT; however, it is need by the Windows version
to run a DOS program or command.

System("command",DOS) Windows: Start a DOS/NT command box and run the
specified command or program. This box runs in a
normal window which must be manually closed when
it is done.

Sys("command",DOS+DELETE) Windows: Start a DOS/NT command box and
run the specified command or program. This
box runs in a normal window which auto-
closes when it is done.

System("command",DOS+MAX) Windows: Start a DOS/NT command box
which runs in a maximized window.

Sys("command",DOS+SIMPLE) Windows: Start a DOS/NT command box
which runs in a minimized window and auto-
closes.

276 Appendices E - Command Summary



System("command",SUPPRESS) Windows: Suppress the “Shell out [Cancel]”
dialog box which is otherwise displayed dur-
ing the shelling process.

System("command",NOMSG) DOS: Suppress the “Press any key to con-
tinue” prompt upon returning to VEDIT.

System("command",LOCAL) DOS: Suppress the immediate screen rewrite
upon returning. Useful when executing sev-
eral DOS commands one after another.

System("command",OK) DOS: Suppress all screen prompts and re-
writes; also suppress scrolling the screen be-
fore executing the command.

Sys_xxxx( ) (DOS only) The Sys_... commands for direct hardware
access are documented in the on-line help topic
“HARDCMDS”.

TO Tab_Out(n) Tab-out by typing spaces to column ‘n’. If already at
or past column ‘n‘, types two (2) spaces.

TPL Template_Load(file) Load the template editing macro file ‘file’.

Time( ) Display the current system time.

Time(EXTRA) Display system time with 1/18 second resolution.

Time(NOMSG) Omit the heading “Time:”.

Time(NOCR) Omit the following CR+LF newline.

TT Time_Tick Return the time in milliseconds since VEDIT was
started.

TRB Translate_Block(p,q) Translate the block of text between file positions ‘p’
and ‘q’ by using the first of two translation tables. By
default, translate from ASCII to EBCDIC.

TRB(p,q,REVERSE) Translate the block of text by using the second of two
translation tables. By default, translate from EBCDIC
to ASCII.

TRB(p,q,NORESTORE) Advance the edit position past the end of the translated
block.

TRB(p,q,COLUMN) Translate a columnar block of text.

TRB(p,q,COLSET,c1,c2) Translate a columnar block of text.

TRB(p,q,LINESET) Translate a line-range block of text.

TRC Translate_Char(n) Return the value of character ‘n’ after translation using
the first translation table, e.g. from ASCII to EBCDIC.

Translate_Char(n,REVERSE) Return the value of character ‘n’ after transla-
tion using the second translation table, e.g.
from EBCDIC to ASCII.

TRL Translate_Load("file") Load the character translation tables from ‘file’ into
VEDIT.

T Type(m) Type (display) the next/previous ‘m’ lines of text.

TB Type_Block(p,q) Type (display) the block of text between file positions
‘p’ and ‘q’.

E - Command Summary Appendices 277



Type_Block(p,q,NORESTORE) The edit position is set past the last typed
character.

Type_Block(p,q,COLUMN) Type a columnar block of text.

Type_Block(p,q,COLSET,c1,c2) Type a columnar block of text.

Type_Block(l1,l2,LINESET) Type a line-range block of text.

TC Type_Char(n) Type (display) the character with numeric value ‘n’.
Control and graphics characters are displayed accord-
ing to the window’s current display mode.

Type_Char(n,COUNT,x) Type the character ‘x’ times.

TF Type_File("file") Type (display) the file ‘file’ with line numbers.

Type_File("file",n1,n2) Type the specified line range of ‘file’ with line num-
bers.

Type_File("file",n1,n2,NOMSG) Type the specified line range of ‘file’ without
line numbers.

TN Type_Newline(n) Type (display) ‘n’ newlines.

TS Type_Space(n) Type (display) ‘n’ spaces.

UD Undo_Delete( ) Insert the last text block from the deletion stack at the
current edit position. Up to the most recent five blocks
can be inserted.

UE Undo_Edit(n) Undo the last ‘n’ edit changes.

UL Undo_Line( ) Undo the edit changes made to the current line. At the
COMMAND: prompt, undo all changes since the last
COMMAND: prompt.

UR Undo_Reset( ) Reset the Undo facility and clear the deletion stack.

U Update( ) Display (update) the current edit buffer in a window,
ensuring that the window is on top of other windows.

Update(SUPPRESS) Display (update) the current edit buffer in a window;
don’t change the order of the windows.

VER Version( ) Display the VEDIT version number.

VN Version_Num Return the current version number as an integer, e.g.
“602”.

V Visual( ) Enter Visual Mode setting the cursor position from the
current edit position.

Visual(n) Perform only ‘n’ operations in Visual Mode before
returning automatically to Command Mode.

VM Visual_Macro Return the current value of the “Visual Mode macro”
flag. Consists of multiple “bit mask” values.

Visual_Macro(n) Sets the Visual Mode macro flag to value ‘n’.

Visual_Macro(SET) Set masks “08” and ”04” to force an auto-return to
Visual Mode with a possible “Press any key to con-
tinue...” prompt.

Visual_Macro(CLEAR) Disable the Visual Mode macro flag. Prevents an
auto-return to Visual Mode.

WA Win_Attach(w) Attach window ‘w’ to the current edit buffer.

278 Appendices E - Command Summary



Win_Attach(w,LINKED) Attach window ‘w’ and lock its cursor position to the
current window so that both windows scroll together.

WB Win_Border Return the type of borders in the current window:
0 = Window has no border
1 = Window has minimal borders
2 = Window has full borders without scroll bars
3 = Window has full borders with scroll bars

WCASC Win_Cascade( ) Move and resize all windows so that they cascade-
overlap each other.

Win_Cfg_Pop() Restore the previous window arrangement by “pop-
ping” it from the text register stack.

Win_Cfg_Push() Save the current window arrangement by “pushing” it
on the text register stack.

WCLR Win_Clear( ) Clear (erase) entire window; home the cursor.

WC Win_Color Return the current window’s text color attribute.

Win_Color(n) Set current window’s text color to ‘n’.

Win_Color(n1,n2) Set text color to ‘n1’ and “erase” color to ‘n2’.

Win_Color(n1,n2,EXTRA) Also set configured text/erase attributes to ‘n1’ and
‘n2’.

WCE Win_Color_Erase Return the current window’s “erase” color attribute.

WCOL Win_Cols Return the number of text columns in the current
window.

WCRE Win_Create(w,l,c,nl,nc) Create the overlapping window ‘w’ and switch to it.
The window’s top-left corner origin is at line ‘l’ and
column ‘c’. It’s size is ‘nl’ text lines and ‘nc’ columns.

Win_Create(...,PIXEL) (Windows only) Specify the new window’s origin and
size in exact pixels.

Win_Create(w,0,0,0,0,PIXEL) (Windows only) Create a full-sized window.

Win_Create(...,ATTACH) Attach the new window to the current edit buffer.

WDEL Win_Delete( ) Delete the current window. Cannot delete the main
window “1”.

Win_Delete(w) Delete window ‘w’.

WDET Win_Detach(w) Detach window ‘w’ from any edit buffer.

WDM Win_Display_Mode Return the current window’s display mode.

Win_Display_Mode(n) Change the current window’s text display mode to ‘n’.

WEOL Win_EOL( ) Erase from cursor to end-of-line in window.

WEOS Win_EOS( ) Erase from cursor to end-of-screen in window.

WF Win_Free Return the ID number of the next unused (free) win-
dow.

WINH Win_Height (Windows) Return the height of the current editing
window in pixels. See also Win_Width.

WH Win_Hor Return the cursor’s horizontal (column) position in the
window.

E - Command Summary Appendices 279



Win_Hor(n) Position the cursor horizontally to window column ‘n’.

Win_Level(w) Return display (overlapping) level for window ‘w’.
0 = entire window is visible.
n = up to ‘n’ windows are overlapping window ‘w’.

WL Win_Lines Return the number of text lines in the current window.

Win_Move(w,x,y,cx,cy) (Windows) Move/resize window ‘w’ to pixel origin
‘x‘,’y’ and size ‘cx’ (width) and ‘cy’ (height).

Win_Move(APP,x,y,cx,cy) (Windows) Move/resize VEDIT program window ‘w’
to pixel origin ‘x‘,’y‘, width ‘cx’ and height ‘cy’.

WX Win_Next Return the ID number of the next (higher numbered)
window attached to any edit buffer.

Win_Next(BUFFER) Give precedence to windows that are attached to the
current buffer, before returning the ID of windows
attached to other buffers.

WN Win_Num Return the ID number of the current window.

WOVL Win_Overlap Return the overlapping status of windows.
(See Chapter 4 or on-line help for details.)

Win_Page_Size Return the number of lines in a “page” for [PAGE UP]
and [PAGE UP]. (Value depends upon the number of
window lines.)

WPRV Win_Previous Return the ID number of the previous (lower num-
bered) window attached to any edit buffer.

Win_Previous(BUFFER) Give precedence to windows that are attached to the
current buffer, before returning the ID of windows
attached to other buffers.

WR Win_Reserved(w,n,BOTTOM) Create the reserved window ‘w’ of ‘n’ lines at
the bottom of the screen; resize all other win-
dows. See Win_Split( ) for other options.

WRB Win_Reserved_Bottom Return the number of lines in the reserved window at
the bottom of the VEDIT screen area; return 0 if none.

Win_Reserved_Bottom_ID Return the window ID number of the reserved window
at the bottom of the VEDIT screen; return 0 if none.

WRT Win_Reserved_Top Return the number of lines in the reserved window at
the top of the screen; return 0 if none.

Win_Reserved_Top_ID Return the window ID number of the reserved window
at the top of the screen; return 0 if none.

WSM Window_Scroll_Margin Return the value of the current window’s scroll mar-
gin.

Window_Scroll_Margin(n) Set the horizontal scroll margin used in Visual Mode
to ‘n’.

WSPL Win_Split(w,n,BOTTOM) Split the current window to create window ‘w’ of ‘n’
lines at the bottom. A value of “0” for ‘n’ splits the
current window into two equal sized windows.

Win_Split(w,n,TOP) Create window ‘w’ of ‘n’ lines at the top.

Win_Split(w,n,LEFT) Create window ‘w’ of ‘n’ columns at the left.

Win_Split(w,n,RIGHT) Create window ‘w’ of ‘n’ columns at the right.

280 Appendices E - Command Summary



WSPL(...+ATTACH) Attach the new window to the current edit buffer.

WSPL(...+NOBORDER) Create window ‘w’ without borders (when possible).

WSPL(...+MINBORDER) Create window ‘w’ with minimal borders.

WSPL(...+FULLBORDER) Create window ‘w’ with full borders.

WSTAT Win_Status(w) Return status for window ‘w’:
-1 - Window doesn’t exist.
0 - Window exists, but is not attached.
b - Window is attached to edit buffer ‘b’.

WS Win_Switch(w) Switch console output to window ‘w’.

Win_Switch(w,ATTACH) Switch to window ‘w‘, and if attached to an edit buffer,
switch to the buffer and make it the buffer’s “primary”
window.

Win_Switch(STATLINE) Switch to use the status line as a one line window.

WTILE Win_Tile( ) Move and resize all windows so that they tile the
screen and are all visible without overlapping.

WTTL Win_Title(w,"text") Set the title for window ‘w’ to ‘text’. The title is
displayed on the window’s top border.

WT Win_Total Return the total number of text windows.

WV Win_Vert Return the cursor’s vertical (line) position in the win-
dow.

Win_Vert(n) Position the cursor vertically to window line ‘n’.

WINW Win_Width (Windows) Return the width of the current editing
window in pixels. See also Win_Height.

WINX Win_X_Org
WINY Win_Y_Org

(Windows) Return the horizontal (x) and vertical (y)
origin of the current editing window in pixels.

WZ Win_Zoom( ) Zoom the current window to full screen.

Win_Zoom(CLEAR) De-zoom the window.

Win_Zoom(TOGGLE) Zoom/de-zoom toggle.

Write_Line("file",m) Write the next/previous ‘m’ lines of text to the file
‘file’.

Xall Exit VEDIT, saving edit changes in all buffers that
contain altered files and have an assigned filename.
There are no prompts.

Xall(n) Return ‘n’ to the OS as VEDIT’s “return code” instead
of the default value of zero.

XBUF1 Extra_Buffer_1
XBUF2 Extra_Buffer_2
XBUF3 Extra_Buffer_3
XBUF4 Extra_Buffer_4

Returns the ID # of the first four “Extra” edit buffers.
This is 100-103 for the Windows version and 33-36
for the DOS version.

E - Command Summary Appendices 281



F - Search Modes Summary

Pattern Matching Codes
NOTE: Only the codes “|Hhh”, “|N”, “|Oooo”, “|ddd” and “|@(r)” can be

used on the replacement side.
|A Match any alphabetic letter, upper or lower case.
|B Match a blank - one space or tab.
|C Match any control character.
|D Match any numeric digit - “0” - “9”.
|F Match any alphanumeric - a letter or a digit.
|G Match any graphics (high-bit) character.
|Hhh Match the character with hexadecimal value ‘hh’. Can also be used on

the replacement side.
|I Match any word separator, including Config_String(WORD_SEP).
|K Match any non-standard control character other than Tab, Carriage-Re-

turn and Line-Feed.
|L Match “newline”: Carriage-Return and/or Line-Feed. CR is optional in

DOS/Windows files.
|M Multi - match any sequence of zero or more characters.
|N Match “newline” characters, similar to “|L”. CR is required in DOS/Win-

dows files. Can also be used on the replacement side.
|Oooo Match the character with octal value ‘ooo’. Can also be used on the

replacement side.
|P Match any “parenthesis” - { } [ ] ( ) < >.
|S Match any separator - not a letter, digit or “_” (underscore).
|T Match the Tab character (value 09).
|U Match any upper case letter.
|V Match any lower case letter.
|W Match white space - single or multiple Spaces or Tabs.
|X Match extended white space - one or more Spaces, Tabs, Carriage-Re-

turns and/or Line-Feeds.
|Y Match multiple characters until the next pattern matches.
|ddd Match the character with decimal value ‘ddd’. Can also be used on the

replacement side.
|000 Match the Null (value 00) character
|< Match beginning of line (zero length match).
|> Match end of line (zero length match).
|* Match multiple characters on the same line - zero, one or more characters

until the string following the “|*” is satisfied.
|? Match any character.
|! Match any character except following character or pattern.
|{set} Matches one occurrence of any item in the “pattern set”.
|[set] Matches one optional occurrence of any item in “pattern set”.

282 Appendices F - Search Modes Summary



|@(r) Access contents of text register ‘r’ as a variable string. Can also be used
on the replacement side.

| | Use “| |” when you need to search for a “|”.

Regular Expressions
Expressions that match a single character:

. (Period) Simple wildcard that matches any character.
[list] Matches any one character in the ‘list’.
[^list] Matches any one character not in the ‘list’.
[~list] Same. “[~” is equivalent to “[^”.
\b Matches the ASCII backspace character (hex 08).
\dDDD Matches the character with decimal value ‘DDD’. All three digits MUST

be present.
\e Matches the ASCII <Esc> character (hex 1B).
\f Matches the ASCII Form-Feed character (hex 0C).
\hHH Matches the character with hexadecimal value ‘HH’. Both digits MUST

be present.
\n Matches the Line-Feed character (hex 0A). This is the “newline” char-

acter for UNIX type text files. To search for multiple-line patterns, use
“\N” instead.

\N Matches the “newline” character(s) and allows searching for multiple
line patterns. The “newline” depends upon the current file type and can
be CR, CR+LF or LF. (“\N+” and “\N*” are currently not supported.)

\oOOO Matches the character with octal value ‘OOO’. All three digits MUST
be present.

\r (Lower case) Matches the ASCII CR character (hex 0D).
\s Matches the ASCII space character (hex 20).
\t Matches the ASCII tab character (hex 09).
\0 (Zero) Matches the ASCII Null character (hex 00).
\ “\” followed by a special character matches that character. The special

characters are:
^ $ . * + ? - ~ \ | [ ] { }

Expressions that match multiple characters:

* Matches zero or more occurrences of the preceding single character
matching expression.

+ Matches one or more occurrences of the preceding single character
matching expression.

? Matches zero or one occurrences of the preceding single character
matching expression.

\1 - \9 Matches the same text as was matched by the previous ‘n’th group.

Other:

^ (Caret) Matches the beginning of a line (when it is the first character in
a regular expression).

$ Matches the end of a line (when it is the last character in a regular
expression).

F - Search Modes Summary Appendices 283



{ } Groups expressions for future reference in either the search string or
replacement string.

| Matches any text that is matched by the preceding OR the following
expression. It cannot occur within { }.

\@(r) Use the contents of text register ‘r’ in this position in the search (or
replace) string.

Replacement Side:

\b The ASCII backspace character (hex 08).
\dDDD The character with decimal value ‘DDD’. All three digits MUST be

present.
\e The ASCII <Esc> character (hex 1B).
\f The ASCII Form-Feed character (hex 0C).
\hHH The character with hexadecimal value ‘HH’. Both digits MUST be

present.
\n The Line-Feed character (hex 0A). This is the “newline” character for

UNIX type text files.
\N The “newline” character(s) depending upon the current file type and can

be <CR><LF>, <LF> or <CR>.
\oOOO The character with octal value ‘OOO’. All three digits MUST be present.
\r The Carriage-Return character (hex 0D).
\s The ASCII space character (hex 20).
\t The ASCII tab character (hex 09).
\0 (Zero) The ASCII Null character (hex 00).
\@(r) Use the contents of text register ‘r’ in this position in the replacement

string.
\1 - \9 Same text as was matched by the n’th group on the search side.
& Entire text that was matched by the search expression.

Precedence of Regular Expression Operators:

Regular Expression Operator Precedence

Highest: \
[ ]
* + ?
{ }
Concatenation

Lowest: |

284 Appendices F - Search Modes Summary



G - Text Register Usage
Most of VEDIT’s text and numeric registers between 100 and 127 are reserved
for special purposes. This table lists the reserved registers and suggested uses
for the general purpose registers.

0 The “scratchpad” or default “cut and paste” register in Visual
Mode.

1 - 9 Used as additional “cut and paste” registers from Visual Mode.
10 - 99 Used to hold command macros or as string variables in command

macros. However, they can also be used for “cut and paste”
operations.

100 Used by any auto-execution macro specified with the “-x” invo-
cation option. It is also the default register for {MISC,
Load/execute macro}. It should be reserved for the “main”
macro that is running.

101 Should be reserved for the “subroutine” macros used by the main
macro executing in register 100.

102 Should be reserved for the “locked-in” macro used by the main
macro executing in register 100.

103 - 106 Temporary registers used as needed by keystroke macros. This
prevents keystroke macros from interfering with command mac-
ros that may be running.

107 - 109 Reserved for use by the “File-open configuration macro”, the
“File-open/close event macros”, the “Buffer-switch event macro”
and the “Template editing macro”. This prevents these special
macros from interfering with other macros that may be running.

110 The “File-open event macro”. It is executed after each file is
opened, if CONFIG(F_E_F_MACRO) is enabled. It is executed
after the “File-pre-open event macro” in register 112 and after the
“File-open configuration macro” in register 115.

111 The “File-close event macro”. It is executed just before each file
is closed.

112 The “File-pre-open event macro”. It is executed just before each
file is opened.

113 The “File-post-close event macro”. It is executed immediately
after each file is closed.

114 The “Buffer-switch event macro”. It is executed immediately
after each buffer switch in Visual Mode or due to the macro
language command Buf_Switch(r,EVENT).

115 The “File-open configuration macro”. It is executed after each file
opened if {CONFIG, File-open config, Enable file-open
configuration} is enabled. It is executed after the “File-pre-open
event macro” in register 112 and before the “File-open event
macro” in register 110.

116 Reserved for future use.

G - Text Register Usage Appendices 285



117 Internally used text register. It is used by and emptied by many
block commands.

118 Internally used by the Syntax_Load( ) and Template_Load( )
commands to run the loadsyn.vdm and regprep.vdmmac-
ros.

119 Reserved for “subroutine” macros set up within a “.key” file.
120 Internally used text register. It is emptied with each keystroke and

by many block commands. Numeric register 120 is also used
internally.

121 Internally used register that holds the filename from the File
selection dialog boxes. Numeric register 121 is also used inter-
nally.

122 Internally used to load the print.vdm, sallbuff.vdm,
srchincr.vdm, loadsyn.vdm, keyedit.vdm,
startup.vdm and veditsav.vdm macros.

123 Holds the custom editing functions for the {TOOLS} menu.
Otherwise it must be empty. Numeric register 123 can be used
within the {TOOL} menu.

124 Holds the custom editing functions for the {USER} menu. Oth-
erwise it must be empty. Numeric register 124 can be used within
the {USER} menu.

125 Internally used to hold the keyboard layout in a binary format. It
MUST NOT be altered. (125 - 127 are accessible for use by the
veditsav.vdm macro which implements the edit-session-re-
store feature.)

126 Internally used to hold the current window structure. It MUST
NOT be altered.

127 Internally used to hold the last command line entered at the
“COMMAND:” prompt. (It has a constant size.) It MUST NOT
be altered.

286 Appendices G - Text Register Usage



INDEX

! % (remainder) numeric operator, 73
' (quote) numeric constant, 69
++ increment operator, 70
"-" prompt, 22
-- decrement operator, 70
".r$$" file, 37, 161, 163
".rR$" file, 37
// Comment lines, 54
: (labels), 65
<< display, 18
= assignment operator, 70
?? Trace command, 115
@r string argument, 21, 39, 65
^ (caret) numeric constant, 69
| (pattern matching codes), 282
{ and } (Command Loops), 55
|@(r) string argument, 39, 65, 185, 221

A ADVANCE Option
Match, 182
Search/Replace, 214

Alert( ), 99, 121
ALL option, 20, 33, 105

Match, 182
Search/Replace, 214

App_Height, 121
App_Width, 121
App_X_Org, 121
App_Y_Org, 121
APPEND option, 38
Arguments, 20

Numeric, 20, 69
String, 21

Arrays - Numeric, 71
ASCII to Integer, 122
At_BOB, 122
At_BOF, 122
At_BOL, 122
At_EOB, 122
At_EOF, 67, 122
At_EOL, 122
Atoi( ), 122
Auto-buffering, 102

287



B Backup file (".BAK"), 161
Backward file buffering, 163
BEGIN option, 105

Block_Copy/Move, 124
Search/Replace, 214

Begin_Of_File( ), 29, 123
Begin_Of_Line( ), 29, 123
Beginning of file/buffer - At_BOB, AT-BOF, 122 - 123
Beginning of line - At_BOL, 122
Block

Columnar blocks, 89, 123, 139
Commands, 88 - 90
Convert to upper/lower case, 135
Fill with spaces/tabs, 125
Line-range blocks, 90, 126
Markers (See Block markers), 87
Operations (overview), 87 - 92
Search/Replace, 213
Write to disk, 126, 242

"BLOCK IS TOO LARGE FOR TEXT REGISTER", 199
Block markers

Setting, 87, 91, 123
Block_Begin( ), 71, 87, 92, 123
Block_Copy( ), 53, 88 - 90, 124
Block_End( ), 87, 123
Block_Fill( ), 88, 125
Block_Mode, 126
Block_Move( ), 88 - 89, 124
Block_Save_As( ), 126
BOL_Pos( ), 127
*BREAK*, 18, 64, 127
Break-Out commands, 64, 127, 143, 210
Break_Out( ), 65, 127
Breakpoints, 115
Browse_Mode, 128
Buf_Close( ), 35, 128
Buf_Empty( ), 35, 129
Buf_Free, 77, 130
Buf_Next, 130
Buf_Num, 130
Buf_Num_Altered, 130
Buf_Num_Window, 130
Buf_Previous, 130
Buf_Quit( ), 35, 131
Buf_Status, 130
Buf_Switch( ), 44, 77, 132
Buf_Total, 130
Buf_Win_Next, 130
Buf_Win_Previous, 130
Buf_Window, 130
BUFFER Option, 96, 105

288



C Cab_Extract( ), 133
Call( ), 52, 112, 116, 134
Call_File( ), 53 - 54, 134
[CANCEL], 18, 24
"CANNOT FIND", 57, 213
"CANNOT MODIFY EXECUTING MACRO", 134, 200
<CR>, 42
CASE option, 31

Match, 182
Search/Replace, 213

Case_Lower_Block( ), 88, 135
Case_Switch_Block( ), 135
Case_Upper_Block( ), 90, 135
Center line in window, 216
Chain( ), 112, 135
Chain_File( ), 112, 135
Char( ), 29, 136
Char_Dump( ), 79, 136
Characters

Control (See Control characters), 19
Numeric value - Cur_Char, 144

Chars_Matched, 137, 214
Chdir( ), 37, 137
Clip_Copy_Block( ), 138
Clip_Ins( ), 138
Close files (See also Input file and Output file), 163
CMD-CONV.VDM file, 119
Color

Edited text, 231
Highlight, 138
Prompts, 138
See also Windows, 80

Color_Highlight, 138
Color_Prompt, 138
COLSET Option

Block_Copy/Move, 124
Search/Replace, 213

Column number - Cur_Col, Cursor_Col, 144
COLUMN Option

Block_Copy/Move, 124
Search/Replace, 213

Column_Begin, 123, 139
Column_End, 123, 139
Column_Mode, 139
Columnar block (See also Block), 89, 123, 126, 139
Command line

Basics, 18
Editing/reusing, 18
Multiple, 22
Multiple commands, 20

Command macros, 52, 55

289



As keystroke macro, 52
Chaining, 112, 135
Cleanup, 119
Comments, 54
Converting full/abbreviated names, 119
Debugging, 115 - 118
Event macros, 107 - 110
Executing, 134 - 135, 203
Executing - Macro_Num, 181
Loading (See also Text registers), 54, 134, 206
Locked-in, 113
Self modifying, 111

Command Mode
Auto-buffering, 102
Basics, 17 - 24
Entering, 17
Exit to Visual Mode, 18
Prompt (COMMAND:), 22, 203
Window ($), 12, 24

Commands
Arguments, 20
Options, 22
Return value, 23

Comments in macros, 54
Compare( ), 96, 139
Comparing

Text, 95 - 97
Conditional expressions, 72 - 75
Config( ), 27, 71, 140
Config_Display( ), 141
Config_Load( ), 141
Config_Save( ), 141
Config_String( ), 27, 142
Config_Tab( ), 27, 142
Config_VEDIT( ), 143
Configuration

Save in VEDIT.EXE, 143
CONFIRM Option

Search/Replace, 214
Continue, 64, 143
Control characters

Displaying, 208
Entering, 19, 42, 170, 172
Numeric value - Cur_Char, 69
Printing, 41, 193
Searching, 42

Converting block to upper/lower case, 135
Copying/moving text

Between edit buffers, 45
Block_Copy/Move command, 124

COUNT option, 31

290



Match, 182
Search/Replace, 213

<Ctrl-\>, 18, 24
<Ctrl-Break>, 18, 24
<Ctrl-C>, 18, 24
<Ctrl-Q>, 19
<Ctrl-S>, 24
Cur_Char, 144
Cur_Col, 63, 144
Cur_Line, 63, 144
Cur_Pos, 87, 144
Current drive/directory, 37, 137
[CURSOR DOWN], 19
Cursor position

In window, 80, 236
[CURSOR UP], 19
Cursor_Col, 144

D Date
Evaluate (read), 188
Insert, 188

Date( ), 145
Debugging macros, 115 - 118
Del_Block( ), 88 - 89, 145
Del_Char( ), 30, 146
Del_Line( ), 30, 146
Delay command, 217
Delete

Files, 36, 156
Text, 30, 145 - 146

DELETE Option
Block_Copy/Move, 125

Delimiters (string), 21
Desktop_Height, 147
Desktop_Width, 147
Detab_Block( ), 88, 147
Dialog box

Custom, 84 - 85, 147
File selection, 84, 165

Dialog_Input_1( ), 85, 147
Directory

Change default, 37, 137
Display, 36, 98, 150
Make (create) and remove, 157

Directory( ), 21, 36, 98, 150
Disk full error (recovery), 36
Disk space

Free, 150
Freeing - delete files, 36, 156
Total, 151

Disk_Free( ), 150

291



Disk_Size( ), 150
Display

Current (configuration) settings, 27
Files, 225
Search and replace strings, 219
Spaces and "newlines", 226
Status information, 26
Text, 79, 185, 224
Text registers (See Text registers), 39
Type - Screen_Type, Screen_IBM, 212

Display Directory, 186
Do-While statement, 59
Do_Visual( ), 151
DOS shell (command), 221
Duplicating lines (macro), 53

E Edit buffer
Attached window - Buf_Window, 131
Extra buffers, 113
Macros, 111
Multiple, 132
Next - Buf_Next, 130 - 131
Number - Buf_Num, 130
Read from file, 161
Status - Buf_Stat, 131
Switching, 129, 131 - 132
Total number - Buf_Total, 131
Use as Text Register, 44
Window usage, 48

Edit function codes, 151 - 152, 185, 243
Edit position, 29, 58

Cur_Pos, 87, 144
Goto file position, 87
Move by character, 136
Move by line, 123, 180
Move by search/match, 95 - 96, 213
Move to file position, 169
Save/restore, 101

Editing
Multiple files, 44 - 45, 132
New file, 35, 155, 158

"END OF BUFFER REACHED", 57, 180
End of file/buffer - AT_EOF, At_EOB, 122
End of line - At_EOL, 122
End-of-file

Processing, 66
End-of-line character (See also Newline character), 136
End_Of_File( ), 29, 151
End_Of_Line( ), 29, 151
[ENTER CTRL], 19
Environment variable (reading), 93, 165

292



EOL_Pos( ), 127
ERRBREAK option, 66 - 67

Search/Replace, 214
Error_Flag, 95, 152, 183, 214
Error_Match, 152, 183
Error_OS, 152
Escape_Mode( ), 152
Event macros, 107 - 110, 285
Exit VEDIT, 25, 152
Exit( ), 25, 152
Extended file searching, 202
EXTRA Option

Block_Copy/Move, 124
Extra_Buffer_1, 153

F FALSE (logical value), 72
File

Abandon (Quit), 129
Buffering (See also Auto-buffering), 102
Close, 128
Close macro, 108
Concatenating and merging, 171
Deleting, 36, 156
Displaying/viewing, 225
Inserting, 171
Large (huge), 106
Long filenames, 34, 158, 166, 174
Open macro, 107
Opening, 158
Position - Cur_Pos, 87
Quit (abandon) and exit, 131
Save, 128, 155
Save and continue editing, 162
Save and Exit, 152
Searching, 202
Size - File_Size, 162

"FILE IS ALREADY OPEN IN THIS BUFFER", 160
File position

Cur_Pos, 144
Goto - Goto_Pos( ), 169

File_Attrib( ), 154
File_Check( ), 154
File_Close( ), 35, 104, 155
File_Copy( ), 155
File_Delete( ), 36, 156
File_Exist( ), 157
File_Mkdir( ), 157
File_Move( ), 155
File_Open( ), 34, 44, 84, 104, 158
File_Open_Read( ), 160
File_Open_Write( ), 160

293



File_Quit( ), 35, 129
File_Read( ), 102, 106, 161
File_Rename( ), 155
File_Rmdir( ), 157
File_Save( ), 35, 162
File_Save_As( ), 162
File_Size, 162
File_Truncate( ), 163
File_Write( ), 102, 106, 163
Filename, 82

Displaying, 98
Using text registers, 39

FILL Option
Block_Copy/Move, 125

Flow control (statements), 55
Font_Charset, 164
Font_Height, 164
Font_Width, 164
For statement, 60
Form-Feed character, 196
Format_Para( ), 164
Forward file buffering, 102

G Get_Environment( ), 93, 165
Get_Filename( ), 84, 165
Get_Input( ), 65, 82 - 84, 166
Get_Key( ), 82 - 83, 167
Get_Num( ), 82, 168
Goto statement, 65, 168
Goto_Col( ), 169
Goto_Line( ), 29, 169
Goto_Marker( ), 169
Goto_Pos( ), 29, 87, 169
Graphics characters

Displaying, 136
Entering, 170

H Help( ) command), 25, 170
Horizontal scrolling, 240

I If (then) statement, 61
Indenting with tabs and spaces, 170
Input file, 186

Display filename, 98
Open flag - Is_Open_Read, 174
Opening, 34, 160
Reading, 161
Redirect keyboard input from file, 86, 198

Input from keyboard (See also Keyboard), 82
Input redirection file, 86
Ins_Char( ), 30, 69, 170
Ins_File( ), 171

294



Ins_Indent( ), 170
Ins_Newline( ), 170
Ins_Text( ), 21, 30, 42, 58, 109, 172
Insert

Number (See also Num_Ins( ) command), 189
Text, 30, 170, 172
Text via re-routing, 43, 192

INSERT option, 38
Block_Fill, 125 - 126

[INSERT TOGGLE], 18
Insert_Mode( ), 171
Integer to ASCII, 175
Integers, 69
Internal values, 71
Is_Altered, 173
Is_Altered_File, 173
Is_Auto_Execution, 173
Is_Disk_Open, 173
Is_Expired, 173
Is_File_Selector, 173
Is_Long_Filename, 173
Is_Mono, 173
Is_New_File, 173
Is_Open_Read, 173
Is_Open_Write, 173
Is_Option, 173
Is_OS2, 173
Is_Quiet, 173
Is_Redirect_Input, 173
Is_Saveas, 173
Is_Startup_Vdm, 173
Is_Support, 173
Is_VSWAP, 173
Is_Win32_Version, 173
Is_Windows, 173
Is_WinNT, 173
Is_Zoomed, 173
Itoa( ), 175

K Key_Add( ), 100, 175
Key_Cfg_Pop( ), 94, 176
Key_Cfg_Push( ), 94, 176
Key_Delete( ), 101, 176
Key_Jam( ), 177
Key_List( ), 177
Key_Load( ), 100, 177
Key_Pop( ), 100, 178
Key_Purge( ), 178
Key_Record_Mode( ), 179
Key_Save( ), 100, 179
Key_Status, 180

295



Key_Total, 180
Keyboard

Input commands, 82, 166 - 168
Previous keystrokes - Previous_Key, 194
Redirect keyboard input from file, 86, 198
Status - Key_Status, 180

Keyboard layout
Display, 177
Load from disk, 177
Modify, 99
Save to disk, 179

"KEYBOARD LAYOUT CORRUPTED", 178, 228
Keystroke macros

Add via command macro, 175
Command macro, 52
Delete, 176
Flag - Visual_Macro, 228

L Labels (in command macros), 65
Last_Search_Pos, 180
Left margin - Margin_Left( ), 181
Line block (See also Block), 126
<LF>, 42
Line number

Cur_Line, 144
Goto - Goto_Line( ), 169

Line numbering, 76
Line( ), 29, 66, 180
Line-range block (See also Block), 90
LINESET Option

Block_Copy/Move, 124
Search/Replace, 213

LOCAL Option
Search/Replace, 213

"Locked-in" macro execution, 113, 203
Logical operators, 72, 74
Long filenames, 34, 158, 166, 174
Lower and upper case

Searching, 213

M "MACRO ERROR IN r", 112
Macro_Num, 181
Macros (See Command macros or Keystroke macros), 52
Mainframe computers, 42
Margin_Left( ), 181
Margin_Right( ), 181
Mark_Word, 181
Marker( ), 181
Match( ), 62, 95, 108, 182
Match_Item, 183
Match_Paren( ), 183

296



Matching
Number of characters - Chars_Matched, 95, 137
Text, 95 - 97, 139, 182

Max( ), 183
Mem_Free( ), 102, 184
Mem_Status( ), 184
Memory

Saving space, 200
Space free - Mem_Free, 102, 184, 207

Message( ), 23, 79, 185
Mouse_Active, 185
Multiple file editing (See also Editing), 44 - 45, 104 - 106

N N_Option, 187
Name_Dir( ), 186
Name_File( ), 98, 186
Name_Read( ), 98, 186
Name_Write( ), 98, 186
Nested (flow control statements), 56, 62
Network (printing), 42
"New file" message, 159
Newline character, 136

Converting, 42
Number of chars - Newline_Chars, 187

Newline_Chars, 187
Next_Tab_Stop, 187
"NO ASSIGNED FILENAME", 164
"NO DIRECTORY SPACE", 36
"NO DISK SPACE", 36, 129
NOERR option, 66 - 67, 105

Search/Replace, 214
NORESTORE Option, 33

Block_Fill, 125
Search/Replace, 214

Null character (value 00)
Enter/search, 42

Num_All_Bufs, 187
Num_Display( ), 187
Num_Edit_Bufs, 187
Num_Eval( ), 77, 188
Num_Eval_Date( ), 188
Num_Eval_Reg( ), 122
Num_Ins( ), 60, 76, 189
Num_Ins_Date( ), 188
Num_Pop( ), 78, 190
Num_Push( ), 78, 190
Num_Str( ), 175
Num_Type( ), 76, 190
Numbers

Displaying, 190
Inserting, 189

297



Numeric
Accuracy, 73
Arguments, 20
Arrays, 71
Assignment, 70
Constants, 69
Expressions, 72 - 75
Indirection, 71
Operands, 72
Operator precedence, 75
Operators, 72 - 73
Register (See Numeric Register), 70

Numeric register, 70
Displaying, 187, 190
Stack, 78, 190

O O_Option, 191
On-line calculator, 23, 69
Opening a file, 158, 160
Operating system - OS_Type, 191
Operators (See Numeric), 72
OS_Type, 191
Out_File( ), 43, 191
Out_Ins( ), 43, 98, 192
Out_OS( ), 43, 192
Out_Print( ), 43, 193
Out_Reg( ), 43, 193
Output file

Altered flag - Is_Altered, 173, 216
Altered flag - Is_Altered_File, 173
Closing, 163
Display filename, 98
Explicit file flag - Is_Saveas, 174
Open flag - Is_Open_Write, 174
Opening, 34, 159 - 160
Reading, 161
Writing, 160, 163

OVERWRITE Option
Block_Copy/Move, 125

Overwrite_Mode( ), 194
Overwriting text, 170, 172

P Page eject, 41, 196
Paragraph formatting, 164
Parentheses

Command arguments, 20
Matching, 183
Numeric, 75

Pathnames, 37
Pattern matching, 32, 282
Previous_Key( ), 194

298



Previous_Tab_Stop, 194
Print

Basics, 41
Characters per line, 197
Control characters, 41, 193
Eject page, 41
Example, 56, 59
Line number on page, 197
Lines per page, 197
Margins, 41
Re-route to printer, 43, 193
Text, 41
Text registers, 39, 204

Print( ), 21, 41, 56 - 57, 195
Print_Block( ), 88, 195
Print_Eject( ), 41, 56, 196
Print_Finish( ), 42, 196
Printer_CPL, 197
Printer_Line, 197
Printer_LLP, 197
Process_ID, 197

Q QALL, 26, 152
QALLY, 152
Quit (abandon)

Exit, 131
Remain in VEDIT, 129

R Re-routing console output, 43, 191 - 193
Reading files (See also Input file), 102, 161
Redirect keyboard input, 86
Redirect_Input( ), 86, 198
Reg_Compare( ), 97, 198
Reg_Copy( ), 38, 199
Reg_Copy_Block( ), 88 - 90, 199
Reg_Empty( ), 38, 112, 200
Reg_Free, 200
Reg_Ins( ), 38, 45, 91, 201
Reg_Load( ), 38, 52, 54, 202
Reg_Load_Part( ), 202
Reg_Lock_Macro( ), 114, 203
Reg_Mem_Free, 203
Reg_Pop( ), 93 - 94, 205
Reg_Print( ), 39, 204
Reg_Prot( ), 205
Reg_Push( ), 93 - 94, 205
Reg_Save( ), 38, 206
Reg_Set( ), 39, 53 - 54, 206
Reg_Size( ), 203
Reg_Status( ), 39, 207
Reg_Type( ), 39, 208

299



Reg_Type_Block( ), 208
REGEXP option, 32

Match, 182
Search/Replace, 214

Regular expressions, 32
Relational operators, 72, 74
Remainder (from division), 73, 209
[REPEAT LAST], 179
Repeat statement, 55
Repeat_Count, 209
Repeat_Flag, 209
Repeated commands (See Repeat( ) and Flow Control), 55
Replace( ), 32, 58, 68, 106, 213
Replace_Block( ), 213
RESET Option

Block_Fill, 125
Restore_Pos( ), 101, 209
Retab_Block( ), 147
Return( ), 65, 210
Return_Value, 23, 95 - 97, 210, 214
REVERSE option, 31

Search/Replace, 214
Reverse_Video, 210
Right margin - Margin_Right( ), 181

S Save text and continue, 162
Save text and exit, 25
Save text and remain, 35, 155
Save_Pos( ), 101, 209
Screen

Color/attributes - Win_Color, 80, 174, 231, 233
Display (stopping/starting), 24
Display type - Screen_Type, Screen_IBM, 212
Size - Screen_Cols, Screen_Lines, 210
Video mode (Screen_IBM_Mode, 211

Screen_IBM, 211
Screen_IBM_Mode, 211
Screen_Init( ), 48, 233
Screen_Mono, 211
Screen_Reset( ), 211
Screen_Size( ), 212
Screen_Type, 212
Scroll margin

Setting, 240
Search, 31 - 33, 91

Backwards (reverse), 31, 213
Error, 33, 57, 214
Error - Error_Match, 68
Error suppression, 67
Pattern matching codes, 282 - 284
Pattern set - Match_Item, 183

300



Regular expressions, 182, 283
String, 31

Search and Replace, 31 - 33, 68
Automate, 86
Multiple files, 104 - 106

Search( ), 22, 31, 33, 42, 53, 67, 90 - 91, 213
Search_Block( ), 22, 213
Search_Options, 215
Search_Status, 215
SET option, 32

Search/Replace, 214
Set_Altered_Flag, 216
Set_Marker( ), 87 - 88, 216
Set_Visual_Line( ), 216
SIMPLE Option

Search/Replace, 214
Size of file - File_Size, 162
Sleep( ), 217
Sort_Load( ), 217
Sorting

Collate table, 217
Sorting - Sort( ), 217 - 218
Sound( ), 99, 121
SR_Display( ), 219
SR_Set( ), 219
Statline_Message( ), 79, 185
Status information, 26
Status line, 47, 79, 82, 241

Message, 185
String arguments, 21

Multiple line, 22
Strip high bit - Strip_High( ), 88, 99, 220
Suppress

"Newline", 98
Error handling, 67

Syntax highlighting, 220
Syntax_Load( ), 220
System( ), 40, 221

T [T-REG COPY], 19
[T-REG INSERT], 19
[T-REG MOVE], 19
Tab character - Convert to spaces, 147
Tab stops

Previous_Tab_Stop, 194
Next_Tab_Stop, 187
Setting, 27, 142

Tab_Out( ), 79, 222
Template editing, 109, 222
Template_Load( ), 222
Text (display), 79, 185

301



Text markers
Marker( ), 181
Setting, 87, 216

Text register, 38 - 40
Append to, 38, 83, 199
As a filename, 39
Commands, 38, 93 - 94
Copy/move to, 38, 199
Displaying, 39, 208
Emptying, 200
Inserting, 201
Load command macros, 51, 54, 134
Load from disk, 38, 202
Load text, 206
Matching, 96, 139
Name conventions, 40, 285 - 286
Override block type, 91
Print, 204
Protection, 205
Re-route to text register, 193
Register to register copy, 207
Save to disk, 38, 206
Size, 207
Stack, 93, 205
Usage, 40, 285 - 286

Text strings, 54, 172
Time( ), 145
Time_Tick, 223
{TOOLS} menu, 94
Trace mode, 115
Translate_Block( ), 88 - 89, 223
Translate_Char( ), 224
Translate_Load( ), 223
TRUE (logical value), 72
Type( ), 30, 56, 69, 224
Type_Block( ), 88 - 89, 224
Type_Char( ), 136
Type_File( ), 225
Type_Newline( ), 79, 226
Type_Space( ), 79, 226

U Undo, 226
Command Macros, 103
Enable/disable, 103

Undo_Delete( ), 226
Undo_Edit( ), 226
Undo_Line( ), 226
Undo_Reset, 227
Update( ), 24, 227
{USER} menu, 94
USTARTUP.VDM file - example, 53

302



V V, 24
V-SWAP - Is_VSWAP, 174
Version( ), 228
Version_Num, 228
VGA display, 212
[VISUAL ESCAPE], 17, 228
[VISUAL EXIT], 17, 228
Visual Macro, 228
Visual Mode, 228

Command macros, 52
Entering, 18, 228
Execute within Command Mode, 151
Exiting to Command Mode, 17
In command loops, 68

Visual( ), 18, 228

W While statement, 59
Wildcard characters, 36
Win_Attach( ), 49, 229
Win_Border, 230
Win_Cascade( ), 230
Win_Cfg_Pop( ), 94, 230
Win_Cfg_Push( ), 94, 230
Win_Clear( ), 80, 231
Win_Color( ), 80, 231
Win_Color_Erase, 231
Win_Cols, 230
Win_Create( ), 46, 232
Win_Delete( ), 48, 233
Win_Detach( ), 50, 229
Win_Display_Mode( ), 234
Win_EOL( ), 80, 231
Win_EOS( ), 80, 231
Win_Free, 234
Win_Height, 235
Win_Hor( ), 80, 236
Win_Level( ), 236
Win_Lines, 230
Win_Move( ), 237
Win_Next, 234
Win_Num, 237
Win_Overlap, 236
Win_Page_Size, 238
Win_Previous, 234
Win_Reserved( ), 24, 48, 238
Win_Reserved_Bottom, 239
Win_Reserved_Bottom_ID, 239
Win_Reserved_Top, 239
Win_Reserved_Top_ID, 239
Win_Scroll_Margin( ), 240
Win_Split( ), 46, 238

303



Win_Status, 240
Win_Switch( ), 47, 50, 240
Win_Tile( ), 230
Win_Title( ), 241
Win_Total, 237
Win_Vert( ), 80, 236
Win_Width, 235
Win_X_Org, 235
Win_Y_Org, 235
Win_Zoom( ), 48, 242
Window

Title, 241
Windows, 46 - 50

Attach to edit buffer, 48 - 49, 229
Attached - Buf_Window, Win_Next, 131, 235
Auto-create for buffers, 34
Borders - Win_Border, 230
Clearing/erasing, 80, 231
Color/attributes, 233
Color/attributes - Win_Color, 80
Command Mode, 12, 24
Creating, 46 - 50, 232, 238
Deleting, 233
Display mode - Win_Display_Mode, 234
Editing, 48
Moving or resizing, 237
Multiple per file, 48 - 49, 229
Number/name - Win_Num, 237
Remove all, 233
Reserved, 239
Status - Win_Stat, 240
Status - Win_Total, 237
Switching, 47, 50, 240
Zooming, 242

WORD Option
Match, 182
Search/Replace, 213

WordStar files, 99, 220
Write block to disk, 126, 242
Write error - Error_OS, 152
Write_Block( ), 88 - 90
Write_Line( ), 242
Writing files (See also Output file), 102, 160, 163

X XALL, 25, 152

Z Zooming windows (See also Windows), 242

304


	Table of Contents
	Chapter 1 - Introduction
	Chapter 2 - Command Macro Guide
	Easy as 1 - 2 - 3 - 4
	Command Mode
	Basic Commands
	Search and Replace
	File Editing Commands
	Text Registers
	Intermediate Commands
	Multiple File Editing
	Window Commands

	Chapter 3 - Programming Guide
	Introduction to Programming
	Flow Control
	Numeric Capability
	Numeric Expressions
	Additional Numeric Features
	Interactive Input and Output
	Block Operations
	Text Register Commands
	Match and Compare
	Additional Commands
	Technical Topics
	Search/Replace Multiple Files
	Event Macros
	Developing Complex Macros
	On-Line Help and Web site
	Debugging Macros

	Chapter 4 - Command Reference
	Appendices
	A - Edit Function Codes
	B - Command Syntax
	C - Numeric Expressions
	D - String Arguments
	E - Command Summary
	F - Search Modes Summary
	G - Text Register Usage

	Index

